JPS62177463A - Fault point locating system - Google Patents

Fault point locating system

Info

Publication number
JPS62177463A
JPS62177463A JP2063586A JP2063586A JPS62177463A JP S62177463 A JPS62177463 A JP S62177463A JP 2063586 A JP2063586 A JP 2063586A JP 2063586 A JP2063586 A JP 2063586A JP S62177463 A JPS62177463 A JP S62177463A
Authority
JP
Japan
Prior art keywords
circuit
output
current
integrates
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063586A
Other languages
Japanese (ja)
Inventor
Genzaburo Kotani
源三郎 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2063586A priority Critical patent/JPS62177463A/en
Publication of JPS62177463A publication Critical patent/JPS62177463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate the distance to a fault point with high accuracy by setting simultaneous equations based upon voltage and current on this system and current information on the opposite terminal. CONSTITUTION:The absolute values of the voltage VP and current IP at the installation point of a fault point locating device (FL) are found by circuits 1 and 2. Further, a circuit finds the phase difference theta between the voltage VP and current IP, a circuit 4 finds the absolute value of an opposite-terminal current IO, and a circuit 5 finds the phase difference delta between the currents IP and IQ. Further, the sine component of the output phase of the circuit 3 and the output of the circuit 2 are integrated 6 and a sine component obtained by subtracting the phase difference delta of the circuit 5 from the phase difference theta of the circuit 3 and the output of the circuit 4 are integrated 7. Further, the since component of a power transmission line angle alpha and the output of the circuit 2 are integrated 8 and a sine component obtained by subtracting the output of the circuit 5 from the line angle alpha and the output of the circuit 4 are integrated 9. An arithmetic circuit 10 integrates the sum of the output of a circuit 6 and the output of a circuit 7, and the output of the circuit 1 and also integrates 11 the sum of the output of the circuit 8 and the output of the circuit 9 with the output of the circuit 2. Then, the value obtained by integrating the output of a circuit 11 and impedance per unit length of the power transmission line is divided 12 by the output of the circuit 10 to locate the distance to the fault point with high accuracy.

Description

【発明の詳細な説明】 し産業上の利用分野コ この発明は、故障点標定方式fζ関し、標定を対象とす
る送電線の自端の電流な圧情報と相手端の電流情報から
高精度で故障点を標定する故障点標定方式に関する。
[Detailed Description of the Invention] The present invention relates to a fault point locating method fζ, and the present invention relates to a fault point locating method fζ, which can be used to locate a power transmission line with high accuracy based on current and pressure information at its own end and current information at the other end. This paper relates to a fault point locating method for locating a fault point.

(従来の技術〕 従来、この種の故障点標定方式としては特公昭57−5
0262号に示すものがあった。
(Prior art) Conventionally, this type of failure point locating method was developed using the
There was one shown in No. 0262.

第2図は従来の発明を・説明するための故障発生時の電
力系統の等価回路図で1図中Ep及びEQはP端及びQ
端の電源電圧、 zgp 、 ZgQはP、Q端の背後
インピーダンス、 VP 、 vQはP、Q端の電圧。
Figure 2 is an equivalent circuit diagram of a power system when a failure occurs to explain the conventional invention. In Figure 1, Ep and EQ are P terminal and Q.
The power supply voltage at the end, zgp and ZgQ are the back impedances at the P and Q ends, and VP and vQ are the voltages at the P and Q ends.

IP 、 IQはP、Q端から故障点に流れる電流、R
Fは故障点抵抗、20は故障点標定装置(以下フォール
トロケータ:FLと記す)、eZはFL設設置点点ら故
障点迄のインピーダンスでaはFLL置点から故障点迄
の距離を、Zは送電線の単位長当りのインピーダンスを
示す。(L−12は故障点からQ端迄のインピーダンス
でLはP端とQ端間の距離□を示す。
IP, IQ are the currents flowing from P and Q terminals to the fault point, R
F is the fault point resistance, 20 is the fault locator (hereinafter referred to as FL), eZ is the impedance from the FL installation point to the fault point, a is the distance from the FLL installation point to the fault point, and Z is Indicates the impedance per unit length of the power transmission line. (L-12 is the impedance from the failure point to the Q end, and L is the distance □ between the P end and the Q end.

次に従来方式の考え方について説明する。Next, the concept of the conventional method will be explained.

第2図において電圧、電流の関係は Vp=#ZIp+RF(Ip+Ig)        
−(1)VQ= (L−# )ZIQ +RF(IP+
IQ)             −(2)となる。従
ってFLL置点の電圧、電流情報から故障点迄のインピ
ーダンスを求める場合、次の(3)式の如く電圧を電流
で割算して求めることができる。
In Figure 2, the relationship between voltage and current is Vp=#ZIp+RF(Ip+Ig)
-(1)VQ= (L-#)ZIQ +RF(IP+
IQ) - (2). Therefore, when determining the impedance up to the failure point from the voltage and current information at the FLL point, it can be determined by dividing the voltage by the current as shown in equation (3) below.

(3)式でRF−0の場合にはeZが得られ、ここでZ
は送電線の単位長当りのインピーダンスで既知の値であ
るため故障点迄の距ft eを求めることができること
になる。しかし、実系統での故障ではRFは未知の値で
RF〜0であるtこめ、(3)式の2項目が誤差となる
In the case of RF-0 in equation (3), eZ is obtained, where Z
Since the impedance per unit length of the power transmission line is a known value, the distance ft e to the fault point can be determined. However, in the case of a failure in an actual system, RF is an unknown value and RF~0, so the two items in equation (3) become errors.

従来の発明では、この誤差分をなくすため、自端(P端
〕及び相手端(Q端〕の電流゛電圧情報を得て故障点標
定を行なっている。
In the conventional invention, in order to eliminate this error, fault point location is performed by obtaining current/voltage information at the own end (P end) and the opposite end (Q end).

即ち、(1)式−(2)式よりRFの値を消してVp−
Vg=/+Z(Ip+1□)−LZI□故に故障点迄の
距離eを次の(4)式より求めている。
That is, by eliminating the value of RF from equations (1) and (2), Vp-
Vg=/+Z(Ip+1□)−LZI□ Therefore, the distance e to the failure point is calculated from the following equation (4).

(発明が解決しようとする問題点〕 従来の故障点標定方式は(4)式のように構成されてい
るので、自端及び相手端の電圧、電流情報を必要とする
為、相手端の電圧及び電流情報を人手しなければならず
、伝送容量が太き(なる欠点があった。
(Problem to be solved by the invention) Since the conventional failure point locating method is configured as shown in equation (4), it requires voltage and current information of the own end and the opposite end. The disadvantage was that the current information had to be manually recorded, and the transmission capacity was large.

この発明は、上記のような問題点を解消するためtこな
されたもので、相手端の電圧情報を不要とし自端の電圧
、電流情報と相手端の電流情報のみで故障点迄の距離を
高精度で標定できる故障点標定装置を提供することを目
的としている。
This invention was developed to solve the above-mentioned problems, and eliminates the need for voltage information at the other end, and allows the distance to the failure point to be determined using only the voltage and current information at the own end and the current information at the other end. The purpose of this invention is to provide a failure point locating device that can locate with high precision.

(問題点を解決するための手段〕 この発明に係る故障点標定装置はFLL置点の電流を基
準としてFLL置点の電圧を正弦成分及び余弦成分に分
解し、故障電流による電圧降下成分で等式化することに
より連立方程式を立て、これ・を解くことで故障点迄の
距離を求めるようにしたものである。
(Means for Solving the Problem) The fault point locating device according to the present invention decomposes the voltage at the FLL point into a sine component and a cosine component using the current at the FLL point as a reference, and divides the voltage drop component due to the fault current into equal parts. By formulating simultaneous equations, the distance to the failure point can be determined by solving the equations.

〔作用) この発明における方式では、 PLL置点の電圧を正弦
成分及び余弦成分について2つの量を得ることで、2つ
の式を成立させた為、相手端の電圧情報が無くても高精
度で標定することができる。
[Operation] In the method of this invention, two equations are established by obtaining two quantities for the sine component and cosine component of the voltage at the PLL point, so even if there is no voltage information at the other end, high accuracy can be achieved. can be located.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図においてlはFLL置点の電圧Vpの情対値を求
める回路、2はFLL置点の’a ML I pの絶対
値を求める回路、3はVpとIPの位相差θを求めるi
路、4は相手端電流IQの絶対値を求める回路、5はI
PとIQの位相差δを求める回路、6は2と3の出力か
ら1Iplsinθを求める回路、7は3〜5の出力か
らll01sin(ff−a)  を求める回路、8は
1Iplsinαを求める回路、ここでaは送電線の線
路角で単位長当りのインピーダンスZ=r+jxにおい
てα=jan’(−)で示される値、9は4と5の出力
か「 ら1lqlsin(α−β)を求める回路、10は1と
6と7の出力から1Vpl (1lplsinθ+If
01sin(θ−J))を求める回路、11は2と8と
9の出力から1IplNIplsinα+l1g1si
n(α−β)) を求める回路、12は11の出力と送
電線の単位長当りのインピーダンスZを積算した値を上
記10の回路の出力で割算する回路、18はFL設置か
ら故障名の距離を出力する端子を示す。
In Fig. 1, l is a circuit for calculating the relative value of voltage Vp at the FLL point, 2 is a circuit for calculating the absolute value of 'a ML I p at the FLL point, and 3 is i for calculating the phase difference θ between Vp and IP.
4 is a circuit for calculating the absolute value of the other end current IQ, 5 is I
A circuit for calculating the phase difference δ between P and IQ. 6 is a circuit for calculating 1Iplsinθ from the outputs of 2 and 3. 7 is a circuit for calculating ll01sin(ff-a) from the outputs of 3 to 5. 8 is a circuit for calculating 1Iplsinα. where a is the line angle of the transmission line and the impedance per unit length Z = r + jx, the value shown by α = jan' (-), 9 is the output of 4 and 5, 10 is 1Vpl (1lplsinθ+If
01sin(θ-J)), 11 is 1IplNIplsinα+l1g1si from the outputs of 2, 8, and 9.
n(α-β)), 12 is a circuit that divides the integrated value of the output of 11 and the impedance Z per unit length of the transmission line by the output of the above 10 circuits, 18 is the fault name from FL installation. Indicates the terminal that outputs the distance.

次に本発明の考え方について説明する。Next, the concept of the present invention will be explained.

第2図の故障発生時の電力系統の等価回路図から、 F
LL置点の電圧vPは、FLL置点の電流IFによる故
障点迄のインピーダンスeZの電圧降下成分gztp 
 に相手端からの電流IQとIPの和による故障点抵抗
RFの電圧降下成分Rp(Ip+I□)を加えたもので
あるため、第3図のように示すことができる。
From the equivalent circuit diagram of the power system when a failure occurs in Figure 2, F
The voltage vP at the LL point is the voltage drop component gztp of the impedance eZ up to the failure point due to the current IF at the FLL point.
Since it is the sum of the voltage drop component Rp (Ip+I□) of the fault point resistance RF due to the sum of the currents IQ and IP from the other end, it can be shown as shown in FIG.

図中αは送電線の線路角で単位長当りのインビーダンス
Z=r+jxlζおいてα=tan−’ (” )で示
されるr 値、θはVpとIPの位相差、δはIPとIQの位相差
でIPを基準とした位相角を示す。
In the figure, α is the line angle of the power transmission line, impedance per unit length Z = r + j The phase angle with respect to IP is indicated by the phase difference.

第3図よりvPの正弦成分及び余弦成分から次の(5)
 、 +61式が成立する。
From Figure 3, the following (5) is obtained from the sine and cosine components of vP.
, +61 formula holds true.

#ZIIplsinα+RpHqlsinδ=lVpl
sinθ ・(5)eZI Ip 1cosα+Rpl
 IPl+RFIIQICO8δ= 1Vplcosl
!7−= (6)(5) 、 +6)式を行列式fこ書
き直すと次の(7)式となる。
#ZIIplsinα+RpHqlsinδ=lVpl
sinθ ・(5) eZI Ip 1cosα+Rpl
IPl+RFIIQICO8δ= 1Vplcosl
! 7-=(6)(5), +6) If the equation is rewritten by the determinant f, the following equation (7) is obtained.

従って故障点迄の距離eは次の(8)式により求めるこ
とができる。
Therefore, the distance e to the failure point can be determined by the following equation (8).

このことから相手端の電流IQの情報を得ると式中の諸
定数は全て既知となるので相手端の電圧情報が無くても
故障点迄の距離を算出することができる。また1式中に
故障点抵抗RFが無い為RF部に生じtこ電圧降下成分
による誤差も生じることな(高精度で標定できることが
判る。
From this, when information on the current IQ at the other end is obtained, all the constants in the equation become known, so the distance to the failure point can be calculated even without voltage information at the other end. In addition, since there is no fault point resistor RF in one set, errors due to voltage drop components occurring in the RF section do not occur (it can be seen that highly accurate location can be achieved).

なお、上記実施例では単相で説明したが、3相の場合に
適用できることは苫うまでもない。
Although the above embodiment has been explained using a single phase, it goes without saying that it can also be applied to a three phase case.

また、上記実施例では故障点迄の距離を故障点迄のりア
クタンスを得ることから求めたが故障点抵抗RFを求め
ることもできることは(7)式より明らかである。
Further, in the above embodiment, the distance to the fault point was determined by obtaining the actance up to the fault point, but it is clear from equation (7) that the fault point resistance RF can also be determined.

(発明の効果〕 以上のように、この発明によれば自端の電圧、電流情報
と相手端の電流情報で故障点迄の距離を算出できるよう
にしたので、伝送容量を小さくでき、また故障点抵抗に
よる測距誤差もなく精度の高いものが得られる効果があ
る。
(Effects of the Invention) As described above, according to the present invention, it is possible to calculate the distance to a failure point using the voltage and current information of the own end and the current information of the opposite end, so the transmission capacity can be reduced, and the This has the effect of obtaining highly accurate distance measurement without any distance measurement errors due to point resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの冗明の一実施例による故障点標定装置を示
すブロック図、第2図は故障発生時の電力系統の等価回
路図、第8図は第2図の電流電圧成分を描いた図である
Figure 1 is a block diagram showing a failure point locating device according to one embodiment of this redundancy, Figure 2 is an equivalent circuit diagram of the power system at the time of failure, and Figure 8 depicts the current and voltage components of Figure 2. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 両端電源を有する2端子系送電線において自端の系統電
圧と電流の絶対値量を導出する第1と第2の回路と、自
端の電圧と電流の位相差を導出する第3の回路と、相手
端電流の絶対値量を導出する第4の回路と、自端電流と
相手端電流の位相差を導出する第5の回路と、上記第3
の回路の出力位相の正弦成分と上記第2の回路の出力を
積算する第6の回路と、上記第3の回路の出力から上記
第5の回路の出力を差引いた値の正弦成分と上記第4の
回路の出力を積算する第7の回路と、送電線の線路角の
正弦成分と上記第2の回路の出力を積算する第8の回路
と、送電線の線路角から上記第5の回路の出力を差引い
た値の正弦成分と上記第4の回路の出力を積算する第9
の回路と、上記第6の回路の出力と第7の回路の出力和
に上記第1の回路の出力を積算する第10の回路と、上
記第8の回路の出力と第9の回路の出力和に上記第2の
回路の出力を積算する第11の回路と、上記第11の回
路の出力と送電線の単位長当りのインピーダンスを積算
した値を上記第10の回路の出力で割算する第12の回
路を設け故障点迄の距離を標定することを特徴とする故
障点標定方式。
In a two-terminal power transmission line having a power supply at both ends, first and second circuits that derive the absolute values of the system voltage and current at the own end, and a third circuit that derives the phase difference between the voltage and the current at the own end. , a fourth circuit that derives the absolute value amount of the current at the other end, a fifth circuit that derives the phase difference between the current at the other end and the current at the other end, and the third circuit described above.
a sixth circuit that integrates the sine component of the output phase of the circuit and the output of the second circuit; a sine component of the value obtained by subtracting the output of the fifth circuit from the output of the third circuit; a seventh circuit that integrates the output of the fourth circuit, an eighth circuit that integrates the sine component of the line angle of the power transmission line and the output of the second circuit, and a fifth circuit that integrates the output of the second circuit based on the line angle of the power transmission line. A ninth circuit that integrates the sine component of the value obtained by subtracting the output of and the output of the fourth circuit.
a tenth circuit that integrates the output of the first circuit with the sum of the output of the sixth circuit and the seventh circuit, the output of the eighth circuit and the output of the ninth circuit. an eleventh circuit that integrates the output of the second circuit into the sum; and a value that integrates the output of the eleventh circuit and the impedance per unit length of the power transmission line and divides it by the output of the tenth circuit. A fault point locating method characterized by providing a twelfth circuit and locating the distance to the fault point.
JP2063586A 1986-01-30 1986-01-30 Fault point locating system Pending JPS62177463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063586A JPS62177463A (en) 1986-01-30 1986-01-30 Fault point locating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063586A JPS62177463A (en) 1986-01-30 1986-01-30 Fault point locating system

Publications (1)

Publication Number Publication Date
JPS62177463A true JPS62177463A (en) 1987-08-04

Family

ID=12032687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063586A Pending JPS62177463A (en) 1986-01-30 1986-01-30 Fault point locating system

Country Status (1)

Country Link
JP (1) JPS62177463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129415A (en) * 2020-02-13 2021-09-02 株式会社エネゲート Current calculation system for power transmission line and calculation method of current

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143460A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Trouble point decision system
JPS52143458A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Digital type trouble point decision system
JPS53121140A (en) * 1977-03-31 1978-10-23 Hitachi Ltd Fault point locating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143460A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Trouble point decision system
JPS52143458A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Digital type trouble point decision system
JPS53121140A (en) * 1977-03-31 1978-10-23 Hitachi Ltd Fault point locating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129415A (en) * 2020-02-13 2021-09-02 株式会社エネゲート Current calculation system for power transmission line and calculation method of current

Similar Documents

Publication Publication Date Title
Jeffery et al. NIST comparison of the quantized Hall resistance and the realization of the SI ohm through the calculable capacitor
CA2489178A1 (en) Fault location using measurements of current and voltage from one end of a line
CA1200582A (en) Method of measuring the distance of a fault on a line taking account of distributed capacitances
US3699441A (en) Polyphase signal monitoring system
JPS634717B2 (en)
US2551291A (en) Electric voltage, current, and phaseangle measuring instrument
US4814696A (en) Method and circuit arrangement for measuring in-phase and quadrature components of current in an electrical alternating current power supply
JPS62177463A (en) Fault point locating system
JPS5950720A (en) Zero-phase voltage detector
JP3160043B2 (en) Apparatus and method for measuring transformer parameters
JPS5916835Y2 (en) Input circuit of electronic equipment
JPS62177464A (en) Fault point locating system
SU1626163A1 (en) Method for checking error of voltage divider
JPH05288783A (en) Impedance measuring method and device
JPH0333020Y2 (en)
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
SU658505A1 (en) Meter of distance to fault in cable insulation
JP2003270285A (en) Method for fault location
JPH0316068Y2 (en)
EP0942289A2 (en) Signal processing method and means
JPS637349B2 (en)
SU855548A1 (en) Device for checking dc network insulation
SU1288611A1 (en) Resistance meter
JPS6254172A (en) Power loss measuring instrument for static induction machine
JPH0546341Y2 (en)