JPS62177133A - Method for cold bonding granular material - Google Patents

Method for cold bonding granular material

Info

Publication number
JPS62177133A
JPS62177133A JP1594086A JP1594086A JPS62177133A JP S62177133 A JPS62177133 A JP S62177133A JP 1594086 A JP1594086 A JP 1594086A JP 1594086 A JP1594086 A JP 1594086A JP S62177133 A JPS62177133 A JP S62177133A
Authority
JP
Japan
Prior art keywords
molded bodies
curing
moisture content
water content
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1594086A
Other languages
Japanese (ja)
Other versions
JPH0629472B2 (en
Inventor
Makoto Muramoto
真 村本
Hidemi Watanabe
秀美 渡辺
Junsuke Haruna
春名 淳介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61015940A priority Critical patent/JPH0629472B2/en
Publication of JPS62177133A publication Critical patent/JPS62177133A/en
Publication of JPH0629472B2 publication Critical patent/JPH0629472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture molded bodies having high strength after curing in a short time by bringing kneaded and molded bodies into contact with gaseous CO2 and keeping the water content in the molded bodies at a value corresponding to the water content in the molded bodies in a period in which the molded bodies are dried at a reduction of volume during the contact. CONSTITUTION:A binder such as Portland cement is added to a granular material such as fine iron ore and they are kneaded and molded. The resulting molded bodies are hardened by carbonation curing in an atmosphere contg. 5vol% gaseous CO2. During this time, the water content in the molded bodies is kept at a value corresponding to the water content in the molded bodies in a period in which the molded bodies are dried at a reduction of volume. The period in which the molded bodies are dried at a reduction of volume is recognized by a change in the dew point of exhaust gas for drying or the water content. By this cold bonding method, the carbonation curing period can be shortened and molded bodies having high strength after curing are obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉱石、石炭、コークス、ダスト等の冷間結合方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for cold bonding ores, coal, coke, dust, etc.

(従来の技術) 粒子状材料全回めて固体の塊とすることが必要とされる
分野は、数多く存在し、たとえば製鉄業においては、高
炉原料である粒子状鉄鉱石及び粒子状、コークス、また
コークス炉原料である粒子状石炭、また有価金属及び燃
料の有効利用を考慮した発生ダスト等である。
(Prior Art) There are many fields in which it is necessary to turn particulate materials into solid lumps. For example, in the steel industry, particulate iron ore, which is a raw material for blast furnaces, particulate iron ore, particulate coke, It also includes granular coal, which is a raw material for coke ovens, and generated dust, which takes into consideration the effective use of valuable metals and fuel.

近年このような粒子状材料の処理方法として、処理所要
エネルギーの低減及び無公害化の見地から、冷間結合方
法が急速に開発されており、通常造粒または加圧手段を
用いて、所望形状に成形し、かつ使用過程において耐え
るような強度を付加し、粉化率が少なく利用価値全充分
に高めるため、結合剤を粒子状材料に添加するとともに
、強度発現全充分に行なわせるため、養生処理等全行な
っているが、強度発現までに、長時間(通常7〜lO日
間)を要し、大規模な養生設備全必要とするとともに、
養生時間が長くなることによる生産性の低下などの欠点
を有している。
In recent years, as a method for processing such particulate materials, cold bonding methods have been rapidly developed from the viewpoint of reducing the energy required for processing and making it non-polluting. A binder is added to the particulate material in order to form it into a granular material, add strength to withstand the process of use, reduce powdering rate, and fully increase the utility value. Although all treatments are carried out, it takes a long time (usually 7 to 10 days) to develop strength, and large-scale curing equipment is required.
It has drawbacks such as a decrease in productivity due to the long curing time.

これらの欠点を解決するために、例えば特開昭48−2
3613号公報にあるように、製鉄原料ペレット製造方
法において、造粒ペレットの強度全向上させるために、
炭酸ガス含有気流中に数日間暴露し、1ペレット当り2
0kp以上の圧潰強度を確保する方法がある。
In order to solve these drawbacks, for example, Japanese Patent Application Laid-Open No. 48-2
As stated in Publication No. 3613, in order to completely improve the strength of granulated pellets in a method for manufacturing raw material pellets for steelmaking,
2 per pellet after several days of exposure to a carbon dioxide-containing air stream.
There is a method to ensure crushing strength of 0 kp or more.

(発明が解決しようとする問題点) 従来粒子状材料の冷間結合方法で、成形された成形物の
強度向上及び強度発現性の短時間化のため、炭酸化養生
法全採用し、結合剤の種類、結合剤の添加量、結合剤添
加法及び養生方法(養生時間、炭酸ガス濃度、炭酸ガス
量、養生時成形物水分量)全種々検討されてきたが、成
形物原料種や、粒径及び結合剤種類及び養生時成形物の
水分量が変化した場合に、その養生効果が大きく変化し
、実操業時に所望の強度全得ることができぬ場合があり
、微粉の発生や、必要以上の結合剤の使用及び養生時間
の延長全まねき、製造コストの上昇、生産量の低下、生
産量変動という大きな問題となっていた。
(Problems to be Solved by the Invention) In order to improve the strength of molded products and shorten the time for developing strength, in the conventional cold bonding method for particulate materials, carbonation curing is fully adopted, and binder The type of binder, the amount of binder added, the method of adding binder, and the curing method (curing time, carbon dioxide concentration, amount of carbon dioxide, moisture content of molded product during curing) have all been investigated. If the diameter, binder type, or moisture content of the molded product changes during curing, the curing effect will change significantly, and it may not be possible to obtain the desired strength during actual operation, resulting in the generation of fine powder or excessive This has led to major problems such as the use of binders and extended curing times, increased manufacturing costs, decreased production, and fluctuations in production.

本発明は前述の難点を有利に解決するためになされたも
のであり、結合剤として炭酸塩全形成する結合剤、たと
えばセメント、セメントクリンカ−、ダイカルシウムシ
リケート(2CaO−8i02 )、ウオラストナイト
(CaO−810□)、高炉スラグ、転炉スラグ、電気
炉スラグ、消石灰全添加し、非焼成塊成法で成形した成
形物全炭酸化養生処理する際K、該成形物の水分を、成
形物の減率乾燥期間の水分に相当する値に保持し、炭酸
化養生することにより、常に最適な炭酸化養生全行なわ
せようとするものである。
The present invention has been made in order to advantageously solve the above-mentioned difficulties, and uses binders that are entirely carbonate-forming as binders, such as cement, cement clinker, dicalcium silicate (2CaO-8i02), wollastonite ( CaO-810□), blast furnace slag, converter slag, electric furnace slag, and slaked lime were added to the molded product by the non-calcined agglomeration method.When the molded product was completely carbonated and cured, the water content of the molded product was removed. By maintaining the lapse rate at a value corresponding to the moisture content during the drying period and carrying out carbonation curing, the optimum carbonation curing is always carried out.

(問題点全解決するための手段と作用)本発明は、鉱石
、石炭、コークス、ダスト等の粒子状材料にセメント、
セメントクリンカ−、グイカルシウムシリケー) (2
CaO8i02)、ウオラストナイト(CaO−810
2)、高炉スラグ、転炉スラグ、電気炉スラグ、消石灰
等の炭酸塩の形成により硬化する結合剤と、必要なら水
分を所定量添加し混合後、ペレタイザー、ブリケットマ
シーン、ロール成形機等の非焼成塊成法で成形した成形
物に、炭酸ガス全5 Vo1%以上含有するガス乞吹込
で、炭酸化養生処理する方法において、前記成形物の水
分量、該成形物の減率乾燥期間の水分に相当する値に保
持し、炭酸化養生処理を行なうことにより、成形物原料
種や粒径及び結合剤種類及び養生時成形物の水分が変化
した場合においても、常に高強度の養生後強度を有する
成形物を、短時間に製造することが可能となる粒子状材
料の冷間結合方法である。
(Means and effects for solving all the problems) The present invention provides cement,
Cement clinker, Gui Calcium Silica) (2
CaO8i02), wollastonite (CaO-810
2) After mixing a binder that hardens by forming carbonates such as blast furnace slag, converter slag, electric furnace slag, and slaked lime, and adding a predetermined amount of water if necessary, In a method in which a molded product formed by a fired agglomeration method is carbonated and cured by injecting a gas containing at least 1% of total carbon dioxide gas, the moisture content of the molded product, the moisture content of the molded product during the lapse rate drying period, By maintaining the value equivalent to , and performing carbonation curing treatment, high strength after curing can be maintained even if the raw material type, particle size, binder type, or moisture content of the molded material changes during curing. This is a cold bonding method for particulate materials that makes it possible to manufacture molded articles having the following properties in a short time.

以下本発明について詳述する。The present invention will be explained in detail below.

第1図は、バインダーとしてポルトランドセメン)1添
加し、鉄鉱万全ベレタイジングして成形したペレットを
、炭酸化養生する場合に、養生時の成形物水分と、養生
時間が養生後強度にあたえる影響を示したものである。
Figure 1 shows the influence of the moisture content of the molded product during curing and the curing time on the strength after curing, when carbonating and curing pellets molded by adding Portland cement) 1 as a binder and thoroughly beletizing iron ore. It is something that

これより炭酸化養生時には、養生される成形物の水分に
適切範囲が存在し、この適切水分範囲は、養生される成
形物の水分が該成形物の減率乾燥期間の水分に相当する
値であることが判明した。
From this, it can be seen that during carbonation curing, there is an appropriate moisture range for the molded material to be cured, and this appropriate moisture range is a value in which the moisture content of the molded material to be cured corresponds to the moisture content during the lapse rate drying period of the molded material. It turns out that there is something.

従来セメントバインダーの成形物強度は、セメントの水
和反応の進行にて強度発現すると考えられており、その
強度発現速度はきわめて遅く、所定強度に達するために
は、7〜10日間の長時間を要する。一方炭酸化養生時
においては、その水和反応が促進され、硬化に有効な硅
酸カルシウム水和物とCaCO5’!i’生成し、次の
ような反応により進行すると考えられる。
Conventionally, it is thought that the strength of molded products of cement binders develops through the progress of the hydration reaction of cement, and the strength development speed is extremely slow, and it takes a long time of 7 to 10 days to reach the specified strength. It takes. On the other hand, during carbonation curing, the hydration reaction is promoted, and calcium silicate hydrate and CaCO5'! It is thought that i' is produced and the reaction proceeds as follows.

3CaO1ISiO2+H20→Ca(OH)2+Ca
O・5L02・H2O・・・(1) 2CaO・SiO□+H20→Ca(OH)2+Cao
−8I02・H2゜・・・(2) すなわち上記(1) 、 (2)の反応式は通常のセメ
ントの水和反応であり、その反応速度は遅い。一方上記
(3)の反応は上記(1) 、 (2)の反応で生成さ
れたCa(OH)2が、水中に溶けこんだ炭酸ガスによ
り、CaCO3となる反応であるが、Ca(OH)2が
CaCO3として系外に排出されるため、上記(1) 
、 (2)の反応が促進されるとともに、強度発現に必
要なCaCO3の生成も促進するという複合反応となる
3CaO1ISiO2+H20→Ca(OH)2+Ca
O・5L02・H2O...(1) 2CaO・SiO□+H20→Ca(OH)2+Cao
-8I02.H2°...(2) That is, the reaction formulas (1) and (2) above are normal cement hydration reactions, and the reaction rate is slow. On the other hand, in the reaction (3) above, Ca(OH)2 produced in the reactions (1) and (2) above becomes CaCO3 due to carbon dioxide gas dissolved in water, but Ca(OH) 2 is discharged outside the system as CaCO3, so the above (1)
This is a complex reaction in which the reaction (2) is promoted and the production of CaCO3 necessary for developing strength is also promoted.

以上セメントにおける反応金示したが、セメントクリン
カ−1高炉スラグ、消石灰においても同様な反応となる
。よって炭酸化による強度発現を有効(で、かつ迅速に
行なわせしめるためには、以下の点が重要である。即ち
(al水分を介しての反応であるため水分が必要不可欠
であるが、もっとも強度が必要な粉粒体粒子の接触点に
水分及び結合剤が存在すること。(blまた成形物内部
まで炭酸化をおこすためには炭酸ガスの成形物内への浸
透全有利に行なわせる必要があり、このための炭酸ガス
経路としての気孔の確保である。
Although the reaction in cement has been shown above, the reaction is similar in cement clinker-1 blast furnace slag and slaked lime. Therefore, in order to effectively (and quickly) develop strength through carbonation, the following points are important. Namely, water is indispensable because the reaction occurs through al moisture, but the most important Moisture and a binder must be present at the contact point of the powder or granule particles where carbonation is required. For this purpose, pores are secured as carbon dioxide gas paths.

したがって炭酸化養生時の成形物水分を、該成形物の減
率乾燥期間の水分に相当する低水分にすることは、毛細
管現象により粉粒体粒子の接触点に、優先的に水分及び
結合剤全存在させる作用と、炭酸ガスの経路全確保する
作用全発揮させることになる。
Therefore, by reducing the moisture content of the molded product during carbonation curing to a low level corresponding to the moisture content during the drying period of the molded product, moisture and binder are preferentially transferred to the contact points of powder particles due to capillary action. This means that the effect of making all the carbon dioxide gas exist and the effect of securing all the routes for carbon dioxide gas will be fully exerted.

減率乾燥期間とは、化学工学等の乾燥理論において、一
般に使用される技術用語であり、第2図の乾燥物水分と
、乾燥速度と関係曲線で■の領域で示される。減率乾燥
期間内の水分は、粒子状材料の場合、各粒子の接触点に
存在していると考えられているが、減率乾燥期間は各物
質によって千差万別である。
The lapse rate drying period is a technical term generally used in drying theory such as chemical engineering, and is indicated by the region (■) in the relationship curve between dry matter moisture and drying rate in FIG. In the case of particulate materials, moisture within the lapse rate drying period is considered to exist at the contact points of each particle, but the lapse rate drying period varies widely depending on each material.

したがって成形物原料種や粒径が変化した場合、当然減
率乾燥期間も変化するため、本発明者らは、排気された
乾燥用排ガスの露点もしくは水分量変化より、減率゛乾
燥期間を検知することを考えた。
Therefore, if the raw material type or particle size of the molded product changes, the lapse rate drying period will naturally change, so the inventors detected the lapse rate and drying period from changes in the dew point or moisture content of the exhausted drying flue gas. I thought about doing it.

すなわち第2図で示したように1恒率乾燥期間中(Hの
領域)は、乾燥速度は一定であるため、乾燥用排ガスの
露点もしくは水分量は一定値となるが、減率乾燥期間(
■の領域)に入ると、乾燥速度は低下するため、乾燥用
排ガスの露点もしくは、水分量は一定値とならず、乾燥
速度の低下に応じて、その値が低下して(るため、容易
に減率乾燥期間を検知できるものである。
In other words, as shown in Fig. 2, during the constant rate drying period (region H), the drying rate is constant, so the dew point or moisture content of the drying exhaust gas remains constant;
(2), the drying speed decreases, so the dew point or moisture content of the drying exhaust gas does not remain at a constant value, and as the drying speed decreases, the value decreases ( It is possible to detect the lapse rate drying period.

第3図は結合剤として早強セメントラ添加し、鉄鉱石を
ロール成形機にて成形した成形物全炭酸化養生し、その
強度発現状況全図示したものであるが、非焼成塊成法が
変化しても、成形物の粉全滅率乾燥期間の水分に相当す
る値に保持して、炭酸化養生することにより、養生後強
度の向上を図ることが可能である。
Figure 3 shows the strength development of a molded product made by adding early-strength cementola as a binder and molding iron ore using a roll forming machine, and then fully carbonating and curing it. However, the non-fired agglomeration method has changed. However, it is possible to improve the strength after curing by maintaining the powder extinction rate of the molded product at a value corresponding to the moisture content during the drying period and performing carbonation curing.

また第4図は結合剤としてダイカルシウムシリグー14
−添加し、石炭全ロール成形機にて成形した成形物を、
炭酸化養生し、その強度発現状況を図示したものである
Figure 4 also shows dicalcium silicone 14 as a binder.
-Additionally, the molded product formed using a coal full roll molding machine,
This is a diagram illustrating the development of strength after carbonation curing.

結合剤としてグイカルシウムシリケートヲ使用した場合
、その炭酸化反応はセメントの場合と若干具なり、次の
ような反応により進行すると考えられる。
When calcium silicate is used as a binder, the carbonation reaction is slightly different from that of cement, and is thought to proceed as follows.

CO2+H2O−+H2CO3・・・(4)H2Co3
+2CaO−8IO,、−+CaCO3+CaO−81
02−H20・・・(5) しかしながらダイカルシウムシリケートの場合において
も、セメントの場合と同様に、炭酸化反応全充分に行な
わせるためには、水分金倉しての反応であることと、成
形物内への炭酸ガスの浸透全考慮する必要があり、やは
り減率乾燥期間における炭酸化養生が、一番効果全発揮
させることになる。同様なことがウオラストナイト、転
炉スラグ、電気炉スラグにもいえる。
CO2+H2O-+H2CO3...(4)H2Co3
+2CaO-8IO, -+CaCO3+CaO-81
02-H20...(5) However, in the case of dicalcium silicate, as in the case of cement, in order for the carbonation reaction to be carried out sufficiently, it is necessary to conduct the reaction in a state where the moisture content is high, and the molded product It is necessary to take all aspects of the infiltration of carbon dioxide gas into consideration, and carbonation curing during the lapse rate drying period is the most effective. The same can be said of wollastonite, converter slag, and electric furnace slag.

また、炭酸ガス濃度は、炭酸化反応から5VoA−以上
とする必要があり、CO2ガスとしては、CO□を大量
に含む熱風炉、或はコークス炉等の排ガスを用いても、
充分効果は発揮できるものである。
In addition, the carbon dioxide concentration needs to be 5VoA- or more due to the carbonation reaction, and even if exhaust gas from a hot air stove or coke oven containing a large amount of CO2 is used as the CO2 gas,
It can be fully effective.

よって水分を介して炭酸化反応により炭酸塩全形成し、
強度発現する結合剤においては、成形物原料種や、粒径
及び結合剤種類及び非焼成塊成法が変化した場合におい
ても、炭酸化養生時の成形物水分を、水分ゼロをのぞ(
成形物の減率乾燥期間の水分に相当する値に保持し、炭
酸化養生することにより、常に最適な炭酸化養生を行な
うことが可能であり、迅速かつ高強度を有する成形物全
製造できる。
Therefore, carbonate is completely formed by carbonation reaction through water,
For binders that develop strength, even when the raw material type, particle size, type of binder, and non-fired agglomeration method change, the moisture content of the molded product during carbonation curing can be reduced to zero (except for zero moisture).
By maintaining the lapse rate of the molded product at a value corresponding to the moisture content during the drying period and performing carbonation curing, optimal carbonation curing can be performed at all times, and all molded products with high strength can be produced quickly.

(実施例) 次に本発明?非焼成塊成法にて各種塊成化した成形物に
適用し、炭酸化養生を行ない、その操業結果全従来の操
業結果と共に第1表に示す。
(Example) Next, the present invention? The non-fired agglomeration method was applied to various agglomerated molded products, carbonation curing was performed, and the operational results are shown in Table 1 along with all conventional operational results.

この表の結果より明らかなごとく、結合剤として炭酸塩
の形成により、硬化する結合剤を使用し、かつ炭酸化養
生時の成形物の水分金、該成形物の水分ゼロをのぞく減
率乾燥期間の水分に相当する値に保持し、炭酸化養生処
理を行なうことにより、成形物原料種や、粒径及び結合
剤種類及び非焼成塊成法が変化した場合においても、そ
の影響全うけず、常に最適な炭酸化養生を行なうことが
可能であり、養生時間の大巾な短縮と養生後の成形物強
度の大巾な改善が可能となり、迅速かつ高強度を有する
成形物全製造できる。
As is clear from the results in this table, a binder that hardens due to the formation of carbonate is used as a binder, and the moisture content of the molded material during carbonation curing and the drying period at which the molded material loses its moisture content are reduced to zero. By maintaining the moisture content at a value equivalent to 100% and performing carbonation curing treatment, even if the raw material type, particle size, binder type, or non-fired agglomeration method changes, it will not be affected at all. It is possible to always carry out optimal carbonation curing, and it is possible to greatly shorten the curing time and greatly improve the strength of the molded product after curing, allowing for rapid production of all molded products with high strength.

また従来法では、養生時間の短縮及び養生後成形物強度
の確保のために使用していた結合剤の削減も可能となっ
た。
It has also become possible to reduce the amount of binder used in the conventional method to shorten the curing time and ensure the strength of the molded product after curing.

(発明の効果) 以上のごとく本発明によれば、炭酸化養生時間の大巾な
短縮と、炭酸化型生後強度の大巾な改善が可能となり、
常に迅速かつ高強度を有する成形物を製造できる。また
、従来法において、養生時間の短縮及び養生後強度の確
保のために使用していた結合剤の削減も可能となシ、大
巾な製造コストの低減が可能となった。
(Effects of the Invention) As described above, according to the present invention, it is possible to significantly shorten the carbonation curing time and greatly improve the post-carbonation strength.
Moldings with high strength can always be produced quickly. Furthermore, in the conventional method, it is possible to reduce the amount of binder used to shorten curing time and ensure strength after curing, and it has become possible to significantly reduce manufacturing costs.

本発明は、使用原料種や原料粒径及び結合剤種類及び非
焼成塊成法が変化しても、常に最適な炭酸化養生法を提
示するものであり、炭酸化養生法を飛躍的に向上させる
ものである。
The present invention constantly presents the optimal carbonation curing method even if the raw material type, raw material particle size, binder type, and non-fired agglomeration method change, and it dramatically improves the carbonation curing method. It is something that makes you

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図および第4図は、実験における本発明の
乾燥状態とベレット強度の関係図表、第2図は本発明を
説明するための乾燥理論図表である。
FIGS. 1, 3, and 4 are graphs showing the relationship between the drying state and pellet strength of the present invention in experiments, and FIG. 2 is a drying theory graph for explaining the present invention.

Claims (1)

【特許請求の範囲】 1、粒子状材料に結合剤を添加して混練し、成形した成
形物の水分を、減率乾燥期間の水分に相当する値に保持
しながら、炭酸ガスが5Vol%以上含有するガスと接
触させ、硬化させることを特徴とする粒子状材料の冷間
結合方法。 2、成形物の減率乾燥期間を、乾燥用排ガスの露点もし
くは水分量の変化より検知することを特徴とする特許請
求の範囲第1項記載の粒子状材料の冷間結合方法。
[Claims] 1. A binder is added to particulate material and kneaded, and the moisture content of the molded product is maintained at a value corresponding to the moisture content during the drying period while carbon dioxide gas is 5 vol% or more. A method for cold bonding particulate materials, characterized by bringing them into contact with a containing gas and curing them. 2. The method for cold bonding particulate materials according to claim 1, wherein the lapse rate drying period of the molded product is detected from a change in the dew point or moisture content of the drying exhaust gas.
JP61015940A 1986-01-29 1986-01-29 Cold bonding method for particulate materials Expired - Lifetime JPH0629472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015940A JPH0629472B2 (en) 1986-01-29 1986-01-29 Cold bonding method for particulate materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015940A JPH0629472B2 (en) 1986-01-29 1986-01-29 Cold bonding method for particulate materials

Publications (2)

Publication Number Publication Date
JPS62177133A true JPS62177133A (en) 1987-08-04
JPH0629472B2 JPH0629472B2 (en) 1994-04-20

Family

ID=11902755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015940A Expired - Lifetime JPH0629472B2 (en) 1986-01-29 1986-01-29 Cold bonding method for particulate materials

Country Status (1)

Country Link
JP (1) JPH0629472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066327A (en) * 1989-06-20 1991-11-19 Nkk Corporation Method for manufacturing cold bonded pellets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157229A (en) * 1983-02-28 1984-09-06 Nippon Kokan Kk <Nkk> Method and device for producing non-calcined lump ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157229A (en) * 1983-02-28 1984-09-06 Nippon Kokan Kk <Nkk> Method and device for producing non-calcined lump ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066327A (en) * 1989-06-20 1991-11-19 Nkk Corporation Method for manufacturing cold bonded pellets

Also Published As

Publication number Publication date
JPH0629472B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US5049198A (en) Calcium sulfate process for the coproduction of Portland cement clinker and concentrated sulfur dioxide adequate to manufacture sulfuric acid
CN101003422B (en) New method for producing sulfuric acid and cement by using phosphogypsum
JP2007523256A (en) Self-reducing low temperature bonded pellets
JPS61275153A (en) Pretreatment for pozzolanic enhancement of pozzolan material
CN110404936A (en) Comprehensive treatment method for semi-dry desulfurized fly ash
CN101462698B (en) Industrial method for cyclic utilization of ironmaking production desulfurized gypsum and blast furnace gas
RU2669653C2 (en) Method of producing granular metallic iron
CN110862272B (en) Device and method for preparing composite exciting agent clinker by using semi-dry desulfurization ash and application of clinker
CA2441524C (en) Method for curing self-reducing agglomerates
JPS62177133A (en) Method for cold bonding granular material
JPH01126246A (en) Blast-furnace cement using converter slag as modifier
JPS6020453B2 (en) Method for producing unfired pellets
CN117867267B (en) Premelted pellet for reducing free calcium oxide in steel slag and preparation method
SU834166A1 (en) Method of producing ferrolime
SU508527A1 (en) The method of obtaining restorative gas
JPS60230940A (en) Manufacture of sintered ore
CN117776271A (en) Method for preparing calcium ferrite by low-temperature decomposition of iron-based solid waste catalytic phosphogypsum
JPS62177132A (en) Manufacture of unfired briquetted ore
KR100376540B1 (en) A method for manufacturing reduced ore by solid phase direct reduction process
JPH01176250A (en) Production of binder by modification of slag
JPS6013043B2 (en) Slag forming agent for steelmaking
US3793036A (en) Method of producing rapid-hardening cement
JPS5848642A (en) Manufacture of unfired agglomerated ore
JPS61253330A (en) Manufacture of uncalcined briquetted ore
WO2024133450A1 (en) Supplementary cementitious material