JPS62177464A - Fault point locating system - Google Patents

Fault point locating system

Info

Publication number
JPS62177464A
JPS62177464A JP2063786A JP2063786A JPS62177464A JP S62177464 A JPS62177464 A JP S62177464A JP 2063786 A JP2063786 A JP 2063786A JP 2063786 A JP2063786 A JP 2063786A JP S62177464 A JPS62177464 A JP S62177464A
Authority
JP
Japan
Prior art keywords
point
current
fault point
distance
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2063786A
Other languages
Japanese (ja)
Other versions
JPH0723904B2 (en
Inventor
Genzaburo Kotani
源三郎 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61020637A priority Critical patent/JPH0723904B2/en
Publication of JPS62177464A publication Critical patent/JPS62177464A/en
Publication of JPH0723904B2 publication Critical patent/JPH0723904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate the distance to a fault point with high accuracy by calculating the distance to the fault point from a specific equation based upon the voltage and current of this terminal and the current of the opposite terminal. CONSTITUTION:The voltage at the installation point of a fault point locating device (FL) is decomposed into a sine and a cosine component based on the current at the FL installation point and an equation based upon a voltage drop component originating from a fault current is set and solved to find the distance (l) to the fault point. Therefore, the need for voltage information on the opposite terminal is eliminated, so transmission capacity from the opposite terminal is reducible and the distance to the fault point is located accurately without a measurement error due to fault point resistance nor a tidal current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、故障点標定方式Eこ関し、標定を対象とす
る送電線の自端の電流電圧情報から高精度で故障点を標
定する故障点標定方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fault point locating method E, which is a method for locating a fault point with high precision from current and voltage information at the own end of a power transmission line to be located. Concerning point orientation methods.

〔従来の技術〕[Conventional technology]

従来、この種の故障点標定方式としては、特公昭57−
50262  号に示すものがあった。
Conventionally, this type of failure point locating method was developed using the
There was one shown in No. 50262.

第5図は従来の発明を説明するための故障発生時の電力
系統の等価回路図で、図中Ep及び囮はp端及びQ端の
電源電圧、Zgp 、 Zgqはp、Q端の背後インピ
ーダンス、vp 、 VQはp、Q端の電圧、Ip 、
 IQはp、Q端から故障点に流れる電流、Rトは故障
点抵抗、■は故障点標定装置(以下フォールトロケータ
、FLと記す)、IzはFL設一点から故障点迄のイン
ピーダンスでβはFL設置点から故陣点迄の距!、Zは
送電線の単位長当りのインピーダンスを示す。(L−g
)Zは故障点からQ端迄のインピーダンスでLは口端と
Cn。
FIG. 5 is an equivalent circuit diagram of a power system when a failure occurs to explain the conventional invention. In the figure, Ep and decoy are the power supply voltages at the p and Q ends, and Zgp and Zgq are the back impedances at the p and Q ends. , vp, VQ is the voltage at the p and Q ends, Ip,
IQ is p, the current flowing from the Q terminal to the fault point, Rt is the fault point resistance, ■ is the fault locator (hereinafter referred to as a fault locator, FL), Iz is the impedance from the FL setting point to the fault point, and β is Distance from the FL installation point to the late camp point! , Z indicates the impedance per unit length of the transmission line. (L-g
) Z is the impedance from the failure point to the Q end, and L is the mouth end and Cn.

間の距離を示す。Indicates the distance between

次に従来方式の考え方について説明する。Next, the concept of the conventional method will be explained.

第5図により次の11)式が成立する。According to FIG. 5, the following equation 11) is established.

Vp = 1ZIp + RF (ip+ IQ)  
  −tll従ってP″L設一点の自端の゛成圧、竜流
情報から故障点迄のインピーダンスを求めると次の(2
)が得られる。
Vp = 1ZIp + RF (ip + IQ)
-tll Therefore, the impedance up to the failure point can be found from the pressure and torrent information at the own end of one point where P″L is set, as follows (2
) is obtained.

ここでRFが零の場合には故障点迄のインピーダンスl
Zが得られるので、送電線の単位長当りのインピーダン
スZで除すことにより故障点迄の距@eを求めることが
できる。しかし、完系統での故障ではRFは零でないた
め誤差が生じる。そして、(口手端の電流IQを入手で
きたとしてもRFは故障条件(こよって変化する未知の
(mであるため抽圧を掛けることもできなかった。
Here, if RF is zero, the impedance up to the failure point l
Since Z is obtained, the distance @e to the fault point can be obtained by dividing by the impedance Z per unit length of the power transmission line. However, in the case of a failure in a complete system, an error occurs because the RF is not zero. Even if the current IQ could be obtained, it was not possible to apply extraction pressure because the RF failure condition was unknown (m).

このことから従来の発明では、この誤差分をなくすため
口端(口端)及び相手端(Q端)の電圧電流情報を得て
故障点標定を行なっている。
For this reason, in the conventional invention, in order to eliminate this error, the fault point is located by obtaining voltage and current information at the mouth end (mouth end) and the other end (Q end).

即ち口端での電圧゛電流情報から上記(1)式を、また
9@での紙圧電流情報から次の(3)式をfqる。
That is, the above equation (1) is calculated from the voltage and current information at the end of the mouth, and the following equation (3) is calculated from the paper pressure current information at 9@.

vQ = (L −IZIQ + 1ff(ip + 
IQ) −(3)(1)と(3)式からl(Fを消去し
て距離eを次の(4)式より求めている。
vQ = (L −IZIQ + 1ff(ip +
IQ) - (3) By eliminating l(F) from equations (1) and (3), the distance e is calculated from equation (4) below.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の故障点標定方式は(4)式のように構成されてい
るので自端及び相手端の電圧、電流情報を入手しなけれ
ばならないため、相手端からの情報量が太く、伝送容量
が大きくなる欠点があった。
The conventional fault point locating method is configured as shown in equation (4), so it is necessary to obtain voltage and current information from the own end and the other end, so the amount of information from the other end is large and the transmission capacity is large. There was a drawback.

この発明は、上記のような欠点を解消するためになされ
たもので、相手端の電圧情報を不要とし、自端の電圧、
電流情報と相手端の電流情報のみで故障点迄の距離を高
精度で標定できる故障点標定方式を提供することを目的
としている。
This invention was made in order to eliminate the above-mentioned drawbacks, and eliminates the need for voltage information of the other end, and the voltage information of the own end,
The purpose of this invention is to provide a fault point locating method that can locate the distance to a fault point with high precision using only current information and current information at the other end.

〔問題点を解決するための手段〕[Means for solving problems]

この究明に係る故障点標定方式はFL設d点の電流を基
準としてFL設減点の電圧を正弦成分及び余弦成分に分
解し、故障電流による電圧降下成分で等式化することに
より連立方程式を立て、これを解くことで故障点迄の距
離を求めるようにしたものである。
The fault location method used in this investigation is to decompose the voltage at the FL setting point into a sine component and a cosine component using the current at the FL setting point d as a reference, and to create simultaneous equations by equating the voltage drop component due to the fault current. By solving this, the distance to the failure point can be found.

〔作用〕[Effect]

この発明における方式では、FL設置点の電圧を正弦成
分及び余弦成分について2つの量を得ることで、2つの
式を成立させた為、相手端の電圧情報が無くても高精度
で標定することができる。
In the method of this invention, two equations are established by obtaining two quantities for the sine component and cosine component of the voltage at the FL installation point, so it is possible to locate with high accuracy even without voltage information at the other end. I can do it.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図)こおいて(1)は、FL設置点の゛上圧Vp 
(D絶対値を求める回路、(2)はFL設置点の電流■
pの絶対値を求める回路、(3)はVpとIpの位相差
θを求める回路、(4)は引算回路でlip  ILl
=I111を求める回路、(5)は1pと工lの位相差
φ1を求める回路、(6)はlpと相手端の電流IQの
位相差δを求める回路、(7)は加算回路でlIQ+I
Ll=lI21 を求める回路、(8)はipと工2 
の位相差φ2を求める回路、(9)は電力系統Eこ故障
が発生していない時に流れている電流ILを記憶する回
路、四は演算回路で11sin(θ−φ1)+l2st
n(θ−a+φ2)(この値を特とする請求める回路、
Uυは演算回路でI、 sin (a−φt) + l
2sin (a −l+φ2)(この値を特とする請求
める回路、ここでαは送電線の線路角で単位長当りのイ
ンピーダンスZ = r +jxにおいてAIVplを
BZllpl  で割算する回路、醤はFL設義点から
故障点迄の距離を出力する端子を示す。
(Fig. 1) Here, (1) is the upper pressure Vp at the FL installation point.
(Circuit for calculating the absolute value of D, (2) is the current at the FL installation point■
A circuit that calculates the absolute value of p, (3) a circuit that calculates the phase difference θ between Vp and Ip, and (4) a subtraction circuit that calculates lip ILl.
=I111, (5) is a circuit that calculates the phase difference φ1 between 1p and I, (6) is a circuit that calculates the phase difference δ between lp and the current IQ at the other end, and (7) is an adder circuit that calculates lIQ+I.
The circuit for calculating Ll=lI21, (8) is ip and engineering 2
(9) is a circuit that stores the current IL flowing in the power system E when no fault has occurred; (4) is an arithmetic circuit; 11sin(θ-φ1)+l2st
n(θ−a+φ2) (a circuit that can claim this value,
Uυ is an arithmetic circuit, I, sin (a-φt) + l
2sin (a - l + φ2) (a circuit that can be used to specify this value, where α is the line angle of the transmission line and the impedance per unit length Z = r + jx) A circuit that divides AIVpl by BZllpl; This shows the terminal that outputs the distance from the point of error to the point of failure.

次に本発明の考え方について説明する。Next, the concept of the present invention will be explained.

第2図の故障発生時の電力系統の等価回路図から、FL
設置点の電圧Vpは、FL設置点の電流jpによる故障
点迄のインピーダンス4Zの電圧降下成分1ZIpに自
端及び相手端から故障点抵抗REに流れ込む電流(I!
+、I2)  による電圧降下成分RF(1+ + 1
2)を加えたものとなる。
From the equivalent circuit diagram of the power system at the time of failure in Figure 2, FL
The voltage Vp at the installation point is the voltage drop component 1ZIp of the impedance 4Z up to the fault point due to the current jp at the FL installation point, and the current (I!
+, I2) due to voltage drop component RF(1+ + 1
2) is added.

ここで自端及び相手端の電流IP及びIQは、(14力
系統に故障が発生していない時に流れている潮流IL 
(第8図Iこ示すようにp端の電源EpとQ端の&gE
Qに位相差がある場合、Ep−EQの電位差により電力
系統のトータルインピーダンスZgp +LZ + Z
gQ  で割算した電流が潮流It、として流れる)I
こ故障発生時、故障点抵抗RFに流れる増分¥4L a
 It (P端側)及び1x(Q端側)が加゛わったも
のでIp=Il+ IL 、 IQ= I2− ILで
表わすことができる。
Here, the currents IP and IQ at the own end and the opposite end are (14) The current IL flowing when there is no fault in the power system
(As shown in Figure 8, the power supply Ep at the p end and &gE at the Q end.
If there is a phase difference in Q, the total impedance of the power system Zgp +LZ + Z due to the potential difference of Ep-EQ
The current divided by gQ flows as tidal current It)I
When this fault occurs, the increment flowing into the fault point resistor RF is ¥4L a
It (P end side) and 1x (Q end side) are added and can be expressed as Ip=Il+IL and IQ=I2-IL.

従ってIp、IQ及びILは既知の値であることから壜
分地流工、及び工2 が算出できる。更にIpと11の
位相差φ、とIQとI2の位相差φ2及びIpとIQの
位相差aも算出できる。
Therefore, since Ip, IQ, and IL are known values, it is possible to calculate the bottle distribution and flow rate. Furthermore, the phase difference φ between Ip and 11, the phase difference φ2 between IQ and I2, and the phase difference a between Ip and IQ can also be calculated.

JJ、上0’) コトカラVp=nZIp+RF (1
1+ Iv  ) It第4図のように示すことができ
る。図中、αは送電線の線路角で単位長当りのインピー
ダンスZwr十jxGこおいてa = jan−1(−
、) テ示すレル値、θはVpとIpの位相差、φlは
Il とIpの位相差、δ−φ2 はI2と1pの位相
差でいずれもIpを基準とした位相角を示す。
JJ, upper 0') Kotokara Vp=nZIp+RF (1
1+Iv) It can be shown as shown in FIG. In the figure, α is the line angle of the power transmission line, and the impedance per unit length Zwr + j x G, a = jan-1 (-
, ), θ is the phase difference between Vp and Ip, φl is the phase difference between Il and Ip, and δ-φ2 is the phase difference between I2 and 1p, all of which indicate phase angles with Ip as a reference.

倉、4図よりVpの正弦成分及び余弦成分から次の15
) 、 (62式が成立する。
Kura, from Figure 4, the following 15 are obtained from the sine and cosine components of Vp.
), (Equation 62 holds true.

iZ l I p lsmα+RF l l 111s
+nφt+l I21sln (δ−φ2))= l 
Vp 1su>θ15) 11 1p 1cOsα+Rh’(l l1lcosφ
1+l  Iz  Ic0s(J−φz)1= l V
p Icesθ          □(6)+57 
、 +61式を行列式に書き直すと次の(7)式となる
iZ l I p lsmα+RF l l 111s
+nφt+l I21sln (δ−φ2))=l
Vp 1su>θ15) 11 1p 1cOsα+Rh'(l l1lcosφ
1+l Iz Ic0s(J-φz)1=l V
p Icesθ □(6)+57
, +61 is rewritten as a determinant, it becomes the following equation (7).

従って故障点迄の距離βは次の(8)式により求めるこ
とができる。
Therefore, the distance β to the failure point can be determined by the following equation (8).

但し、1Ill=IIp−Itl II21=lIQ+LL+ このことから相手端の電流IQの情報を得ると式中の諸
定数は全て既知となるので相手端の電圧情報が無くても
故障点迄の距離を算出することができる。また式中に故
障点抵抗RFが無い為RF部に生じた電圧降下成分によ
る誤差もなく高精度で標定できることが判る。
However, 1Ill = IIp - Itl II21 = lIQ + LL + From this, if you obtain information on the current IQ of the other end, all the constants in the formula are known, so you can calculate the distance to the fault point even without voltage information on the other end. can do. Furthermore, since there is no fault point resistance RF in the equation, it can be seen that highly accurate location can be achieved without errors due to voltage drop components generated in the RF section.

なお、上記実施例では、単相で説明したが8相の場合に
適用できることは言うまでもない。
In addition, although the above embodiment has been explained using a single phase, it goes without saying that it can be applied to an eight phase case.

また上記実施例では故障点迄の距離を故障点のりアクタ
ンスを得ることから求めたが故障点抵抗RFを求めるこ
ともできることは(7)式より明らかである。
Further, in the above embodiment, the distance to the fault point was determined by obtaining the fault point resistance RF, but it is clear from equation (7) that the fault point resistance RF can also be determined.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明)こよれば自端の電圧。 As mentioned above, this invention) is based on the voltage at its own end.

電流情報と相手端の電流情報で故障点迄の距離を算出で
きるようにしたので、相手端からの伝送容量を小さくで
き、また故障点抵抗による測距誤差及び潮流の影響もな
い精度の高いものが得られる効果がある。
Since the distance to the fault point can be calculated using the current information and the current information of the other end, the transmission capacity from the other end can be reduced, and there is no distance measurement error caused by resistance at the fault point or influence of current flow, making it highly accurate. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例Eこよる故障点標定装置を
示すブロック図、第2図は潮流を考慮した故障発生時の
電力系統の等価回路図、第8図及び第4図は第2図の電
圧、電流成分を描いた図、第5図は故障発生時の電力系
統の等価回路図、11)。 (2) 、 (41、(7)・・・絶装置導出回路、(
3) 、 t5) 、 (8)・・・位相差割出回路、
(9)・・・記憶回路、四〜四・・・演算回路、□□□
・・・出力端子、輪・・・故障点標定装置、なお、図中
同一符号は同一または相当部分を示す。 代 理 人  大  岩   増  雄第2図 第3E
Fig. 1 is a block diagram showing a fault point locating device according to an embodiment E of the present invention, Fig. 2 is an equivalent circuit diagram of a power system when a fault occurs taking into account power flow, and Figs. 8 and 4 are Figure 2 is a diagram depicting voltage and current components, and Figure 5 is an equivalent circuit diagram of the power system when a failure occurs.11) (2), (41, (7)... absolute device derivation circuit, (
3), t5), (8)...phase difference indexing circuit,
(9)...Memory circuit, 4-4...Arithmetic circuit, □□□
...output terminal, ring...fault point locating device. In addition, the same reference numerals in the drawings indicate the same or corresponding parts. Agent: Masuo Oiwa Figure 2, Figure 3E

Claims (1)

【特許請求の範囲】 両端電源を有する2端子系送電線において電圧電流情報
から故障点迄の距離を計測する故障点標定装置において
、 l={|V_P|[|I_1|sin(θ−φ_1)+
|I_2|sin(θ−δ+φ_2)]}/{Z|I_
P|[|I_1|sin(α−φ_1)+|I_2|s
in(α−δ+φ_2)]}且し、 l:故障点迄の距離 |V_P|:当該装置設置点の電圧の絶対値 |I_P|:当該装置設置点の電流の絶対値 |I_1|:|I_P−I_L|でI_P−I_Lの絶
対値 |I_2|:|I_Q+I_L|でI_Q−I_Lの絶
対値 I_P:故障時の当該装置設置点の電流 I_Q:故障時の相手端電流 I_L:潮流 θ:I_P基準のV_Pの位相差 φ_1:I_P基準のI_1の位相差 φ_2:I_Q基準のI_2の位相差 δ:I_P基準のI_Qの位相差 α:送電線の線路角 Z:送電線の単位長当りのインピーダンス なる演算により故障点迄の距離を計測するようにしたこ
とを特徴とする故障点標定方式。
[Claims] In a fault point locating device that measures the distance to a fault point from voltage and current information in a two-terminal power transmission line having power supplies at both ends, l={|V_P|[|I_1|sin(θ−φ_1) +
|I_2|sin(θ−δ+φ_2)]}/{Z|I_
P|[|I_1|sin(α−φ_1)+|I_2|s
in(α-δ+φ_2)]} and l: Distance to the failure point |V_P|: Absolute value of the voltage at the installation point of the device |I_P|: Absolute value of the current at the installation point of the device |I_1|: |I_P −I_L|, I_P − Absolute value of I_L |I_2|: |I_Q+I_L|, I_Q − Absolute value of I_L I_P: Current at the installation point of the device at the time of failure I_Q: Current at the other end at the time of failure I_L: Power flow θ: I_P standard Phase difference of V_P φ_1 of I_P reference: Phase difference of I_1 of I_P reference φ_2: Phase difference of I_2 of I_Q reference δ: Phase difference of I_Q of I_P reference α: Line angle Z of power transmission line: Impedance per unit length of power transmission line A failure point locating method characterized by measuring the distance to the failure point by calculation.
JP61020637A 1986-01-30 1986-01-30 Failure point locator Expired - Lifetime JPH0723904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020637A JPH0723904B2 (en) 1986-01-30 1986-01-30 Failure point locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020637A JPH0723904B2 (en) 1986-01-30 1986-01-30 Failure point locator

Publications (2)

Publication Number Publication Date
JPS62177464A true JPS62177464A (en) 1987-08-04
JPH0723904B2 JPH0723904B2 (en) 1995-03-15

Family

ID=12032739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020637A Expired - Lifetime JPH0723904B2 (en) 1986-01-30 1986-01-30 Failure point locator

Country Status (1)

Country Link
JP (1) JPH0723904B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143460A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Trouble point decision system
JPS52143458A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Digital type trouble point decision system
JPS53121140A (en) * 1977-03-31 1978-10-23 Hitachi Ltd Fault point locating method
JPS5471242A (en) * 1977-11-16 1979-06-07 Tokyo Koso Kk Rotary type partition system spring return device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143460A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Trouble point decision system
JPS52143458A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Digital type trouble point decision system
JPS53121140A (en) * 1977-03-31 1978-10-23 Hitachi Ltd Fault point locating method
JPS5471242A (en) * 1977-11-16 1979-06-07 Tokyo Koso Kk Rotary type partition system spring return device

Also Published As

Publication number Publication date
JPH0723904B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US7369949B2 (en) Electromagnetic flowmeter
SE449796B (en) PROCEDURE AND DEVICE FOR LOCATION OF ERRORS ON A POWER CORD
CA1200582A (en) Method of measuring the distance of a fault on a line taking account of distributed capacitances
JPS582084A (en) Hall element device
JPS56143915A (en) Measuring device for gas flow rate
JPS62177464A (en) Fault point locating system
JP2002228688A (en) Device determining primary current of current transformer
JPH03144314A (en) Electromagnetic flowmeter
JPH0634700Y2 (en) Conductivity meter measurement circuit
JPS62177463A (en) Fault point locating system
CN116125135B (en) Temperature self-compensating tunneling magneto-resistance current sensor, current measuring method and device
RU2159939C1 (en) Filter for voltage of reverse sequence
SU1288611A1 (en) Resistance meter
JPH04315062A (en) Method for measuring resistance value of resistor
SU712763A1 (en) Resistance measuring device
SU1626163A1 (en) Method for checking error of voltage divider
JPH0718901B2 (en) Apparatus and method for determining values of circuit elements in three-terminal equivalent circuit
SU724918A1 (en) Device for measuring metallic coating thickness
JPH02170040A (en) Method and device for measuring electrical conductivity
JPH01233324A (en) Mass flowmeter
JPH01180444A (en) Heat conductivity measuring method
SU993281A1 (en) Squarer
JPS57196163A (en) Hall currenttransformer
JPS637349B2 (en)
JPS61120902A (en) Magnetic detecting apparatus