JPH01233324A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPH01233324A
JPH01233324A JP63059768A JP5976888A JPH01233324A JP H01233324 A JPH01233324 A JP H01233324A JP 63059768 A JP63059768 A JP 63059768A JP 5976888 A JP5976888 A JP 5976888A JP H01233324 A JPH01233324 A JP H01233324A
Authority
JP
Japan
Prior art keywords
flow rate
resistor
resistors
proportional
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63059768A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
誠 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63059768A priority Critical patent/JPH01233324A/en
Publication of JPH01233324A publication Critical patent/JPH01233324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a mass flow rate of a fluid linearly, by a method wherein a difference between electric resistors wound round on a conduit is adjusted to be proportional precisely to the mass flow rate of the fluid flowing through the conduit. CONSTITUTION:A differential amplifier 20 outputs a potential difference between a potential at the node of a resistance 1 and a resistance 2 and a potential at the node of two resistors A and B. An output E of the differential amplifier 20 is expressed as E=c[(RA-RB)i/2]=c(DELTARi/2) [(c) is an amplification constant] and is proportional to a difference AR in electric resistance between the two resistors A and B. Thus, the output E of the differential amplifier 20 is proportional to the difference DELTAR, and by adjusting a variable resistance Rk of a proportional multiplication circuit 21, an output E+(kE)<2> of a multiplier 22 can be made proportional to flow rate Q. By adjusting the variable resistance Rk beforehand, therefore, the mass flow rate Q of a fluid F flowing through a conduit T can be measured linearly with excellent precision.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、導管内を流れる流体の質量流量を計測する
ための流量計に関し、特に計測した電気信号を流量に対
して直線化するための直線化回路の改良を施した流量計
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a flowmeter for measuring the mass flow rate of fluid flowing in a conduit, and in particular to a flowmeter for linearizing a measured electrical signal with respect to the flow rate. This invention relates to a flowmeter with an improved linearization circuit.

[従来の技術1 導管内を流れる流体の質量流量を計測するための流量計
としては、流体が流れる導管に温度に応じて電気抵抗が
変化する2個の同一の抵抗体を相接して直列に巻回し、
定電流回路によって両抵抗体を通じる電流を一定に保ち
、両抵抗体の電気抵抗の差を計測し、この値に基づいて
導管内の流体の質量流量を計測する流量計がある。
[Prior art 1] A flowmeter for measuring the mass flow rate of fluid flowing in a conduit is a system in which two identical resistors whose electrical resistance changes depending on the temperature are connected in series in a conduit through which the fluid flows. Wind it around the
There is a flowmeter that uses a constant current circuit to maintain a constant current through both resistors, measures the difference in electrical resistance between the resistors, and measures the mass flow rate of fluid in a conduit based on this value.

この流量計では第2図に示すように、流体の質量流量Q
がOのときには、上流側の抵抗体Aの温度と下流側の抵
抗体Bの温度とは等しいが、流量Qが増加するのに従っ
て、上流側の抵抗体Aの温度はほぼ直線的に低下した後
に、流体の初期温度に漸近する。他方下流側の抵抗体B
では、上流側の抵抗体Aによって加温された流体が流入
するために、抵抗体Bの温度は当初は上昇するが、流量
Qが増加するのに従って、流体が上流側の抵抗体Aによ
って十分には加温されなくなるために、抵抗体Bの温度
は下降に転じた後に、流体の初期温度に漸近する。しか
して両抵抗体の電気抵抗もまた上記温度変化と同じ挙動
を示す。
In this flowmeter, as shown in Figure 2, the mass flow rate Q of the fluid is
When is O, the temperature of the upstream resistor A and the temperature of the downstream resistor B are equal, but as the flow rate Q increases, the temperature of the upstream resistor A decreases almost linearly. Later, it asymptotes to the initial temperature of the fluid. The other downstream resistor B
In this case, the temperature of resistor B initially rises due to the inflow of fluid heated by resistor A on the upstream side, but as the flow rate Q increases, the fluid is sufficiently heated by resistor A on the upstream side. Since the temperature of the resistor B is no longer heated, the temperature of the resistor B begins to decrease and then asymptotically approaches the initial temperature of the fluid. Therefore, the electrical resistances of both resistors also show the same behavior as the temperature changes.

したがって上流側の抵抗体Aの電、気抵抗RAと下流側
の抵抗体Bの電気抵抗RBとの差ΔR=RΔRaは、第
3図に示すように当初は増加した後に減少に転して0に
漸近する。すなわち流量Qが比較的少ない区間(第3図
の点線で示す区間)では電気抵抗の差ΔRは流量Qとと
もに増加するから、これを利用して流量計とすることが
できるが、この区間でも厳密にはΔRはQに比例せずフ
ルスケールの3〜5%の誤差をもっており、この流量計
を利用して流量の制御を行うには、流量Qに比例する出
力を出すような直線化回路を追加する必要がある。
Therefore, the difference ΔR=RΔRa between the electrical resistance RA of the upstream resistor A and the electrical resistance RB of the downstream resistor B initially increases, then decreases and becomes 0. Asymptotes to . In other words, in an area where the flow rate Q is relatively small (the area indicated by the dotted line in Figure 3), the difference in electrical resistance ΔR increases with the flow rate Q, so this can be used as a flow meter, but even in this area Since ΔR is not proportional to Q and has an error of 3 to 5% of the full scale, in order to control the flow rate using this flowmeter, a linearization circuit that outputs an output proportional to the flow rate Q must be installed. need to be added.

このような直線化回路として従来は、上記区間すなわち
最大計測流量を数分割し、例えば最大計測流量の25.
50.75及び100%にブレイクポイントを設け、各
分割域を直線近似し、しかる後全計測域に亙って流量Q
に比例する出力となるような回路を構成する折れ線補正
が行われていた。
Conventionally, such a linearization circuit divides the above-mentioned section, that is, the maximum measured flow rate, into several parts, for example, 25.
Set break points at 50.75% and 100%, approximate each divided region by a straight line, and then calculate the flow rate Q over the entire measurement region.
A polygonal line correction was performed to configure the circuit so that the output was proportional to .

[発明が解決しようとする課題] 上記従来の流量計における折れ線補正では第1に、ブレ
イクポイントで分割しても各分割域内で電気抵抗の差Δ
Rは流量Qの一次関数ではないから、なおも誤差を解消
できないという問題があった。
[Problems to be Solved by the Invention] Firstly, in the polygonal line correction in the conventional flowmeter described above, even if divided at break points, the difference in electrical resistance Δ within each divided region is
Since R is not a linear function of the flow rate Q, there is still a problem that the error cannot be eliminated.

第2に折れ線補正の精度を上げようとすればするほど、
ブレイクポイントの数が増加して回路構成を複雑にする
という問題があった。第3に各ブレイクポイントで折れ
線が不連続とならないようにするための回路調整が不可
欠であり、ブレイクポイントの数が増加すればするほど
調整の手間がかかるという問題があった。
Second, the more you try to improve the accuracy of polygonal line correction, the more
There was a problem in that the number of breakpoints increased and the circuit configuration became complicated. Thirdly, it is essential to make circuit adjustments to prevent discontinuities in the polygonal lines at each breakpoint, and the more breakpoints there are, the more time and effort it takes to make adjustments.

[課題を解決するための手段及び作用]本発明者は上記
課題を解決するために研究を重ね、第4図に示すように
定数すを調節することによって、ΔR+bQ2が流量Q
に比例するようにすることができることを見いだした。
[Means and effects for solving the problem] In order to solve the above problem, the present inventor has conducted repeated research, and by adjusting the constant as shown in FIG.
We found that it is possible to make it proportional to .

ここで補正量bQ2はΔRに比べて小さな値であり、か
つΔRはほぼQに比例するから、bQ2をaΔR2で近
似することができ。
Here, since the correction amount bQ2 is a smaller value than ΔR, and ΔR is approximately proportional to Q, bQ2 can be approximated by aΔR2.

定数aを調節することによって、ΔR+aΔR2が流量
Qに比例するようにすることができる。
By adjusting the constant a, ΔR+aΔR2 can be made proportional to the flow rate Q.

したがって本発明は、流体が流れる導管に温度に応じて
電気抵抗が変化する2個の同一の抵抗体を相接して直列
に巻回し、定電流回路によって前記両抵抗体を通じる電
流を一定に保ち、前記両抵抗体の電気抵抗の差ΔRを計
測し、該電気抵抗の差ΔRに基づいて前記導管内の流体
の質量流量を計測する流量計において、前記電気抵抗の
差ΔRに対して更にΔR+ aΔR2(ただしaは定数
である)を計数する回路を追加したことを特徴とする質
量流量計である。
Therefore, in the present invention, two identical resistors whose electrical resistance changes depending on the temperature are wound in series in a conduit through which a fluid flows, and the current passing through both resistors is kept constant by a constant current circuit. In a flowmeter that measures a difference ΔR in electrical resistance between the two resistors, and measures a mass flow rate of fluid in the conduit based on the difference ΔR in electrical resistance, further This is a mass flowmeter characterized by adding a circuit for counting ΔR+aΔR2 (where a is a constant).

なお本発明の要旨は、流量QがΔR+aΔR2に比例す
ることを利用した流量計であって、単なる比例定数の差
は問題とならない、したがって例えばΔRに比例する値
をEとしたときに、流量QがE+(kE)2(kは定数
)に比例するように構成した流量計も、結局ΔR+ a
ΔR2を計数していることに他ならず、本発明の範囲に
属する。
The gist of the present invention is a flowmeter that utilizes the fact that the flow rate Q is proportional to ΔR + aΔR2, and a mere difference in proportionality constant is not a problem. Therefore, for example, when a value proportional to ΔR is E, the flow rate Q A flowmeter configured so that is proportional to E+(kE)2 (k is a constant) will end up with ΔR+ a
This is nothing but counting ΔR2 and falls within the scope of the present invention.

[実施例] 本発明による流量計の一実施例を添付の図面によって説
明する。第1図は同実施例を示す回路図である。同図に
おいてTは導管であって、該導管T内には流体Fが矢印
方向に流れる。Aは、導管Tの上流側の外周に巻回した
抵抗体であり、鉄ニツケル合金などの温度係数の大きな
材質よりなる。
[Example] An example of a flowmeter according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a circuit diagram showing the same embodiment. In the figure, T is a conduit, and fluid F flows in the conduit T in the direction of the arrow. A is a resistor wound around the outer periphery of the upstream side of the conduit T, and is made of a material with a large temperature coefficient such as an iron-nickel alloy.

Bは、導管Tの下流側の外周に上記抵抗体Aと相接して
巻回した上記抵抗体Aと同一の抵抗体である。
B is the same resistor as the resistor A, which is wound around the outer periphery of the conduit T on the downstream side in contact with the resistor A.

両抵抗体は次のように回路構成されている。すなわち抵
抗体Aの一端には抵抗体Bの一端が接続され、抵抗体A
の他端には抵抗1が接続され、該抵抗1の他端には該抵
抗1と同一の抵抗2が接続され、該抵抗2の他端には抵
抗体Bの他端が接続されている。抵抗体Aと抵抗1との
接続点には抵抗3の一端が接続され、該抵抗3の他端は
接地されている。
Both resistors have a circuit configuration as follows. That is, one end of resistor B is connected to one end of resistor A, and one end of resistor B is connected to one end of resistor A.
A resistor 1 is connected to the other end, a resistor 2 which is the same as the resistor 1 is connected to the other end of the resistor 1, and the other end of the resistor B is connected to the other end of the resistor 2. . One end of a resistor 3 is connected to the connection point between the resistor A and the resistor 1, and the other end of the resistor 3 is grounded.

10は定電流回路であって、上記抵抗3の一端の電位■
が差動増幅器12に入力され、該差動増幅器12はこの
電位Vとツェナーダイオード11で規定される基準電位
とを比較し、前者Vが基準電位を下回るとトランジスタ
13をONにして抵抗体Bと抵抗2との接続点に電流を
流し、こうして抵抗3の一端の電位Vは一定に保たれ、
したがって抵抗3を通じる電流iを一定に保つ、ここで
抵抗2と抵抗3との電気抵抗は抵抗体Aと抵抗体Bとの
電気抵抗RA、RBよりも格段に大きくしであるから、
抵抗3を通じる一定の電流iはほぼすべて両抵抗体A、
Bを流れ、したがって両抵抗体を通じる電流は一定値i
となり、かつ抵抗体Bと抵抗2との接続点の電位ハV+
(RA+Ra)iとなる。
10 is a constant current circuit in which the potential at one end of the resistor 3 is
is input to the differential amplifier 12, and the differential amplifier 12 compares this potential V with a reference potential defined by the Zener diode 11, and when the former V is lower than the reference potential, turns on the transistor 13 and turns on the resistor B. A current is passed through the connection point between the resistor 2 and the resistor 2, and thus the potential V at one end of the resistor 3 is kept constant.
Therefore, the current i passing through the resistor 3 is kept constant, since the electrical resistance between the resistors 2 and 3 is much larger than the electrical resistances RA and RB between the resistors A and B.
Almost all of the constant current i passing through resistor 3 flows through both resistors A,
The current flowing through B and therefore through both resistors has a constant value i
and the potential at the connection point between resistor B and resistor 2 is V+
(RA+Ra)i.

20は抵抗lと抵抗2との接続点の電位と、両抵抗体A
、Bの接続点の電位との電位差を出力する差動増幅器で
ある。しかして抵抗1と抵抗2との接続点の電位は、両
抵抗1.2が等しいからV+(RA+RB)i/2であ
り、両抵抗体A、Hの接続点の電位はV+RAiである
から、差動増幅器20の出力Eは、E = c[(RΔ
RB)i/2] =c(ΔRi/2)となって(Cは増
幅器の定数)、両抵抗体A、Hの電気抵抗の差ΔRに比
例する。
20 is the potential at the connection point between resistor l and resistor 2, and both resistors A
, B is a differential amplifier that outputs the potential difference with the potential at the connection point of B. Therefore, the potential at the connection point between resistor 1 and resistor 2 is V+(RA+RB)i/2 because both resistors 1.2 are equal, and the potential at the connection point between both resistors A and H is V+RAi. The output E of the differential amplifier 20 is E = c[(RΔ
RB)i/2] = c(ΔRi/2) (C is a constant of the amplifier), and is proportional to the difference ΔR between the electrical resistances of both resistors A and H.

21と22とは本発明によって追加された回路であって
、21は可変抵抗Rkを含む定倍回路であり、22は乗
算器であり、上記差動増幅器20の出力Eを入力とする
定倍回路21はkEを出力し、該出力kEと差動増幅器
20の出力Eとを入力とする乗算器22は訂(kE)2
を出力する。
21 and 22 are circuits added according to the present invention, 21 is a constant multiplier circuit including a variable resistor Rk, and 22 is a multiplier which inputs the output E of the differential amplifier 20. The circuit 21 outputs kE, and the multiplier 22 which inputs the output kE and the output E of the differential amplifier 20 outputs the output kE (kE)2.
Output.

本実施例は以上の構成と作用とを有し、差動増幅器20
の出力Eは両抵抗体A、Hの電気抵抗の差ΔRに比例し
、定倍回路21の可変抵抗Rkを調節することによって
乗算器22の出力E)(k、E)2は流量Qに比例する
ようにすることができるから、予め可変抵抗Rkを調節
しておくことによって、導管T内を流れる流体Fの質量
流量Qは精度良く線形に計測することができる。
This embodiment has the above configuration and operation, and the differential amplifier 20
The output E of the multiplier 22 is proportional to the difference ΔR between the electrical resistances of the resistors A and H, and by adjusting the variable resistance Rk of the constant multiplier circuit 21, the output E)(k, E)2 of the multiplier 22 is proportional to the flow rate Q. Since it can be made proportional, by adjusting the variable resistance Rk in advance, the mass flow rate Q of the fluid F flowing inside the conduit T can be measured linearly with high accuracy.

すなわち本実施例の構成によって、差動増幅器20の出
力Eの流量Qに対する線形性は3〜5%フルスケールの
誤差を有しているが、乗算器22の出力の流量Qに対す
る線形性は、to、5%フルスケール以下に減少させる
ことができた。
That is, with the configuration of this embodiment, the linearity of the output E of the differential amplifier 20 with respect to the flow rate Q has a 3 to 5% full scale error, but the linearity of the output of the multiplier 22 with respect to the flow rate Q is to 5% full scale or less.

[発明の効果] 本発明にかかる質量流量計によって、導管に巻回した両
抵抗体の電気抵抗の差は、導管内を流れる流体の質量流
量に精度良く比例するように調整することができるから
、流体の質量流量を線形に計測することができる。
[Effects of the Invention] With the mass flowmeter according to the present invention, the difference in electrical resistance between the two resistors wound around the conduit can be adjusted to be accurately proportional to the mass flow rate of the fluid flowing inside the conduit. , the mass flow rate of the fluid can be measured linearly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる質量流量計の一実施例を示す回
路図、第2図は上記実施例における両抵抗体の温度と電
気抵抗との流量に対する関係を示した図、第3及び4図
は上記両抵抗体の電気抵抗の差の流量に対する関係を示
した図である。 T・・・導管    F・・・流体    A、B・・
・抵抗体1.2.3・・・抵抗  10・・・定電流回
路20・・・差動増幅器 21・・・定倍回路  22
・・・乗算器代理人 弁理士 猪 熊 克 彦 第2図 第3図
FIG. 1 is a circuit diagram showing one embodiment of a mass flowmeter according to the present invention, FIG. 2 is a diagram showing the relationship between the temperature and electrical resistance of both resistors in the above embodiment, and the flow rate. The figure shows the relationship between the difference in electrical resistance between the two resistors and the flow rate. T... Conduit F... Fluid A, B...
・Resistor 1.2.3...Resistor 10...Constant current circuit 20...Differential amplifier 21...Constant multiplier circuit 22
... Multiplier agent Patent attorney Katsuhiko Inokuma Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 流体が流れる導管に温度に応じて電気抵抗が変化する2
個の同一の抵抗体を相接して直列に巻回し、定電流回路
によって前記両抵抗体を通じる電流を一定に保ち、前記
両抵抗体の電気抵抗の差ΔRを計測し、該電気抵抗の差
ΔRに基づいて前記導管内の流体の質量流量を計測する
流量計において、前記電気抵抗の差ΔRに対して更にΔ
R+aΔR^2(ただしaは定数である)を計数する回
路を追加したことを特徴とする質量流量計。
Electrical resistance changes depending on temperature in a conduit through which fluid flows2
Two identical resistors are wound in series, the current passing through both resistors is kept constant by a constant current circuit, and the difference ΔR between the electrical resistances of the two resistors is measured. In a flowmeter that measures the mass flow rate of fluid in the conduit based on the difference ΔR, an additional difference Δ
A mass flowmeter characterized in that a circuit for counting R+aΔR^2 (where a is a constant) is added.
JP63059768A 1988-03-14 1988-03-14 Mass flowmeter Pending JPH01233324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059768A JPH01233324A (en) 1988-03-14 1988-03-14 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059768A JPH01233324A (en) 1988-03-14 1988-03-14 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPH01233324A true JPH01233324A (en) 1989-09-19

Family

ID=13122793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059768A Pending JPH01233324A (en) 1988-03-14 1988-03-14 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPH01233324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264138A (en) * 2000-03-16 2001-09-26 Hitachi Metals Ltd Mass flow rate controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993062A (en) * 1972-11-07 1974-09-04
JPS51133052A (en) * 1975-05-14 1976-11-18 Yokogawa Hokushin Electric Corp Linearizer
JPS5556278A (en) * 1978-10-20 1980-04-24 Hitachi Ltd Non-linear arithmetic circuit
JPS55124031A (en) * 1979-01-17 1980-09-24 Babcock & Wilcox Co Rectilinear conversion circuit
JPS58142222A (en) * 1982-02-18 1983-08-24 Toshiba Corp Thermal flowmeter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993062A (en) * 1972-11-07 1974-09-04
JPS51133052A (en) * 1975-05-14 1976-11-18 Yokogawa Hokushin Electric Corp Linearizer
JPS5556278A (en) * 1978-10-20 1980-04-24 Hitachi Ltd Non-linear arithmetic circuit
JPS55124031A (en) * 1979-01-17 1980-09-24 Babcock & Wilcox Co Rectilinear conversion circuit
JPS58142222A (en) * 1982-02-18 1983-08-24 Toshiba Corp Thermal flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264138A (en) * 2000-03-16 2001-09-26 Hitachi Metals Ltd Mass flow rate controller

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
US5461913A (en) Differential current thermal mass flow transducer
JPS5858417A (en) Method and device for measuring quantity of fluid medium, which flow through fluid section and change in pulsatile form
JPS6116026B2 (en)
JP2007205916A (en) Flow measuring device
CA2913904A1 (en) Flow meter and a method of calibration
NL8005486A (en) STABILIZED VOLTAGE / FREQUENCY CRYSTAL CONVERTER WITH DIGITAL SCALE FOR FLOW METERS.
JP3421245B2 (en) Heating resistor type air flow measurement device
JPH0744568U (en) Flowmeter with thermal resistance element
US4070908A (en) Anemometer compensator linearizer
JPH01233324A (en) Mass flowmeter
CN106840287B (en) Flow sensor, flowmeter and flow detection method
JP2000018989A (en) Ratiometric output-type heating resistor-type air flowmeter
US4122722A (en) Anemometer compensator linearizer
EP0088827B1 (en) Flow velocity measuring apparatus
JPH01227016A (en) Mass flowmeter
JPS6336447B2 (en)
CN211042357U (en) Lead resistance eliminating circuit and thermal mass flowmeter
JP3019009U (en) Mass flow meter
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JP3060861B2 (en) Intake air amount measurement device for internal combustion engine
JP2949527B2 (en) Mass flow meter
JPS6122908B2 (en)
GB1489874A (en) Apparatus and methods of measuring fluid flow
JPS5826346Y2 (en) Karman vortex flow meter or current meter