JPS61253330A - Manufacture of uncalcined briquetted ore - Google Patents

Manufacture of uncalcined briquetted ore

Info

Publication number
JPS61253330A
JPS61253330A JP9339085A JP9339085A JPS61253330A JP S61253330 A JPS61253330 A JP S61253330A JP 9339085 A JP9339085 A JP 9339085A JP 9339085 A JP9339085 A JP 9339085A JP S61253330 A JPS61253330 A JP S61253330A
Authority
JP
Japan
Prior art keywords
carbon dioxide
curing
ore
producing
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9339085A
Other languages
Japanese (ja)
Inventor
Shohei Suzuki
章平 鈴木
Junsuke Haruna
春名 淳介
Makoto Muramoto
真 村本
Hiroshi Hagiwara
萩原 宏
Masaru Shirasaka
優 白坂
Kunio Kobayashi
国男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Onoda Cement Co Ltd
Original Assignee
Nippon Steel Corp
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Onoda Cement Co Ltd filed Critical Nippon Steel Corp
Priority to JP9339085A priority Critical patent/JPS61253330A/en
Publication of JPS61253330A publication Critical patent/JPS61253330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture the titled ore with a low cost by using a large quantity of coarse grain ore, by compacting materials such as iron ore, cement, cokes, lime stone, water, immediately bringing the green compact into contact with gaseous carbonic acid, then drying and curing it to a prescribed hardness. CONSTITUTION:A material 2 composed of mixture of iron ore fines, cement, cokes fines, lime store fines and water, etc. is supplied to a compacting roll 3 from a hopper 1 to compact it. In this case, water saturation ratio is adjusted desirably, to 0.15-0.9. A green compact 4 obtd. thereby is exposed to gas contg. >=5vol% CO2 at a gaseous CO2 curing part 5 immediately after compacting, to cover the surface with CaCO3 and harden it. Thereafter, the compact 4 is carried to a yard 7 by a conveyer 6, and uncalcined briquetted ore having strength required for charging into blast furnace is obtd. by drying and curing, etc. for 10 day. As the other aging method, gaseous carbonic acid treatment by waste gas contg. it and drying treatment, or blasting treatment, etc., of vapor or hot wind of the compact, by packed tower, etc., are effective.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非焼成塊成鉱の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing uncalcined agglomerate ore.

(従来の技術、問題点] 高炉用原料としては焼結鉱、焼成ベレット等があり、そ
れなりに実績を有しているが、その使用エネルギーから
みると必ずしも有利ではない。最近の動向としてはこれ
らに代わり得るものとしてセメント等のバインダーを用
いたコールドペレットが注目されだしている。しかしこ
のコールドペレットもそれなりの欠点を有しており、そ
の最大のものとして原料鉱石粉砕の為の電力コストが高
いこと、成品形状が丸いこと、及びセメント養生に長時
間を要し、養生過程で相互付着が起こること等が挙げら
れる。これらの欠点の為、このコールドペレットは一部
を除いて実用化されているとは言えない状態である。本
発明者等はこれらのコールドペレットの欠点を補う為に
は造粒に代わる粗粒鉱石をペースにした成型法の開発が
必要であると考えている。しかし、この粗粒鉱石tペー
スにした成型法による鉱石塊Aは、造粒と同様に成型直
後の成型物強度(以下これを成型物生強度と呼ぶ)が低
く、その後の輸送工程中で粉化、崩壊してしまうという
致命的な欠点を有している。
(Conventional technology, problems) Sintered ore, fired pellets, etc. are used as raw materials for blast furnaces, and they have a certain track record, but they are not necessarily advantageous in terms of the energy used.Recent trends include these. Cold pellets using a binder such as cement are attracting attention as an alternative to cold pellets.However, these cold pellets also have their own drawbacks, the biggest being the high cost of electricity for crushing the raw material ore. These disadvantages include the round shape of the finished product, the long time required for cement curing, and mutual adhesion during the curing process.Due to these drawbacks, this cold pellet has not been put into practical use except for a few. The present inventors believe that in order to compensate for these drawbacks of cold pellets, it is necessary to develop a molding method using coarse-grained ore instead of granulation.However, The ore lump A produced by the molding method using this coarse ore T-pace has a low molded product strength immediately after molding (hereinafter referred to as molded product green strength), similar to granulation, and is powdered during the subsequent transportation process. , it has the fatal drawback of collapsing.

このように、ペレットの欠点を補おうとし、別の成型法
を検討すると又別の欠点が生じてしまう。
In this way, when trying to compensate for the drawbacks of pellets and considering other molding methods, other drawbacks arise.

これらの欠点を補う為に本発明者等は種々検討した結果
、以下のような解決策を見出した。以下にその詳細を述
べる。
In order to compensate for these shortcomings, the present inventors conducted various studies and found the following solution. The details are described below.

(問題膚、 ′ft解決するための手段2作用]本発明
は、鉄鉱石粉末、セメント、コークス粉末2五灰石粉末
及び水等の混合物をロールにより圧縮成型し九成型物を
、成型直後炭酸ガスを5 Vat。
(Means for Solving the Problem 2) The present invention involves compression molding a mixture of iron ore powder, cement, coke powder, pentate powder, water, etc. with a roll, and then immediately carbonating the molded product. 5 Vat for gas.

チ以上含有するガスに曝し処理して成型物の表面を炭酸
カルシウムで被覆し硬化させた後、高炉装入に必要な強
度まで乾燥養生することを特徴とする非焼成塊成鉱の製
造方法、及び、鉄鉱石粉末、セメント、コークス粉末、
石灰石粉末及び水等の混合物?ロールにより圧縮成型し
、かつ水分飽和度が0.15〜0.9に調整された成型
物を、成型直後炭酸ガスを5Vot、%以上含有するガ
スに曝し処理して成型物の表面を炭酸カルシウムで被覆
し硬化させた後、高炉装入に必要な強度まで乾燥養生す
ることを特徴とする非焼成塊成鉱の製造方法である。硬
化後のロール成型物はヤードにて約10日間の養生を行
う、再度充填塔等で炭酸ガスを含んだ排ガスで炭酸ガス
処理及び乾燥処理する、再度充填塔等で蒸気又は熱風を
吹き込み養生し、乾燥する等が可能である。
A method for producing non-calcined agglomerate ore, which comprises coating the surface of the molded product with calcium carbonate and curing it by exposing it to a gas containing at least and iron ore powder, cement, coke powder,
A mixture of limestone powder and water? Immediately after molding, the molded product, which has been compressed and molded using rolls and whose moisture saturation is adjusted to 0.15 to 0.9, is treated with a gas containing 5Vot, % or more of carbon dioxide gas, to coat the surface of the molded product with calcium carbonate. This is a method for producing non-calcined agglomerates, which is characterized by coating and hardening the agglomerate with a powder, followed by drying and curing to the strength required for charging into a blast furnace. After hardening, the rolled product is cured in a yard for about 10 days, then treated with carbon dioxide gas and dried using exhaust gas containing carbon dioxide in a packed tower, etc., and then cured again by blowing steam or hot air into it in a packed tower, etc. , drying, etc.

なお、 見掛は比重 である。In addition, Appearance is specific gravity It is.

本発明者等は成型物生強度向上の手段として炭酸ガス処
理が有効であることを見出した。セメント配合物を炭酸
ガス処理することにより、その強度発現速度が向上する
ことは既知の事実であるが。
The present inventors have discovered that carbon dioxide treatment is effective as a means of improving the raw strength of molded products. It is a known fact that treating a cement compound with carbon dioxide gas improves its strength development rate.

ある条件のもとでは、その強度発現速度が非常に高くな
ることを本発明者等は見出した。これを第1図に示すが
、セメント配合物を炭酸ガス処理することにより、通常
1〜3日間の養生で得られる強度が約5〜15分間で得
られることが判る。更にこの炭酸ガス処理により表面の
セメント等のバインダーは反応が完了し、その後の養生
期間中の成型物相互付着を防止することが可能である。
The present inventors have discovered that under certain conditions, the rate of strength development becomes extremely high. This is shown in FIG. 1, and it can be seen that by treating the cement mixture with carbon dioxide gas, the strength normally obtained by curing for 1 to 3 days can be obtained in about 5 to 15 minutes. Furthermore, by this carbon dioxide treatment, the reaction of the binder such as cement on the surface is completed, and it is possible to prevent the molded products from adhering to each other during the subsequent curing period.

しかしこの炭酸ガス処理により常に上記強度が得られる
とは限らず、その強度発現の促進の為には成型条件の検
討が必要となる。
However, it is not always possible to obtain the above-mentioned strength by this carbon dioxide treatment, and in order to promote the development of the strength, it is necessary to consider the molding conditions.

炭酸ガス処理によりセメント配合物の強度が発現するに
はセメントと炭酸ガスと水の3@が以下のような反応を
起こす必要がある。
In order for the cement mixture to develop strength through carbon dioxide treatment, the following reaction must occur between cement, carbon dioxide, and water.

30aO@8i02 +H10→0a(OH)1 + 
a・OaO@5i02 @H!0        − 
’・・・・・(1)20aOa 8i02 + H2O
+0a(OH)2−1− n aOaO・5iO8・H
2O・・・・・(2)Ota(OH)2+00雪 →0
aO03+H20°°−−゛−(3)上記(1)、(2
)の反応式は通常のセメントの水利反応であり、(3)
は0a(OH)zの炭酸化反応である。従って(1) 
、 (2)の反応速度は低く、その為必要強度を得る為
にはそれなシの養生期間を必要とするのであるが、ここ
で炭酸ガス処理の効果としては、(3)の式により(1
) 、 (2)の反応で生成された0a(OH)1が0
aO03として系外に排出される為、 (1) 、 (
2)の反応がそれだけ促進されることが挙げられる。従
って(1)、(2)の反応の促進により強度が発現する
には(3)の反応が起こり、その為には炭酸ガスが水に
溶けて00.−2になる必要があり、且つ成型物内部で
も(1) 、 (2) 、 (3)の反応が起こる必要
がある。即ち炭酸ガスが試料内部まで拡散していく必要
があり、その為には成型物の気孔の水分飽和度の管理が
必要となってくる。即ち気孔の水分飽和度が1.0であ
るということは、成型物の気孔が全て水により満たされ
ていることを意味しており、その場合0a(OH)*と
炭酸ガスとの反応(3)は試料表面でしか起こらなくな
ってしまう。それは生成された0a003が試料表面を
被覆してしまい、上記炭酸ガスの試料内部への拡散を阻
害してしまうからである。又気孔の水分飽和度が0であ
ることは気孔中には水分が全く無いということを意味し
ており、(3)の反応が全く起こらなくなってしまう。
30aO@8i02 +H10→0a(OH)1 +
a・OaO@5i02 @H! 0 -
'・・・・・・(1) 20aOa 8i02 + H2O
+0a(OH)2-1- n aOaO・5iO8・H
2O... (2) Ota (OH) 2+00 snow →0
aO03+H20°°−−゛−(3) Above (1), (2
) is the normal cement water use reaction, and (3)
is the carbonation reaction of 0a(OH)z. Therefore (1)
, The reaction rate of (2) is low, so a certain amount of curing period is required to obtain the required strength, but the effect of carbon dioxide treatment here is as follows from equation (3): 1
), 0a(OH)1 produced in the reaction of (2) is 0
Because it is discharged outside the system as aO03, (1), (
It can be mentioned that the reaction 2) is promoted accordingly. Therefore, in order for strength to develop due to the promotion of reactions (1) and (2), reaction (3) occurs, and for that purpose, carbon dioxide gas dissolves in water and 00. -2, and reactions (1), (2), and (3) also need to occur inside the molded product. That is, it is necessary for carbon dioxide gas to diffuse into the interior of the sample, and for this purpose, it is necessary to control the water saturation level of the pores of the molded product. In other words, when the water saturation degree of the pores is 1.0, it means that all the pores of the molded product are filled with water, and in that case, the reaction between Oa(OH)* and carbon dioxide gas (3 ) will only occur on the sample surface. This is because the generated 0a003 covers the sample surface and inhibits the carbon dioxide gas from diffusing into the sample. Furthermore, the fact that the moisture saturation degree of the pores is 0 means that there is no moisture in the pores at all, and the reaction (3) will not occur at all.

従って炭酸ガスが試料内部迄拡散してゆく為には上記の
ような成型物の気孔の水分飽和度を0.15〜0.9に
制御する必要があり、最も良好な気孔の水分飽和度はO
12であると言えるー 又、(2)の20aO*8i01の水和反応速度は3C
aO・8i01のそれと比較して非常に低く、従ってセ
メント中の2010・810.は早期の強度発現には無
力であるとされている。しかし本発明者等の以上に述べ
九考えに従うと炭酸ガス処理下では20aO・8i02
といえど、早期の強度発現が充分に可能であると言える
。従って20aO@8i0s単独でも炭酸ガス処理下で
はバインダーとなり得る。同様なことが0aOe310
3でも言え、 20aO・5i02と同様バインダーと
なシ得る。製鋼スラグでも同様なことが言える。即ち成
型直後に炭酸ガス処理を行うことは、粗粒鉱石をペース
とした成型法の欠点、(成型物生強度が低く、輸送工程
での粉化・崩壊]を充分に補うことができると言える。
Therefore, in order for carbon dioxide to diffuse into the sample, it is necessary to control the moisture saturation in the pores of the molded product as described above to between 0.15 and 0.9, and the best moisture saturation in the pores is O
12 - Also, the hydration reaction rate of 20aO*8i01 in (2) is 3C
2010.810. in cement is very low compared to that of aO.8i01. is said to be ineffective for early strength development. However, according to the above-mentioned nine ideas of the present inventors, under carbon dioxide treatment, 20aO・8i02
However, it can be said that early strength development is fully possible. Therefore, 20aO@8i0s alone can act as a binder under carbon dioxide treatment. Similar thing is 0aOe310
3 can be used as a binder as well as 20aO/5i02. The same can be said for steelmaking slag. In other words, it can be said that carbon dioxide treatment immediately after molding can sufficiently compensate for the disadvantages of molding methods using coarse ore as a base (low strength of molded material, powdering and disintegration during transportation process). .

又このコンベヤー表面硬化養生方法の利点としては、成
型物の表面では水和反応が既に完了している為、稜の工
程、ヤード養生期間での成型物同志の付着を防止できる
ことが挙げられる。
Another advantage of this conveyor surface curing method is that since the hydration reaction has already been completed on the surface of the molded product, it is possible to prevent the molded products from adhering to each other during the edge process and yard curing period.

早期の強度発現に必要な炭酸ガス濃度は5%以上であり
、通常の排ガスの濃度で充分である。
The carbon dioxide concentration necessary for early strength development is 5% or more, and the concentration of normal exhaust gas is sufficient.

成型直後のこの炭酸ガス処理により輸送工程中の粉化・
崩壊は防止できるが、そのままでは高炉用原料としては
強度が低く、2次処理(2次養生)が必要となる。この
2次養生法には以下のようなものがある。
This carbon dioxide treatment immediately after molding prevents pulverization and
Although collapse can be prevented, the strength is low as a raw material for blast furnaces, and secondary treatment (secondary curing) is required. This secondary regimen includes the following:

〔I〕  ヤード養生f::成型直後に炭酸ガス処理し
た成型物の強度を発現させる為、ヤードに積み上げ、約
10日間放置・仮置する方法 〔■〕  蒸気養生法:成型直後に炭酸ガス処理した成
型物の強度を発現させる為、充填塔等にこの成型物を納
め、蒸気養生、或いは熱風養生する方法(III)  
排ガス養生法:成型直後に炭酸ガス処理した成沢物の強
度を発現させる為、充填塔等にこの成型物を納め、炭酸
ガスを含有した排ガスで、炭酸ガス処理・及び乾燥を行
う方法 尚消石灰%  20aO” 8 ion等のセメントに
替わるバインダーの場合には[I)、(n)の方法は不
適当であり、(TfDの方法しか採用されない。
[I] Yard curing f:: In order to develop the strength of molded products treated with carbon dioxide immediately after molding, they are piled up in a yard and left/temporarily stored for about 10 days [■] Steam curing method: Treated with carbon dioxide gas immediately after molding In order to develop the strength of the molded product, the molded product is placed in a packed tower, etc., and steam-cured or hot air-cured (III).
Exhaust gas curing method: In order to develop the strength of the formed product that has been treated with carbon dioxide immediately after molding, the molded product is placed in a packed tower, etc., and is treated with carbon dioxide and dried using exhaust gas containing carbon dioxide.In addition, slaked lime% In the case of a binder that replaces cement, such as 20aO"8 ion, methods [I) and (n) are inappropriate, and only the method (TfD) can be adopted.

以上のことを基礎にして粗粒鉱石をベースとした成型法
、即ち造粒に替わる成型法は第5図のようなプロセスを
とることにより可能となる。
Based on the above, a molding method based on coarse-grained ore, that is, a molding method that replaces granulation, can be achieved by adopting the process shown in FIG.

以上のことからコールドペレットの欠点を充分に補うこ
とができ、従って粗粒鉱石の多量使用(1砕コストの低
減)による低コストの非焼成塊成鉱の與予が可能となる
From the above, the drawbacks of cold pellets can be sufficiently compensated for, and it is therefore possible to produce low-cost non-calcined agglomerate ore by using a large amount of coarse-grained ore (reducing the cost per crushing).

(実施列) ■炭酸ガス処理による成型歩留り、成型物生強度の向上
について 実験(1) セメント:鉱石:粉コークス=5:95:5の配合物に
水を適当量添加しながら充分混練した後、400陽/−
の成型圧でプレス成型した(成型寸法:20wψX 2
0 ws )。この成型物を以下の条件で炭酸ガス処理
した。
(Implementation row) ■Experiment on improving molding yield and green strength of molded products by carbon dioxide treatment (1) After thoroughly kneading a mixture of cement: ore: coke powder = 5:95:5 while adding an appropriate amount of water. , 400 yang/-
Press molded at a molding pressure of (molding dimensions: 20wψX 2
0ws). This molded product was treated with carbon dioxide gas under the following conditions.

〔炭酸ガス処理条件〕[Carbon dioxide treatment conditions]

炭酸ガス濃度=100%、炭酸ガス量=1t/分、処理
温度=〜20℃、炭酸ガス処理時間=3〜180分 処理後の圧潰強度と炭酸ガス処理時間との関係を第1図
に示す。同図の結果から、炭酸ガス処理時間が5分間程
度でも100 kg/cIIiの圧潰強度が発現されて
いるのが判る。この10019/dという圧潰強度は炭
酸ガス処理しない上記プレス成型物の40℃X24時間
養生後の圧潰強度に相当する。従って上記のような炭酸
ガス処理により、プレス成型物の強度発現が促進された
と言える。
Carbon dioxide concentration = 100%, carbon dioxide amount = 1 t/min, treatment temperature = ~20°C, carbon dioxide treatment time = 3 to 180 minutes The relationship between the crushing strength after treatment and the carbon dioxide treatment time is shown in Figure 1. . From the results in the figure, it can be seen that a crushing strength of 100 kg/cIIi was developed even when the carbon dioxide gas treatment time was about 5 minutes. This crushing strength of 10019/d corresponds to the crushing strength of the above-mentioned press molded product which was not treated with carbon dioxide after curing at 40°C for 24 hours. Therefore, it can be said that the strength development of the press-molded product was promoted by the carbon dioxide treatment as described above.

実験(2) セメント:鉱石:粉コークス=5:95:5の配合物に
水を適当量添加しながら充分混練した後、400に9/
mの成型圧でプレス成型した(成型寸法: 100mX
1100mX100゜この成型物を20 m X 20
 tm程度に砕いた後、以下の条件で炭酸ガス処理した
Experiment (2) After thoroughly kneading a mixture of cement: ore: coke powder = 5:95:5 while adding an appropriate amount of water,
Press molded with a molding pressure of m (molding dimensions: 100mX
1100m x 100゜This molded product is 20m x 20
After crushing to about tm, it was treated with carbon dioxide gas under the following conditions.

〔炭酸ガス処理条件〕[Carbon dioxide treatment conditions]

炭酸ガス濃度=toos、炭酸ガス量=1t/分。 Carbon dioxide concentration = too, carbon dioxide amount = 1 t/min.

処理温度=〜20℃、炭酸ガス処炭酸ガス処理時間分5
〜30分処理量=tkf 〔炭酸ガス処理した成型物の強度測定〕炭酸ガス処理し
た成型物1 kqを2メートルの高さより鉄板上に2回
落下させ、その5胃〈割合をその成型物のシャッター強
度とした。そのシャッター強度と炭酸ガス処理時間との
関係を第2図に示す。
Treatment temperature = ~20℃, carbon dioxide treatment time 5 minutes
~ 30 minutes processing amount = tkf [Measurement of strength of molded product treated with carbon dioxide] 1 kq of molded product treated with carbon dioxide gas is dropped twice onto an iron plate from a height of 2 meters, and the proportion of the molded product is Shutter strength. The relationship between the shutter strength and the carbon dioxide treatment time is shown in FIG.

同図の結果から炭酸カス処理により成型物のシャッター
強度が大幅に向上するのが判る。従って前述したように
、成型直後の生強度が低いというロール成型法の欠点を
このような炭酸ガス処理で充分に補うことができると言
える。
From the results shown in the figure, it can be seen that the shutter strength of the molded product is significantly improved by carbonate scum treatment. Therefore, as mentioned above, it can be said that such carbon dioxide gas treatment can sufficiently compensate for the drawback of the roll forming method that the green strength immediately after forming is low.

実験(3) セメント:鉱石:粉コークス=5:95:5の配合物に
水を適当量添加しながら充分混練した後、400kf/
−の成型圧でプレス成型した(成型寸法: 100ww
X 100wX 10wm I、この成型物を〜20 
m X 20 m程度に砕いた後、以下の条件で炭酸ガ
ス処理した。
Experiment (3) After thoroughly kneading a mixture of cement: ore: coke powder = 5:95:5 while adding an appropriate amount of water, 400 kf/
Press molded at - molding pressure (molding size: 100ww
X 100wX 10wm I, this molded product ~20
After crushing into pieces of about m x 20 m, they were treated with carbon dioxide gas under the following conditions.

〔炭酸ガス処理条件〕[Carbon dioxide treatment conditions]

炭酸ガス濃度=3〜100%、炭酸ガス量=20〜30
t/分、処理温度=〜2o℃、炭酸ガス処理時間=10
分間、炭酸ガス処理酸=1吟〔炭酸ガス処理した成型物
の強度測定〕炭酸ガス処理した成型物〜l kgを2メ
ートルの高さより鉄板上に2回落下させ、その5闘ぐ割
合をその成型物のシャッター強度とした。そのシャッタ
ー強度が炭酸ガス量、炭酸ガス処理時間、炭酸カスf1
度等によりどのように変化するかを第3図(炭酸ガス濃
度=100%とし、炭酸ガス量とシャッター強度との関
係を示す)、第4図(炭酸ガス量=20t/分とし、炭
酸ガス濃度とシャッター強度との関係を示す]に示す。
Carbon dioxide concentration = 3-100%, carbon dioxide amount = 20-30
t/min, treatment temperature = ~2oC, carbon dioxide treatment time = 10
For a minute, carbonated acid treated acid = 1 gin [Measurement of strength of carbonated molded product] Carbonated molded product ~ 1 kg is dropped twice from a height of 2 meters onto a steel plate, and the 5% strength is measured. It was taken as the shutter strength of the molded product. The shutter strength is the carbon dioxide amount, carbon dioxide processing time, carbon dioxide scum f1
Figure 3 (assumes carbon dioxide concentration = 100% and shows the relationship between carbon dioxide amount and shutter strength) and Figure 4 (assumes carbon dioxide concentration = 20t/min and shows the relationship between carbon dioxide gas amount and shutter strength) ] shows the relationship between density and shutter strength.

炭酸ガス処理時間が5分間でシャッター強度90%以上
確保する為には、炭酸ガス濃度が5%以上であれば充分
であることが判る。但し炭酸ガス濃度が低くなるに伴い
、そのガス量は増加させる必要はある(ここでシャッタ
ー強度90%以上という値は実験(1)と同様炭酸ガス
処理しないプレス成型物の40℃×24時間の養生後の
シャッター強度に相当すAb以上のことからロール成型
法と炭酸ガス処理法との併用により、充分強固な成型物
の製造が可能となる。第5図にそのフロー図を示す。
It can be seen that a carbon dioxide concentration of 5% or more is sufficient to ensure a shutter strength of 90% or more with a carbon dioxide treatment time of 5 minutes. However, as the carbon dioxide concentration decreases, it is necessary to increase the amount of gas (here, the value of shutter strength of 90% or more is the same as in experiment (1), when the press molding is not treated with carbon dioxide gas at 40℃ x 24 hours. Since Ab, which corresponds to the shutter strength after curing, is greater than Ab, it is possible to manufacture a sufficiently strong molded product by using the roll molding method in combination with the carbon dioxide gas treatment method.A flow diagram thereof is shown in FIG.

■炭酸ガス処理に適した成型条件 実験(4) セメントニ鉱石二粉コークス=5:95:5の配合物に
以下の水分となるように、水を添加しながら充分混練し
た後、400ke/−の成型圧でプレス成型した(成型
寸法:20+o+ψX 20 m ) 。
■Experiment on molding conditions suitable for carbon dioxide treatment (4) After thoroughly kneading a mixture of cement, two ore and two powder coke = 5:95:5 with water added so that the moisture content is as follows, 400ke/- Press molding was carried out using molding pressure (molding dimensions: 20+o+ψX 20 m).

この成型物を以下の条件で炭酸ガス処理した。(水分:
4%、5%、6チ、7チ、8%] 〔炭酸ガス処理条件〕 炭酸ガス濃1=too%、20%、炭酸ガス量=1t/
分、処理温度=〜20tl:、炭酸ガス処理時間=10
分間 処理後の圧潰強度と炭酸ガス処理時間との関係を第6図
に示す。同図の結果から、炭酸ガス処理による強度発現
がその成型水分と非常に密接な関係にあることが判る。
This molded product was treated with carbon dioxide gas under the following conditions. (moisture:
4%, 5%, 6chi, 7chi, 8%] [Carbon dioxide treatment conditions] Carbon dioxide concentration 1 = too%, 20%, carbon dioxide amount = 1t/
min, treatment temperature = ~20 tl:, carbon dioxide treatment time = 10
FIG. 6 shows the relationship between the crushing strength after the minute treatment and the carbon dioxide gas treatment time. From the results shown in the figure, it can be seen that the strength development due to carbon dioxide gas treatment has a very close relationship with the molding moisture.

この成型物(乾燥後)の気孔率の測定結果からその成型
物の気孔の水分飽和度を計算した。それを第7図に示す
。水分飽和度が0.9超あるいFio、ts未満では強
度発現が殆ど起こっていないことが判る。これは炭酸ガ
ス濃度の大小と殆ど変化しないことも言える。
From the measurement results of the porosity of this molded product (after drying), the water saturation degree of the pores of the molded product was calculated. This is shown in Figure 7. It can be seen that almost no strength development occurs when the water saturation is more than 0.9 or less than Fio, ts. It can also be said that this value hardly changes depending on the level of carbon dioxide concentration.

■20a0・8i02等の炭酸ガス処理による強度発現 実験(5) バインダー:鉱石:粉コークス=5:95:5の配合物
を実験(1)と同様な処理をしてプレス成型した。それ
をやはり実験(1)と同様な条件で炭酸ガス処理し、そ
の圧潰強度を測定した。バインダーとしては以下のもの
を使用した。
■Strength development experiment by carbon dioxide treatment of 20a0, 8i02, etc. (5) A blend of binder: ore: coke powder = 5:95:5 was treated in the same manner as in experiment (1) and press-molded. It was also treated with carbon dioxide gas under the same conditions as in Experiment (1), and its crushing strength was measured. The following binders were used.

(イ)    β −20aO@ 5i01.   (
ロ)    γ −20aO・ 8 iol 、(ハ)
 OaO・5tos(ワラストナイト)、に)転炉スラ
グ但しこれらのバインダーはγ−20aO・8i01を
除いては、プレーン指数〜3500cd/9まで粉砕し
ている。
(a) β -20aO@5i01. (
b) γ-20aO・8 iol, (c)
OaO・5tos (wollastonite), ni) converter slag These binders, except for γ-20aO・8i01, are ground to a plain index of ~3500 cd/9.

その結果を第8図に示す。各々バインダーの強度発現が
起こっているのが判る。
The results are shown in FIG. It can be seen that the strength of each binder is developed.

■コン、ベヤ−養生以後の養生に関する検討実験(6) 実験(1)で炭酸ガス処理したプレス成型物を40℃の
恒温恒湿槽にて1日、3日、7日、10日それぞれ養生
した。尚比較の為炭酸ガス処理していないプレス成型物
の強度発現状況も同時に調べた。
■Experiment to investigate curing after curing of containers and containers (6) The press moldings treated with carbon dioxide gas in experiment (1) were cured for 1, 3, 7, and 10 days in a constant temperature and humidity chamber at 40°C. did. For comparison, the strength development status of press-formed products that were not treated with carbon dioxide gas was also investigated.

その結果を第9図に示す。炭酸ガス処理の有無と無関係
に発現強度は養生期間中のびており、本発明で提案して
いるコンベヤー養生のような処理をしても、セメントの
強度発現を妨げることはないと言える。
The results are shown in FIG. The developed strength increases during the curing period regardless of the presence or absence of carbon dioxide gas treatment, and it can be said that even if a treatment such as the conveyor curing proposed in the present invention is performed, the strength development of cement will not be hindered.

従って、ロール成型+コンベヤー養生十大気養生の併用
によりロール成型法による非焼成塊成鉱の製造が可能と
なる。
Therefore, by combining roll forming, conveyor curing, and ten-atmosphere curing, it becomes possible to produce uncalcined agglomerate ore by the roll forming method.

実験(7) 実験(1)で炭酸ガス処理したプレス成型物を70℃×
1〜5時間の蒸気養生を行なった。その結果を第10図
に示す。尚比較の為炭酸ガス処理していないプレス成型
物の強度発現状況をも同時に調べた6本発明で提案して
いるコンベヤー養生のような処理をしても、蒸気養生に
よるセメントの強度発現を妨げることはないと言える。
Experiment (7) The press molded product treated with carbon dioxide gas in Experiment (1) was heated to 70°C
Steam curing was performed for 1 to 5 hours. The results are shown in FIG. For comparison, we also investigated the strength development status of press moldings that were not treated with carbon dioxide.6Even if a treatment such as the conveyor curing proposed in the present invention is applied, the strength development of cement due to steam curing is hindered. I can say that there is no such thing.

従って、口(発明の効果) 以上説明したように、本発明によればコールドペレット
の欠点を充分に補うことができ、粗粒鉱石の多量使用に
よる低コストの非焼成塊成鉱の製造が可能となる。
Therefore, (effects of the invention) As explained above, according to the present invention, the drawbacks of cold pellets can be fully compensated for, and it is possible to manufacture non-calcined agglomerates at low cost by using a large amount of coarse-grained ore. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は炭酸ガス養生による強度発現状況を示
す図、 第5図はロール成型法と炭酸ガス処理法との併用により
非焼成塊成鉱を製造するのを説明するフロー図、 第6図、第7図は炭酸ガス処理による強度発現状況を示
す図、 第8図は炭酸ガス処理時の強度発現状況とバインダーを
示す図、 第9図は炭酸ガス処理物の強度の経時変化を示す図、 第10図は炭酸ガス処理物の蒸気養生による強度発現を
示す図である。 1・・・ホッパー、2・・・ffi料、 3・・・成型
ロール、4・・・成型物、5・・・CO鵞ガス養生部、
6・・・コンベヤ、7・・・ヤード。 代理人 弁理士  秋 沢 政 光 他2名 to 2D37 # 5060’r θ090 too
   1517  tm介藺養生FR間 フr1[8漫酸n゛ス養生による強肩旙で現1大゛月乙
養生時間 芳′Z図M酸力λ養生(Cよる強度発九鰐大゛況7ゲ>
a−が−¥N 、へセト\−裂なやだ× 幻5
Figures 1 to 4 are diagrams showing the state of strength development due to carbon dioxide curing, Figure 5 is a flow diagram illustrating the production of uncalcined agglomerate by a combination of roll forming method and carbon dioxide treatment method, Figures 6 and 7 are diagrams showing the strength development status due to carbon dioxide gas treatment. Figure 8 is a diagram showing the strength development status and binder during carbon dioxide gas treatment. Figure 9 is a diagram showing the change in strength over time of the carbon dioxide treated product. FIG. 10 is a diagram showing the strength development due to steam curing of the carbon dioxide treated material. 1... hopper, 2... ffi feed, 3... molding roll, 4... molded product, 5... CO gas curing section,
6...conveyor, 7...yard. Agent Patent attorney Masamitsu Aki Sawa and 2 others to 2D37 #5060'r θ090 too
1517 tm intervention curing FR period 1 >
a- is -¥N, Heset\\-Cracked Nayada× Illusion 5

Claims (8)

【特許請求の範囲】[Claims] (1)鉄鉱石粉末、セメント、コークス粉末、石灰石粉
末及び水等の混合物をロールにより圧縮成型した成型物
を、成型直後炭酸ガスを5Vol、%以上含有するガス
に曝し処理して成型物の表面を炭酸カルシウムで被覆し
硬化させた後、高炉装入に必要な強度まで乾燥養生する
ことを特徴とする非焼成塊成鉱の製造方法。
(1) A molded product made by compression molding a mixture of iron ore powder, cement, coke powder, limestone powder, water, etc. with a roll is treated by exposing it to a gas containing 5 vol, % or more of carbon dioxide gas immediately after molding to treat the surface of the molded product. A method for producing uncalcined agglomerated ore, which comprises coating and curing with calcium carbonate, followed by drying and curing to the strength required for charging into a blast furnace.
(2)硬化後のロール成型物をヤードにて約10日間の
養生を行う特許請求の範囲第1項記載の非焼成塊成鉱の
製造方法。
(2) The method for producing uncalcined agglomerate ore according to claim 1, wherein the hardened roll-formed product is cured in a yard for about 10 days.
(3)硬化後のロール成型物を再度充填塔等で炭酸ガス
を含んだ排ガスで炭酸ガス処理及び乾燥処理する特許請
求の範囲第1項記載の非焼成塊成鉱の製造方法。
(3) The method for producing non-calcined agglomerate ore according to claim 1, wherein the hardened roll-formed product is treated with carbon dioxide gas and dried again with exhaust gas containing carbon dioxide gas in a packed tower or the like.
(4)硬化後のロール成型物を再度充填塔等で蒸気又は
熱風を吹き込み養生し、乾燥する特許請求の範囲第1項
記載の非焼成塊成鉱の製造方法。
(4) The method for producing uncalcined agglomerate ore according to claim 1, wherein the hardened roll-formed product is cured again by blowing steam or hot air in a packed tower or the like, and then dried.
(5)鉄鉱石粉末、セメント、コークス粉末、石灰石粉
末及び水等の混合物をロールにより圧縮成型し、かつ水
分飽和度が0.15〜0.9に調整された成型物を、成
型直後炭酸ガスを5Vol.%以上含有するガスに曝し
処理して成型物の表面を炭酸カルシウムで被覆し硬化さ
せた後、高炉装入に必要な強度まで乾燥養生することを
特徴とする非焼成塊成鉱の製造方法。
(5) A mixture of iron ore powder, cement, coke powder, limestone powder, water, etc. is compression molded using rolls, and the molded product whose water saturation degree is adjusted to 0.15 to 0.9 is heated using carbon dioxide immediately after molding. 5Vol. A method for producing unfired agglomerate ore, which comprises coating the surface of the molded product with calcium carbonate and curing it by exposing it to a gas containing % or more, and then drying and curing it to the strength required for charging into a blast furnace.
(6)硬化後のロール成型物をヤードにて約10日間の
養生を行う特許請求の範囲第5項記載の非焼成塊成鉱の
製造方法。
(6) The method for producing uncalcined agglomerate ore according to claim 5, wherein the hardened roll-formed product is cured in a yard for about 10 days.
(7)硬化後のロール成型物を再度充填塔等で炭酸ガス
を含んだ排ガスで炭酸ガス処理及び乾燥処理する特許請
求の範囲第5項記載の非焼成塊成鉱の製造方法。
(7) The method for producing a non-calcined agglomerated ore according to claim 5, wherein the hardened roll-formed product is treated with carbon dioxide gas and dried again with exhaust gas containing carbon dioxide gas in a packed tower or the like.
(8)硬化後のロール成型物を再度充填塔等で蒸気又は
熱風を吹き込み養生し、乾燥する特許請求の範囲第5項
記載の非焼成塊成鉱の製造方法。
(8) The method for producing uncalcined agglomerate ore according to claim 5, wherein the hardened roll-formed product is cured again by blowing steam or hot air in a packed tower or the like, and then dried.
JP9339085A 1985-04-30 1985-04-30 Manufacture of uncalcined briquetted ore Pending JPS61253330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9339085A JPS61253330A (en) 1985-04-30 1985-04-30 Manufacture of uncalcined briquetted ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9339085A JPS61253330A (en) 1985-04-30 1985-04-30 Manufacture of uncalcined briquetted ore

Publications (1)

Publication Number Publication Date
JPS61253330A true JPS61253330A (en) 1986-11-11

Family

ID=14080981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9339085A Pending JPS61253330A (en) 1985-04-30 1985-04-30 Manufacture of uncalcined briquetted ore

Country Status (1)

Country Link
JP (1) JPS61253330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066327A (en) * 1989-06-20 1991-11-19 Nkk Corporation Method for manufacturing cold bonded pellets
WO2005028684A1 (en) * 2003-09-23 2005-03-31 Cold-Ball Metallurgy Co. Ltd. Self-reducing, cold-bonded pellets
EP1624079A1 (en) * 2004-08-02 2006-02-08 Heinz Hafner Process for winning iron from waste material containing iron oxides and briquette for carrying out this process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525610A (en) * 1975-07-03 1977-01-17 Nippon Steel Corp Process for producing unsintered briquetted ore
JPS59157229A (en) * 1983-02-28 1984-09-06 Nippon Kokan Kk <Nkk> Method and device for producing non-calcined lump ore
JPS6021339A (en) * 1983-07-12 1985-02-02 Nippon Steel Corp Lumping method of powder iron ore
JPS61163221A (en) * 1985-01-14 1986-07-23 Nippon Steel Corp Manufacture of nonsintered type briquetted ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525610A (en) * 1975-07-03 1977-01-17 Nippon Steel Corp Process for producing unsintered briquetted ore
JPS59157229A (en) * 1983-02-28 1984-09-06 Nippon Kokan Kk <Nkk> Method and device for producing non-calcined lump ore
JPS6021339A (en) * 1983-07-12 1985-02-02 Nippon Steel Corp Lumping method of powder iron ore
JPS61163221A (en) * 1985-01-14 1986-07-23 Nippon Steel Corp Manufacture of nonsintered type briquetted ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066327A (en) * 1989-06-20 1991-11-19 Nkk Corporation Method for manufacturing cold bonded pellets
WO2005028684A1 (en) * 2003-09-23 2005-03-31 Cold-Ball Metallurgy Co. Ltd. Self-reducing, cold-bonded pellets
EA009599B1 (en) * 2003-09-23 2008-02-28 Колд-Болл Метэледжи Ко. Лтд. Self-reducing, cold-bonded pellets and method for their production (embodiments)
US7896963B2 (en) 2003-09-23 2011-03-01 Hanqing Liu Self-reducing, cold-bonded pellets
EP1624079A1 (en) * 2004-08-02 2006-02-08 Heinz Hafner Process for winning iron from waste material containing iron oxides and briquette for carrying out this process

Similar Documents

Publication Publication Date Title
US4780144A (en) Method for producing a building element from a fly ash comprising material and building element formed
CA1250326A (en) Process of pretreating a pozzolanic material for increasing the pozzolanic properties of said material
CN107673738A (en) A kind of iron ore tailings haydite and preparation method
EP0003665A1 (en) A method of producing cold agglomerates for use in iron making
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JPS61253330A (en) Manufacture of uncalcined briquetted ore
JP5540832B2 (en) Method for producing agglomerated material or granulated material of granular raw material
JP6992644B2 (en) Method for producing uncalcined agglomerate for blast furnace and method for producing pozzolan-reactive iron-containing raw material
CN1101635A (en) Carbide powder coal ash block and its making method
JPS61163221A (en) Manufacture of nonsintered type briquetted ore
JPS6020453B2 (en) Method for producing unfired pellets
JPS5848642A (en) Manufacture of unfired agglomerated ore
JP7252454B2 (en) Method for producing non-fired agglomerate ore for blast furnace
JPS6033319A (en) Manufacture of unburnt briquette
JPS579841A (en) Manufacture of unfired briquetted ore for iron manufacture
JPS62177132A (en) Manufacture of unfired briquetted ore
JPH0629472B2 (en) Cold bonding method for particulate materials
JPS62246850A (en) Manufacture of solidified body from coal ash
JP2003027150A (en) Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore
JPS621825A (en) Manufacture of coldbond briquetted ore
JPS596333A (en) Treatment of caustic lime dust
JP2000203923A (en) Production of stone using slag or the like as principal starting material
JP2627854B2 (en) Method for producing unfired agglomerate
KR900004161B1 (en) Process for making pellet
JP4388262B2 (en) Method for producing artificial aggregate made from fluidized bed ash