JPH0316068Y2 - - Google Patents
Info
- Publication number
- JPH0316068Y2 JPH0316068Y2 JP17895282U JP17895282U JPH0316068Y2 JP H0316068 Y2 JPH0316068 Y2 JP H0316068Y2 JP 17895282 U JP17895282 U JP 17895282U JP 17895282 U JP17895282 U JP 17895282U JP H0316068 Y2 JPH0316068 Y2 JP H0316068Y2
- Authority
- JP
- Japan
- Prior art keywords
- current
- contact
- current transformer
- measured
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000009466 transformation Effects 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 4
- 241000270728 Alligator Species 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
〔考案の技術分野〕
本考案は、たとえば開閉器接点等の電気的接触
部における接触抵抗を測定する接触抵抗測定装置
に関する。
〔考案の技術的背景およびその問題点〕
電気機器の故障の大半は、電気回路に介在して
いる電気的接触部における接触不良であると云え
る。この接触不良による電気機器のトラブルを未
然に防止するためには上記接触部の接触抵抗を実
装状態のまま測定し、接触抵抗値が異常値を示し
ているか否かを検査する必要がある。
第1図a,b,cは最も基本的な従来の接触抵
抗測定手段を示す図である。すなわち第1図aに
示すように、回路1に開閉器等の接点2が介在し
ている場合において、上記接点2の接触抵抗がR
〔Ω〕であるとすると、その等価回路は同図bに
示す如くになる。したがつてこの回路1に電流I
を流すと抵抗Rの両端にIRなる電圧降下が生じ
る。そこで同図cに示す如く回路1に電流計3を
直列に接続し、抵抗Rの両端間に電圧計4を接続
して電流Iと電圧降下IRとを測定することによ
り接触抵抗RをR=IR/Iなる式により求めること
ができる。
しかるに接触抵抗Rの値は一般に1×10-3〔Ω〕
程度であり極めて小さな値である。したがつて仮
りに電流Iが10〔A〕程度の大きさのものであつ
ても電圧降下IRは1×10-2程度にしかならない。
したがつて電圧計4として極めて高感度で精度の
よいものを使用する必要があり、使用計器に制限
を受けることになる。また計器類を回路に接続す
るために、回路1を一旦しや断しなければならな
い。さらに負荷電流Iの変動に起因する測定誤差
が増大する。したがつて現場向きの測定手段では
ない。
なお電流Iを一定化するために直流電源を使用
した電圧降下法による測定も考えられる。しかし
この測定手段においては測定すべき接触部が介在
している回路を、他回路から電気的に切離した上
で測定を行なわねばならない。このため測定作業
が煩雑で簡単かつ迅速に接触抵抗の測定を行ない
難い問題がある。
〔考案の目的〕
本考案の目的は、実装状態にある被測定接触部
の接触抵抗を、上記接触部に負荷電流が通流して
いる使用状態のまま簡単かつ正確に測定すること
ができ、接触不良による電気機器のトラブルを未
然に防止可能な接触抵抗測定装置を提供すること
にある。
〔考案の概要〕
本考案は上記目的を達成するために次の如く構
成したことを特徴とする。すなわち被測定接触部
が介在している線路に対し着脱自在に装着される
第1の変流器の二次側に第1の回路を接続すると
共に、前記被測定接触部の両端間に可変抵抗器を
介して第2の回路を接続する。そして上記第1、
第2の回路の各一部を互いに極性が逆な共通の一
次巻線とする第2の変流器を設け、この第2の変
流器の一次側に二次電流計測用の電流計を接続す
る。測定に際しては上記電流計の指示が最小値を
示すように可変抵抗器を調整し、そのときの可変
抵抗器の抵抗値と、第1の変流器の変流比とから
被測定接触部の接触抵抗を求める。かくして負荷
電流が通流している通電状態の被測定接触部に対
し、測定回路を適時接続可能で、しかも測定値に
は負荷電流の値が全く関与しないように構成した
ことを特徴としている。
〔考案の実施例〕
第2図および第3図は本考案の一実施例を示す
図で、第2図は測定装置の使用状態を示す図、第
3図は回路構成を示す図である。第2図において
10は測定装置本体であり、この本体10には電
流計11、抵抗値が既知な粗調整抵抗器群12A
および微調整抵抗器群12Bとからなる可変抵抗
器12、変流器13、スイツチ14、ヒユーズ1
5等が装着されている。
上記本体10の第1の端子16A,16Bには
リード線17A,17Bを介して変流比がkなる
値のクランプ形変流器18が接続されている。ま
た本体10の第2の端子19A,19Bにはリー
ド線20A,20Bを介して鰐口クリツプ21
A,21Bが接続されている。
クランプ形変流器すなわち第1の変流器18は
操作部18Aの操作により開閉自在な電流検出部
18Bを測定すべき接触部が介在している線路2
2に対し簡単に嵌め込めるものとなつている。
また鰐口クリツプ21A,21Bは、測定すべ
き接触部すなわちこの実施例では開閉器23の一
つのブレード24およびこのブレードに対応して
いるブレード受け25の接触部を含む両端子M,
Nに対し咬合させ得るものとなつている。
第3図において符号30は接触抵抗R〔Ω〕の
前記接触部を示している。なお第3図に示すよう
に、第1の変流器18の二次電流i1が流れる第1
の回路31と、接触抵抗Rの両端から取出された
電流i2が可変抵抗器12、スイツチ14を経て流
れる第2の回路32とが、第2の変流器13の共
通一次巻線となるように結線されている。なお上
記共通一次巻線となる第1、第2の回路の各一部
は第2の変流器13の二次巻線に対する極性が互
いに逆極性となるように接続されている。
次に上記の如く構成された本装置の動作を説明
する。今、線路22に負荷電流Iが流れているも
のとすると、第1の回路31には第1の変流器1
8の二次電流i1が流れ、その電流値が電流計11
に指示される。この状態においてスイツチ14を
閉じると、第2の回路32には可変抵抗器12に
より電流制限された電流i2が流れ、それに応じて
電流計11の指示状態が変わる。そこで電流計1
1の指示が減少することを確認したのち可変抵抗
器12を可変調整し電流計11の指示が零となる
ようにする。なおスイツチ14を閉じたとき電流
計11の指示が増加する場合には変流器13に対
する第1の回路31と第2の回路32の結合関係
を逆にしたのち、上記と同様の調整を行なう。
このときの可変抵抗器12の抵抗値をrとする
と、
i1=I/K,i2=IR/R+r
であり、かつi1とi2とが相等しい。したがつて、
IR/R+r=I/k∴R=r/k−1 …(1)
となる。なお第1の変流器18として変流比kが
k≫1なるものを用いれば、
R≒r/k …(2)
となる。したがつて変流器18の変流比kと可変
抵抗器12の抵抗値rとによつて接触抵抗Rを求
め得る。
上記(1)式または(2)式から明らかなようにこれら
の式には負荷電流Iが介在していない。したがつ
て本装置によれば負荷電流Iの変動とは無関係に
接触抵抗Rを測定することができ、負荷電流Iの
変動に起因する測定誤差が生じない。また本装置
においては電流計11等の格別の計器を用いなく
てもよい上、測定回路が単純化されているため、
小型、軽量、安価に製作でき測定現場への携帯用
としても好適である。しかも回路しや断を行なわ
ずに使用状態にある被測定回路としての線路22
に対しクランプ形の第1の変流器18を取付け、
かつ被測定部である接触部30の両端に対し鰐口
クリツプ21A,21Bを取付けることができ
る。したがつて測定準備は簡単であり、被測定接
触部の使用状況如何に拘らず随時、計画的に接触
抵抗の測定を行なうことができる。その結果接触
抵抗Rの経年変化を知ることができ、接触不良に
基づく事故発生を未然に防止できる。
《実験例》
変流器18として変流比k=1364で微小電流の
測定を行なえるIメータを用い、可変抵抗器12
として10〔Ω〕、1.5〔W〕および〔Ω〕、1.5〔W〕
のスライド型抵抗器を使用し、接触抵抗Rの代替
抵抗器40として抵抗値が2×10-3〔Ω〕の分流
器(50A,100mV)を使用し、第4図のような
回路を組んで接触抵抗Rの値を求めた。
すなわち電源スイツチ41を閉じ、誘導電圧調
整器42で電圧調整して回路43に所定の負荷電
流Iを流し、電流計11の指示が零になるように
可変抵抗器12を調整した。このときの電流計4
4,45および11の指示値を記録すると共に、
可変抵抗器12の抵抗値rをホイートストンブリ
ツジにより測定し、r/kを計算によつて求め
た。第1表はその結果を示す表である。
[Technical Field of the Invention] The present invention relates to a contact resistance measuring device for measuring contact resistance at an electrical contact portion such as a switch contact. [Technical background of the invention and its problems] It can be said that the majority of failures in electrical equipment are caused by poor contact at electrical contacts in the electrical circuit. In order to prevent troubles in electrical equipment due to poor contact, it is necessary to measure the contact resistance of the contact portion in the mounted state and check whether the contact resistance value shows an abnormal value. FIGS. 1a, b, and c are diagrams showing the most basic conventional contact resistance measuring means. That is, as shown in FIG. 1a, when the circuit 1 includes a contact 2 such as a switch, the contact resistance of the contact 2 is R.
[Ω], the equivalent circuit is as shown in FIG. Therefore, the current I in this circuit 1
When , a voltage drop called IR occurs across the resistor R. Therefore, as shown in Figure c, an ammeter 3 is connected in series to the circuit 1, and a voltmeter 4 is connected between both ends of the resistor R to measure the current I and the voltage drop IR, so that the contact resistance R can be calculated as R= It can be calculated using the formula IR/I. However, the value of contact resistance R is generally 1×10 -3 [Ω]
This is a very small value. Therefore, even if the current I is about 10 [A], the voltage drop IR will only be about 1×10 -2 .
Therefore, it is necessary to use a voltmeter 4 with extremely high sensitivity and accuracy, and there are restrictions on the meters that can be used. Furthermore, in order to connect instruments to the circuit, the circuit 1 must be temporarily disconnected. Furthermore, measurement errors due to variations in the load current I increase. Therefore, it is not a measurement method suitable for on-site use. Note that measurement by a voltage drop method using a DC power source may also be considered in order to keep the current I constant. However, in this measuring means, the circuit in which the contact portion to be measured is interposed must be electrically isolated from other circuits before the measurement is performed. Therefore, there is a problem that the measurement work is complicated and it is difficult to measure the contact resistance simply and quickly. [Purpose of the invention] The purpose of the invention is to be able to easily and accurately measure the contact resistance of a contact part to be measured in a mounted state while in use with a load current flowing through the contact part. It is an object of the present invention to provide a contact resistance measuring device capable of preventing troubles in electrical equipment due to defects. [Summary of the invention] In order to achieve the above object, the present invention is characterized by the following structure. That is, a first circuit is connected to the secondary side of a first current transformer that is detachably attached to the line on which the contact part to be measured is interposed, and a variable resistor is connected between both ends of the contact part to be measured. A second circuit is connected through the device. And the first above,
A second current transformer is provided in which each part of the second circuit has a common primary winding with opposite polarities, and an ammeter for measuring secondary current is provided on the primary side of the second current transformer. Connecting. During measurement, adjust the variable resistor so that the ammeter indicates the minimum value, and calculate the contact part to be measured from the resistance value of the variable resistor at that time and the current transformation ratio of the first current transformer. Find the contact resistance. In this way, the measurement circuit can be connected at any time to the energized contact portion to be measured through which the load current is flowing, and the measurement circuit is characterized in that it is configured so that the value of the load current does not affect the measured value at all. [Embodiment of the invention] Figs. 2 and 3 are diagrams showing an embodiment of the invention, in which Fig. 2 shows a state in which the measuring device is used, and Fig. 3 shows a circuit configuration. In FIG. 2, 10 is the main body of the measuring device, and this main body 10 includes an ammeter 11 and a coarse adjustment resistor group 12A whose resistance value is known.
and a fine adjustment resistor group 12B, a variable resistor 12, a current transformer 13, a switch 14, and a fuse 1.
5 class is installed. A clamp type current transformer 18 having a current transformation ratio of k is connected to the first terminals 16A, 16B of the main body 10 via lead wires 17A, 17B. In addition, alligator clips 21 are connected to the second terminals 19A and 19B of the main body 10 via lead wires 20A and 20B.
A and 21B are connected. A clamp-type current transformer, that is, a first current transformer 18 is a current detecting section 18B that can be opened and closed by operating an operating section 18A.
2, it can be easily fitted. The alligator clips 21A and 21B are connected to both terminals M, which include the contact portion to be measured, that is, in this embodiment, one blade 24 of the switch 23 and the contact portion of the blade receiver 25 corresponding to this blade.
It is designed to be able to interlock with N. In FIG. 3, reference numeral 30 indicates the contact portion having a contact resistance R [Ω]. As shown in FIG. 3, the secondary current i 1 of the first current transformer 18 flows through the first
The circuit 31 and the second circuit 32 in which the current i 2 taken out from both ends of the contact resistance R flows through the variable resistor 12 and the switch 14 become a common primary winding of the second current transformer 13. It is wired as follows. Note that each part of the first and second circuits serving as the common primary winding is connected so that the polarities with respect to the secondary winding of the second current transformer 13 are opposite to each other. Next, the operation of the apparatus configured as described above will be explained. Now, assuming that a load current I is flowing through the line 22, the first current transformer 1 is connected to the first circuit 31.
8 secondary current i 1 flows, and its current value is measured by ammeter 11
be instructed. When the switch 14 is closed in this state, a current i 2 limited by the variable resistor 12 flows through the second circuit 32, and the indicated state of the ammeter 11 changes accordingly. So ammeter 1
After confirming that the indication of 1 decreases, the variable resistor 12 is variably adjusted so that the indication of the ammeter 11 becomes zero. If the reading on the ammeter 11 increases when the switch 14 is closed, the coupling relationship between the first circuit 31 and the second circuit 32 with respect to the current transformer 13 is reversed, and then the same adjustment as above is performed. . If the resistance value of the variable resistor 12 at this time is r, then i 1 =I/K, i 2 =IR/R+r, and i 1 and i 2 are equal. Therefore, IR/R+r=I/k∴R=r/k-1 (1). Note that if the first current transformer 18 is one in which the current transformation ratio k is k≫1, R≒r/k (2). Therefore, the contact resistance R can be determined from the current transformation ratio k of the current transformer 18 and the resistance value r of the variable resistor 12. As is clear from the above equations (1) and (2), the load current I does not intervene in these equations. Therefore, according to the present device, contact resistance R can be measured regardless of variations in load current I, and measurement errors due to variations in load current I do not occur. In addition, in this device, there is no need to use special instruments such as the ammeter 11, and the measurement circuit is simplified.
It is small, lightweight, and inexpensive to manufacture, making it suitable for carrying to measurement sites. Moreover, the line 22 as a circuit under test is in use without any circuit breakage.
Attach a clamp-type first current transformer 18 to the
In addition, alligator clips 21A and 21B can be attached to both ends of the contact portion 30, which is the portion to be measured. Therefore, preparation for measurement is simple, and contact resistance can be measured at any time and in a planned manner, regardless of how the contact portion to be measured is used. As a result, changes in contact resistance R over time can be known, and accidents caused by poor contact can be prevented. <<Experiment example>> An I meter capable of measuring minute currents with a current transformation ratio k = 1364 was used as the current transformer 18, and the variable resistor 12
As 10 [Ω], 1.5 [W] and [Ω], 1.5 [W]
Build a circuit as shown in Figure 4 using a slide type resistor and a shunt (50A, 100mV) with a resistance value of 2 x 10 -3 [Ω] as a substitute resistor 40 for the contact resistance R. The value of contact resistance R was determined. That is, the power switch 41 was closed, the voltage was adjusted by the induced voltage regulator 42, a predetermined load current I was passed through the circuit 43, and the variable resistor 12 was adjusted so that the reading on the ammeter 11 became zero. Ammeter 4 at this time
While recording the indicated values of 4, 45 and 11,
The resistance value r of the variable resistor 12 was measured using a Wheatstone bridge, and r/k was determined by calculation. Table 1 shows the results.
【表】
《実験例》
接触抵抗Rの代替抵抗器40として抵抗値が
0.6×10-3〔Ω〕の分流器(100A,60mV)を使用
し、その他は実験例と同一条件の下で実験を行
なつた。その結果は第2表に示すとおりであつ
た。[Table] <<Experiment example>> As a substitute resistor 40 for contact resistance R, the resistance value is
A 0.6×10 -3 [Ω] current shunt (100 A, 60 mV) was used, and the experiment was otherwise conducted under the same conditions as in the experimental example. The results were as shown in Table 2.
【表】
第1表および第2表から明らかなように誤差は
0.02×10-3〔Ω〕以下であり、十分実用に供し得
る。なお電流計11および可変抵抗器12等の精
度を高めると共に操作方法を改善することによ
り、上記電流計11の指示値を完全に零にするこ
とができれば更に測定精度を上げることができ
る。また負荷電流Iの変化とは無関係に接触抵抗
R=r/kが求まることが実証された。
なお本考案は上記実施例および実験例に限定さ
れるものではない。たとえば前記実験例,で
は第1の変流器18として変流比kが1364のもの
を用いたが、変流比kを1000に設定した変流器を
使用するようにしてもよい。このようにすれば可
変抵抗器12の抵抗値rから接触抵抗Rを直接に
知ることができる。このほか本考案の要旨を逸脱
しない範囲で種々変形実施可能であるのは勿論で
ある。
〔考案の効果〕
以上説明したように、本考案によれば通電状態
の被測定接触部に対し、測定回路を適時接続可能
であり、しかも測定値には負荷電流の値が全く関
与しないように構成したので、実装状態にある被
測定接触部の接触抵抗を、上記接触部に負荷電流
が通流している使用状態のまま簡単かつ正確に測
定することができ、接触不良による電気機器のト
ラブルを未然に防止可能な接触抵抗測定装置を提
供することができる。[Table] As is clear from Tables 1 and 2, the error is
It is 0.02×10 -3 [Ω] or less, which is sufficient for practical use. Note that the measurement accuracy can be further improved if the indicated value of the ammeter 11 can be made completely zero by increasing the accuracy of the ammeter 11, the variable resistor 12, etc. and improving the operating method. It has also been demonstrated that contact resistance R=r/k can be determined regardless of changes in load current I. Note that the present invention is not limited to the above embodiments and experimental examples. For example, in the experimental example described above, a current transformer 18 with a current transformation ratio k of 1364 was used, but a current transformer with a current transformation ratio k set at 1000 may be used. In this way, the contact resistance R can be directly determined from the resistance value r of the variable resistor 12. It goes without saying that various other modifications can be made without departing from the gist of the present invention. [Effects of the invention] As explained above, according to the invention, it is possible to timely connect the measurement circuit to the contact part to be measured in the energized state, and also to ensure that the value of the load current does not affect the measured value at all. With this configuration, the contact resistance of the contact part to be measured in the mounted state can be easily and accurately measured in the operating state where the load current is flowing through the contact part, and troubles with electrical equipment due to poor contact can be easily and accurately measured. It is possible to provide a contact resistance measuring device that can prevent such occurrences.
第1図a,b,cは従来の接触抵抗測定手段を
示す図、第2図および第3図は本考案の一実施例
を示す図で、第2図は測定装置の使用状態説明
図、第3図は測定装置の回路構成図、第4図は本
考案の実験に使用した測定回路を示す図である。
10……測定装置本体、12……可変抵抗器、
13……変流器(第2の変流器)、14……スイ
ツチ、15……ヒユーズ、16A,16B……第
1の端子、19A,19B……第2の端子、18
……クランプ形変流器(第1の変流器)、21A,
21B……クリツプ、22……線路、23……開
閉器、30……被測定接触部、31……第1の回
路、32……第2の回路、40……接触抵抗の代
替抵抗器、41……電源スイツチ、42……誘導
電圧調整器、44,45……電流計。
Figures 1a, b, and c are diagrams showing conventional contact resistance measuring means, Figures 2 and 3 are diagrams showing an embodiment of the present invention, and Figure 2 is an explanatory diagram of the usage state of the measuring device. FIG. 3 is a circuit diagram of the measuring device, and FIG. 4 is a diagram showing the measuring circuit used in experiments of the present invention. 10... Measuring device main body, 12... Variable resistor,
13... Current transformer (second current transformer), 14... Switch, 15... Fuse, 16A, 16B... First terminal, 19A, 19B... Second terminal, 18
... Clamp type current transformer (first current transformer), 21A,
21B... Clip, 22... Line, 23... Switch, 30... Contact part to be measured, 31... First circuit, 32... Second circuit, 40... Alternative resistor for contact resistance, 41... Power switch, 42... Induction voltage regulator, 44, 45... Ammeter.
Claims (1)
装着される第1の変流器と、この第1の変流器の
二次側に接続された第1の回路と、前記被測定接
触部の両端間に可変抵抗器を介して接続された第
2の回路と、前記第1および第2の回路の各一部
を互いに極性が逆な共通の一次巻線とする第2の
変流器と、この第2の変流器の二次電流を計測す
る電流計とを具備し、前記電流計の指示が零とな
るように前記可変抵抗器を調整したときの上記可
変抵抗器の抵抗値と、前記第1の変流器の変流比
とから前記被測定接触部の接触抵抗を求めるよう
にしたことを特徴とする接触抵抗測定装置。 a first current transformer that is detachably attached to a line in which a contact part to be measured is interposed; a first circuit connected to the secondary side of the first current transformer; and the contact part to be measured. a second circuit connected between both ends of the part via a variable resistor, and a second current transformation in which each part of the first and second circuits is a common primary winding having opposite polarities. and an ammeter that measures the secondary current of the second current transformer, and the resistance of the variable resistor when the variable resistor is adjusted so that the indication of the ammeter becomes zero. A contact resistance measuring device characterized in that the contact resistance of the contact portion to be measured is determined from the current transformation ratio of the first current transformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17895282U JPS5982873U (en) | 1982-11-29 | 1982-11-29 | Contact resistance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17895282U JPS5982873U (en) | 1982-11-29 | 1982-11-29 | Contact resistance measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5982873U JPS5982873U (en) | 1984-06-04 |
JPH0316068Y2 true JPH0316068Y2 (en) | 1991-04-08 |
Family
ID=30388383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17895282U Granted JPS5982873U (en) | 1982-11-29 | 1982-11-29 | Contact resistance measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5982873U (en) |
-
1982
- 1982-11-29 JP JP17895282U patent/JPS5982873U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5982873U (en) | 1984-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11142459A (en) | Transformer error testing device with zero load function | |
JP2001201519A (en) | Testing device and test method of current measuring circuit | |
US3307101A (en) | Storage battery condition indicator with temperature and load current compensation | |
JPH0316068Y2 (en) | ||
US2198371A (en) | Power factor indicator | |
US2772395A (en) | Method and apparatus for the measurement of low resistance | |
US1587841A (en) | Testing system | |
US4929900A (en) | Method for locating conductive faults in telephone and similar cables | |
US4090127A (en) | Device for measuring with direct current the total resistance of a circuit when there is also present an alternative component from the mains | |
US1689660A (en) | Method and arrangement for comparative alternating-current measurements | |
US3735252A (en) | Automatic tester for testing resistance and inductance of coil windings | |
US2740093A (en) | Meter tester | |
SU1221617A1 (en) | Apparatus for determining resistance of zero sequence of transformer with saturated core | |
JPS60168056A (en) | Measuring method of winding resistance of transformer | |
SU788032A1 (en) | Method of measuring resistance of three-phase transformer windings | |
CN114814667A (en) | Polarity test discrimination method for main transformer differential protection current transformer of internal bridging line | |
JPS5938667A (en) | Apparatus for testing of winding number ratio of electromagnetic coil | |
JPH09304468A (en) | Method for locating fault-point of parallel two line system | |
Baker | Current transformer ratio and phase error by test ring method | |
JP2727324B2 (en) | Resistance network analyzer | |
US2337962A (en) | Method and apparatus for determining resistance of ground connections | |
SU116004A1 (en) | Test method for electric power equipment vanishing devices | |
SU1417101A1 (en) | Device for determining the sign of faulty compensation for ground shorting current | |
US2989696A (en) | Watt-hour meter testing circuit | |
US383668A (en) | Electrical indicator for alternating electric currents |