JPS5848642A - Manufacture of unfired agglomerated ore - Google Patents

Manufacture of unfired agglomerated ore

Info

Publication number
JPS5848642A
JPS5848642A JP14610081A JP14610081A JPS5848642A JP S5848642 A JPS5848642 A JP S5848642A JP 14610081 A JP14610081 A JP 14610081A JP 14610081 A JP14610081 A JP 14610081A JP S5848642 A JPS5848642 A JP S5848642A
Authority
JP
Japan
Prior art keywords
pellets
furnace
curing
curing treatment
carbonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14610081A
Other languages
Japanese (ja)
Other versions
JPH0154415B2 (en
Inventor
Tsuneo Miyashita
恒雄 宮下
Masaharu Matsui
正治 松井
Hideyuki Yoshikoshi
吉越 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14610081A priority Critical patent/JPS5848642A/en
Publication of JPS5848642A publication Critical patent/JPS5848642A/en
Publication of JPH0154415B2 publication Critical patent/JPH0154415B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture efficiently and economically high-strength agglomerated ore in a short time without carrying out firing by pelletizing a powdered or granular iron source contg. an added hydraulic binder and by subjecting the raw pellets to hydration curing with blown satd. steam and carbonation curing. CONSTITUTION:Prescribed amounts of fine iron ore, hydraulic cement and other additive as starting materials are fed from storage bottles 1a, 1b, 1c, well mixed with a mill 2, and pelletized with a pelletizer 3 to obtain raw pellets having a prescribed grain size. The raw pellets are charged into a vertical type shaft furnace 4 for hydration curing from the top, successively dropped in the furnace, and taken out of the bottom. During this time, satd. steam is blown into the furnace 4 at the required temp. from one side wall to the other opposite side wall so that it meets at right angles to the raw pellets. The raw pellets taken out of the bottom after hydration curing are charged into a shaft furnace 5 for carbonation curing from the top, and gaseous CO2 is blown into the furnace 5 from one side wall to the other opposite side wall so that it meets at right angles to the pellets. The pellets are carbonated, and the desired agglomerated ore is obtd.

Description

【発明の詳細な説明】 この発明は、粉粒状鉄源を非焼成で塊成する非焼成塊成
鉱の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a non-calcined agglomerate by agglomerating a powdery granular iron source without calcination.

粉粒状鉄源や粉鉄鉱石を、非焼成で塊成しベレット化す
る方法として、水硬性結合剤により前記原料をベレット
化する方法が知られている。この方法によれば、無公害
、省エネルギーで粉粒状鉄源を塊成できる優れた効果が
得られるが、反面塊成に長時間の養生を必要とし、生産
能率の悪い点に問題がある。
As a method of agglomerating and pelletizing a powdered iron source or powdered iron ore without firing, a method of pelletizing the raw material using a hydraulic binder is known. This method has the excellent effect of agglomerating a powdery iron source in a pollution-free and energy-saving manner, but on the other hand, agglomeration requires a long period of curing, resulting in poor production efficiency.

例えば、特公昭51−25402号の実施例によると、
ポルトランドセメントを結合剤として使用し塊成したベ
レットは、それが使用に耐えられる強度に達するまでに
約10日間の養生期間を要し、このために広大な養生ゾ
ーンを必要としている。また、このように、自然放置に
よって強度を発U〜させる場合には、コールド被レット
の硬化過程で啄レット同士が固着する結果、解砕工程が
必要となり、生産性、作業性の面から大きな欠点となっ
ている。
For example, according to the example of Japanese Patent Publication No. 51-25402,
The pellets, which are agglomerated using Portland cement as a binder, require about 10 days of curing before they reach a strength sufficient for use, and therefore require a large curing zone. In addition, when the strength is developed by leaving the cold pellets naturally, the pellets stick to each other during the hardening process of the cold pellets, which necessitates a crushing process, which greatly reduces productivity and workability. This is a drawback.

上述した問題を解決し、水硬性結合剤を用いて塊成した
ベレットを短時間に強度発現させるために、オートクレ
ーブで高圧熱水処理を施す方法が、例えば特公昭47−
29688号にょシ提案されている。しかし、この方法
によるときは、製造工程がパッチ式にガらざるを得ない
ため、作業性が悪くコスト高となる上、高圧装置を必要
とすることから、その設備に多額の費用を要し、また高
圧に対する特別の注意が必要となる等の問題がある。
In order to solve the above-mentioned problems and develop strength in a short time from pellets agglomerated using a hydraulic binder, a method of applying high-pressure hot water treatment in an autoclave has been proposed, for example, in Japanese Patent Publication No. 47-
No. 29688 has been proposed. However, when using this method, the manufacturing process has to be done in a patch manner, resulting in poor workability and high costs.In addition, it requires high-pressure equipment, which requires a large amount of equipment. In addition, there are problems such as the need for special precautions against high pressure.

この発明は、上述のような観点から、短時間で高能率か
つ経済的に、高強度の4レツトの如き塊成鉱を非焼成で
製造する非焼成塊成鉱の製造法に12、・するもので、
所定割合の水硬性結合剤が添加された粉粒状鉄源を造粒
して得られた生ベレットに対し、養生処理を施して塊成
鉱とする非焼成塊成鉱の製造法において、前記生ベレッ
トに対し、飽和水蒸気の吹込みによる水利養生処理と、
炭酸ガス含有ガスの吹込みによる炭酸化養生処理とを施
すことにより、短時間で高強度の塊成鉱となすことに特
徴を有するものである。
From the above-mentioned viewpoints, the present invention provides a method for producing non-calcined agglomerate ore, which produces high-strength agglomerate such as 4rets in a short time, efficiently, and economically without calcination. Something,
In a method for producing uncalcined agglomerate ore, in which a raw pellet obtained by granulating a powdery iron source to which a predetermined proportion of a hydraulic binder has been added is subjected to curing treatment to produce agglomerate ore, the raw pellet is Water curing treatment by blowing saturated steam into the pellets,
It is characterized in that it can be made into a high-strength agglomerate in a short period of time by performing carbonation curing treatment by blowing carbon dioxide-containing gas into it.

次に、この発明を実施例により図面と共に説明する。Next, the present invention will be explained with reference to examples and drawings.

実施例1 サマルコ粉鉱に水硬性結合剤としてポルトランドセメ/
ト10重量%を配合した上、これに水分を外枠で7重量
%添加した原料を1mφのディスク型被しタイザーで造
粒し、10〜14■φの生ペレットを調製した。
Example 1 Portland cement/as a hydraulic binder for Samalco powder ore.
The raw material was prepared by blending 10% by weight of water and adding 7% by weight of water in the outer frame, and granulating the raw material using a 1 mφ disc-type cover sizer to prepare raw pellets with a diameter of 10 to 14 mm.

前記生ベレットを、65℃の飽和水蒸気で5時間水和養
生した後、湿潤状態の90℃のCO2含有ガス中で4時
間保持し、次いで200°CのCO2含有ガス中で1.
5時間保持し、製品ベレットとした。
The green pellets were hydrated and cured in saturated steam at 65°C for 5 hours, kept in a humidified CO2-containing gas at 90°C for 4 hours, and then hydrated in a CO2-containing gas at 200°C for 1.
It was held for 5 hours to form a product pellet.

第1図には、その圧潰強度が示されている。第1図にお
いて○印は、上述した本発明方法により製造した製品啄
レットの圧潰強度である。また第1図の1印およびΔ印
は比較例で、比較例1の1印は前記生にレットを、65
℃の飽和水蒸気で9時間水和養生した佳、200℃で1
.5時間乾燥し製品被レットとしたものの圧潰強度、ま
た比較例2の△印は前記化4レットを大気中で10日間
放置し養生したものの圧潰強度である。図面から、水利
反応後に炭酸化反応を施した本発明方法による製品被レ
ットは、短時間の処理によシ、優れた圧潰強度の得られ
ることがわかる。
FIG. 1 shows its crushing strength. In FIG. 1, the circle mark indicates the crushing strength of the product takulet manufactured by the method of the present invention described above. In addition, the marks 1 and Δ in FIG.
After hydration and curing for 9 hours in saturated steam at 200°C,
.. The crushing strength of the product pellets dried for 5 hours, and the symbol △ in Comparative Example 2 is the crushing strength of the 4 pellets obtained by leaving them in the atmosphere for 10 days and curing them. From the drawings, it can be seen that the product pellets produced by the method of the present invention, which are subjected to the carbonation reaction after the water utilization reaction, can be treated for a short time and have excellent crushing strength.

実施例2 実施例1と同じ化4レットに対し、水利養生処理と炭酸
化養生処理とを同時に施した例で、前記生硬レットを、
水蒸気の混合された湿潤状態の65℃のCO2含有ガス
中で5時間保持し、ついで同じく湿潤状態の90°Cの
CO2含有ガス中で4時間保持した後、乾燥CO2雰囲
気中で1.5時間保持して製品ベレットとした。
Example 2 This is an example in which water curing treatment and carbonation curing treatment were simultaneously applied to the same 4 let as in Example 1.
After holding for 5 hours in a humid CO2-containing gas mixed with water vapor at 65°C, and then for 4 hours in a humid CO2-containing gas at 90°C, for 1.5 hours in a dry CO2 atmosphere. It was held and made into a product pellet.

gl”−2図には、その圧潰強度(○印)が前記実施例
1で述べた比較例の圧潰強度(△印および1印)と共に
示されている。図面から、水利養生処理と炭酸化養生処
理との同時処理を施した製品啄レットは、実施例1の水
和養生処理ゼ5、炭酸化養生処理を施したベレットに比
べ、その圧潰強度はやや劣るが、炭酸化養生処理を施さ
ない比較例に比べると、優れた圧潰強度を有しているこ
とがわかる。
gl"-2, its crushing strength (○ mark) is shown together with the crushing strength (△ mark and 1 mark) of the comparative example described in Example 1. From the drawing, it can be seen that the water conservation treatment and carbonation The product pellets that were treated simultaneously with the curing treatment had a slightly inferior crushing strength compared to the pellets that were subjected to the hydration curing treatment Ze5 of Example 1 and the carbonation curing treatment, but It can be seen that it has excellent crushing strength compared to the comparative example without.

実施例3 実施例1と同じ生ペレットを、65℃の飽和水蒸気で5
時間水利養生した後、湿潤状態の90℃のC02含有ガ
ス中で4時間保持し、次いで200℃のCO2含有ガス
中で1.5時間保持して製品ベレットとした。この炭酸
化養生処理時におけるC02ガスの濃度を変え、製品の
圧潰強度との関係を調べた。
Example 3 The same raw pellets as in Example 1 were heated with saturated steam at 65°C for 5 minutes.
After curing under water for an hour, the pellets were held in a humid CO2-containing gas at 90°C for 4 hours, and then held in a CO2-containing gas at 200°C for 1.5 hours to form a product pellet. The concentration of CO2 gas during this carbonation curing treatment was varied and the relationship with the crushing strength of the product was investigated.

第3図には、その圧潰強度が、65℃の飽和水蒸気で9
時間水和した後、200℃で1.5時間乾燥した比較例
(1印)と共に示されている。図面から明らかなように
、CO2ガスの濃度を20%にすると、圧潰強度は20
0晒となシ、以降その濃度を高めても、圧潰強度は殆ん
ど変らない。また、CO2ガスの濃度が3チでも、圧潰
強度は炭酸化養生処理を施さない比較例より高く、その
有効であることがわかる。
Figure 3 shows that the crushing strength is 9 in saturated steam at 65°C.
Shown together with a comparative example (marked 1) which was hydrated for an hour and then dried at 200° C. for 1.5 hours. As is clear from the drawing, when the concentration of CO2 gas is 20%, the crushing strength is 20%.
Even if the concentration is increased from 0 to 0, the crushing strength remains almost unchanged. In addition, even when the concentration of CO2 gas was 3%, the crushing strength was higher than that of the comparative example in which carbonation curing treatment was not performed, indicating its effectiveness.

実施例4 実施例1と同じ生硬レットを、実施例3と同じ条件で水
和後、CO2温度が12.5%の燃焼排ガスを使用して
炭酸化養生処理を施し、製品4レツトとした。第3図中
のx印はその圧潰強度で、187Kz/pを示し、実施
例3とほぼ同一の効果が得られ、炭酸ガス源として、C
O2を含有する工場の燃焼排ガスを利用し得ることがわ
かった。
Example 4 The same raw pellets as in Example 1 were hydrated under the same conditions as in Example 3, and then subjected to carbonation curing treatment using combustion exhaust gas with a CO2 temperature of 12.5% to obtain 4 pellets of product. The x mark in FIG. 3 indicates its crushing strength, which is 187 Kz/p. Almost the same effect as in Example 3 was obtained, and C was used as a carbon dioxide gas source.
It has been found that it is possible to utilize factory flue gas containing O2.

実施例5 実施例1と同じ生ペレットを、実施例3と同じ条件で水
利後、炭酸化養生処理(但しC02濃度100重量係の
ガスを使用)を施し、この炭酸化養生処理時におけるC
O2ガスの流速を変え、製品の圧潰強度との関係を調べ
た。
Example 5 The same raw pellets as in Example 1 were watered under the same conditions as in Example 3, and then subjected to carbonation curing treatment (however, using gas with a CO2 concentration of 100% by weight), and the C during this carbonation and curing treatment was
The flow rate of O2 gas was changed and the relationship with the crushing strength of the product was investigated.

第4図には、その圧潰強度が示されておシ、CO2ガス
の流速を高めるほど、製品ベレットの圧潰強度は向上し
、前記ガス流速は1 cm / see以上が好ましい
ことがわかった。このことから、炭酸化養生処理に当っ
ては、原料がCO2ガスと効率的に接触する方法で行な
うことが必要とされる。
FIG. 4 shows the crushing strength. It was found that the higher the CO2 gas flow rate, the better the crushing strength of the product pellet, and that the gas flow rate is preferably 1 cm/see or higher. For this reason, the carbonation curing treatment must be carried out in a manner that allows the raw material to come into efficient contact with CO2 gas.

第5図には、この発明方法を実施するに当っての工程の
一例が示されている。原料である粉鉄鉱石、水硬性結合
剤のセメント類、その他の添加物は、貯蔵ビンla、l
b、lcから所定量が切出され、ミル2で十分に混合さ
れた後、イレタイザ−3で造粒して所定粒度の生ペレッ
トにする。
FIG. 5 shows an example of steps for carrying out the method of this invention. Raw iron ore powder, hydraulic binder cement, and other additives are stored in storage bins la and l.
A predetermined amount is cut out from b and lc, thoroughly mixed in a mill 2, and then granulated in an eletizer 3 to form raw pellets of a predetermined particle size.

4は竪型の水利養生シャフト炉で、生ペレットは前記シ
ャフト炉4内に、その炉頂から装入され遂次炉内を下降
して、その底部から排出される。
Reference numeral 4 denotes a vertical water curing shaft furnace, in which green pellets are charged into the shaft furnace 4 from the top of the furnace, successively descend through the furnace, and are discharged from the bottom.

シャフト炉4内には、その一方の側壁から対向する他方
の側壁へ向けて、矢印の如く前記生ベレットと直交して
所定温度の飽和水蒸気が吹込まれ、この飽和水蒸気によ
シ炉内を下降する生4レットは水利養生が行なわれる。
Saturated steam at a predetermined temperature is blown into the shaft furnace 4 from one side wall to the opposite side wall, perpendicular to the green pellets as shown by the arrow, and this saturated steam descends inside the furnace. The 4 raw fish that will be harvested will be water-cured.

かくして、水利養生の完了したベレットは、前記シャフ
ト炉の底部から排出され、炭酸化養生シャフト炉5に、
その頂部から装入される。炭酸化養生シャフト炉5は、
水和養生シャフト炉と同じ竪型炉で、その一方の側壁か
ら対向する他方の側壁へ向けて、矢印の如く炉内のベレ
ットと直交してCO2含有ガスが吹込まれ、このCO2
含有ガスにより、炉内を下降するぜレットは炭酸化養生
処理が施される。
Thus, the pellets that have undergone water curing are discharged from the bottom of the shaft furnace and transferred to the carbonation curing shaft furnace 5.
It is loaded from the top. The carbonation curing shaft furnace 5 is
It is a vertical furnace similar to the hydration curing shaft furnace, and CO2-containing gas is blown from one side wall to the opposite side wall, perpendicular to the pellets in the furnace as shown by the arrow, and this CO2
Due to the contained gas, the pellets descending in the furnace are subjected to carbonation and curing treatment.

かくして、炭酸化養生処理の完了した4レツトは、シャ
フト炉5の底部から排出されて製品ベレットとなシ、ス
トックヤード6に運ばれる。
The four pellets that have undergone the carbonation and curing treatment are thus discharged from the bottom of the shaft furnace 5 and transported to the stockyard 6 as product pellets.

第6図は、前記水利養生シャフト炉と炭酸化処理シャフ
ト炉とを1つのシャフト炉7で行なう例で、シャフト炉
の上半部7Aは水和養生部、そして下半部7Bは炭酸化
養生部としである。
FIG. 6 shows an example in which the water-curing shaft furnace and the carbonation treatment shaft furnace are performed in one shaft furnace 7, where the upper half 7A of the shaft furnace is the hydration curing section, and the lower half 7B is the carbonation treatment shaft furnace. It is a department.

なお・、シャフト炉内に吹込まれる飽和水蒸気および炭
酸ガス含有ガスの吹込み方向は、図示の如く炉内の4レ
ツトの移動方向と直交する方向に限らず、例えば炉頂部
から炉底部に向けて啄レッドの移動方向と同一方向に平
行して吹込むようにしてもよい。
Note that the direction in which the saturated steam and carbon dioxide-containing gas are blown into the shaft furnace is not limited to the direction perpendicular to the direction of movement of the four let in the furnace as shown in the figure, but may also be directed, for example, from the top of the furnace to the bottom of the furnace. Alternatively, the air may be blown in the same direction and parallel to the moving direction of the red.

第7図は、この発明方法を実施するに当っての工程の他
の例で、無端移動するグレート8の上部に、グレート8
に向けて飽和水蒸気を吹込む水蒸気吹込炉9と、CO2
含有ガスを吹込むco2含有ガス吹込炉10とが設けら
れ、前記グレート8上に供給された生ベレットは、グレ
ート8によって移動する間に、その上方に設けられた水
蒸気吹込炉9から吹込まれ、グレート8の下部から吸引
される飽和水蒸気によって水利養生が行なわれ、ついで
、CO□含有ガス吹込炉10から吹込まれ、同じくグレ
ート8の下部から吸引されるCO2含有ガスによって炭
酸化養生が行なわれる。かくして炭酸化養生処理の完了
したベレットハ、グレート8の端部から排出されて製品
ベレットとなシ、ストックヤード6に運ばれる。
FIG. 7 shows another example of the process for carrying out the method of this invention, in which a grating 8 is placed on the upper part of the grating 8 that moves endlessly.
A steam blowing furnace 9 that blows saturated steam into CO2
A CO2-containing gas blowing furnace 10 for blowing a CO2-containing gas is provided, and while the green pellets supplied onto the grate 8 are moved by the grate 8, they are blown from a steam blowing furnace 9 provided above, Irrigation curing is performed by saturated steam sucked from the lower part of the grate 8, and then carbonation curing is performed by the CO2-containing gas blown from the CO□-containing gas blowing furnace 10 and also sucked from the lower part of the grate 8. The pellets that have undergone carbonation and curing treatment are discharged from the end of the grate 8 and transported to the stockyard 6 as product pellets.

上述した例は、生4レットに対し、水利養生処理を施し
た後、炭酸化養生処理を施す工程からなっているが、1
つの炉で飽和水蒸気とCO□ガスとの混合ガスを吹込み
、水利養生処理と炭酸化養生処理とを同時に行なうこと
も可能でるる。
The example described above consists of the steps of applying water curing treatment to 4 raw lets and then carbonation curing treatment, but 1
It is also possible to simultaneously perform water curing treatment and carbonation curing treatment by blowing a mixed gas of saturated steam and CO□ gas into one furnace.

この発明方法において、粉粒状鉄源に添加されるセメン
トの如き水硬性結合剤の割合は、粉粒状鉄源に対し3〜
15重量%が適量で、この水硬性結合剤に更に消石灰、
生石灰、転炉滓等を加えてもよい。また、水利養生処理
の際の温度は30〜Ion℃、炭酸化養生処理の際の温
度は60〜250°C1水利養生と炭酸化養生との同時
処理の際の温度は30〜250℃、および乾燥CO2ガ
スによる保持温度は100〜250℃が適当である。
In the method of this invention, the ratio of the hydraulic binder such as cement added to the powdery granular iron source is 3 to 3.
A suitable amount of 15% by weight is added to this hydraulic binder, as well as slaked lime,
Quicklime, converter slag, etc. may be added. In addition, the temperature during water curing treatment is 30-Ion℃, the temperature during carbonation curing treatment is 60-250°C1, the temperature during simultaneous treatment of water curing and carbonation curing is 30-250℃, and A suitable holding temperature using dry CO2 gas is 100 to 250°C.

なお、炭酸化養生処理の際のCO2ガスの濃度は、第3
図に示す如く3重量%以上とし、その流速は、第4図に
示す如く空塔流速で1 cm / see以上とするこ
とが、製品の圧潰強度を高める上において必要である。
In addition, the concentration of CO2 gas during carbonation curing treatment is
In order to increase the crushing strength of the product, it is necessary to set the content to 3% by weight or more as shown in the figure, and to set the flow rate to 1 cm/see or more in terms of superficial flow rate as shown in Figure 4.

以上述べたように、この発明方法によれば、短時間で高
能率かつ経済的に、高強度の塊成鉱を非焼成で連続的に
製造でき、広大な養生ゾーンや高圧装置の如き特別な設
備を必要としない等、工業上優れた効果がもたらされる
As described above, according to the method of this invention, high-strength agglomerated ore can be produced continuously in a short time, efficiently and economically without firing, and can be used in special environments such as vast curing zones and high-pressure equipment. Excellent industrial effects such as no equipment required are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法により水利養生処理を施を比較例
と共に示す図、第2図は水和養生処理と炭酸化養生処理
とを同時に施した製品の圧潰強度を比較例と共に示す図
、第3図は炭酸化養生処理の際のCO2濃度と製品の圧
潰強度との関係を示す図、第4図はCO2ガスの流速と
製品の圧潰強度との関係を示す図、第5図乃至第7図は
この発明方法の実施工程の一例を示す工程図である。図
面において、 1B、lb、lc・・・原料貯蔵ビン、2・・・ミル、
3・・・被しタイデー、4・・・水利養生シャフト炉、
5・・・炭酸化養生シャフト炉、6・・・ストックヤー
ド、7・・・シャフト炉、8・・・グレート、9・・・
水蒸気吹込炉、10・・・CO□含有含有ガス吹込用願
人 日本鋼管株式会社 代理人 堤   敬太部(外1名) 1)籾 叛 痩 t di更藷餌1 ′= U声距V ン
Fig. 1 is a diagram showing the results of water curing treatment according to the method of the present invention, together with comparative examples; Fig. 2 is a diagram showing the crushing strength of products subjected to hydration curing treatment and carbonation curing treatment at the same time, together with comparative examples; Figure 3 is a diagram showing the relationship between the CO2 concentration and the crushing strength of the product during carbonation curing treatment, Figure 4 is a diagram showing the relationship between the flow rate of CO2 gas and the crushing strength of the product, and Figures 5 to 7 The figure is a process chart showing an example of the implementation steps of the method of this invention. In the drawings, 1B, lb, lc...raw material storage bin, 2...mil,
3... Covering tie day, 4... Water curing shaft furnace,
5...Carbonation curing shaft furnace, 6...Stockyard, 7...Shaft furnace, 8...Grate, 9...
Steam blowing furnace, 10... CO□-containing containing gas blowing Applicant: Nihon Koukan Co., Ltd. agent Keitabe Tsutsumi (1 other person) 1) Paddy tai t di Saran bait 1 ′ = U voice distance V n

Claims (3)

【特許請求の範囲】[Claims] (1)所定割合の水硬性結合剤が添加された粉粒状鉄源
を造粒して得られた生にレットに対し、養生処理を施し
て塊成鉱とする非焼成塊成鉱の製造法において、 前記生ベレットに対し、飽和水蒸気の吹込みによる水利
養生処理と、炭酸ガス含有ガスの吹込みによる炭酸化養
生処理とを施すことにより、短時間で高強度の塊成鉱と
なすことを特徴とする非焼成塊成鉱の製造法。
(1) A method for producing uncalcined agglomerate ore, in which raw pellets obtained by granulating a powdery iron source to which a predetermined proportion of hydraulic binder has been added are subjected to curing treatment to produce agglomerate ore. In this method, the raw pellets are subjected to water curing treatment by injecting saturated steam and carbonation curing treatment by injecting carbon dioxide-containing gas to form high-strength agglomerate ore in a short time. Characteristic method for producing unfired agglomerate ore.
(2)  前記主波レットに対し、前記水利養生処理を
施した後、前記炭酸化養生処理を施すことを特徴とする
特許請求の範囲第(1)項に記載の非焼成塊成鉱の製造
法。
(2) The production of non-calcined agglomerate ore according to claim (1), wherein the main wavelet is subjected to the carbonation curing treatment after being subjected to the water curing treatment. Law.
(3)  前記化にレットに対し、前記水利養生処理と
、前記炭酸化養生処理とを同時に施すことを特徴とする
特許請求の範囲第(1)項に記載の非焼成塊成鉱の製造
法。
(3) A method for producing non-calcined agglomerated ore according to claim (1), characterized in that the water curing treatment and the carbonation curing treatment are simultaneously applied to the chemical ret. .
JP14610081A 1981-09-18 1981-09-18 Manufacture of unfired agglomerated ore Granted JPS5848642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14610081A JPS5848642A (en) 1981-09-18 1981-09-18 Manufacture of unfired agglomerated ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14610081A JPS5848642A (en) 1981-09-18 1981-09-18 Manufacture of unfired agglomerated ore

Publications (2)

Publication Number Publication Date
JPS5848642A true JPS5848642A (en) 1983-03-22
JPH0154415B2 JPH0154415B2 (en) 1989-11-17

Family

ID=15400138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14610081A Granted JPS5848642A (en) 1981-09-18 1981-09-18 Manufacture of unfired agglomerated ore

Country Status (1)

Country Link
JP (1) JPS5848642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066327A (en) * 1989-06-20 1991-11-19 Nkk Corporation Method for manufacturing cold bonded pellets
JP2009074107A (en) * 2007-09-18 2009-04-09 Nippon Steel Corp Method for pretreating high crystal water iron ore
JP2022501497A (en) * 2018-09-26 2022-01-06 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj A method for utilizing side currents containing metal oxides in the ferrochrome smelting process.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066327A (en) * 1989-06-20 1991-11-19 Nkk Corporation Method for manufacturing cold bonded pellets
JP2009074107A (en) * 2007-09-18 2009-04-09 Nippon Steel Corp Method for pretreating high crystal water iron ore
JP2022501497A (en) * 2018-09-26 2022-01-06 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj A method for utilizing side currents containing metal oxides in the ferrochrome smelting process.

Also Published As

Publication number Publication date
JPH0154415B2 (en) 1989-11-17

Similar Documents

Publication Publication Date Title
US4770831A (en) Process for manufacturing a lightweight aggregate
US4772330A (en) Process for producing low water-absorption artificial lightweight aggregate
US2925336A (en) Process for the production of hard burned agglomerates
EP0003665A1 (en) A method of producing cold agglomerates for use in iron making
JPS5848642A (en) Manufacture of unfired agglomerated ore
JPS58133335A (en) Method and apparatus for preparing non-sintered finished briquette
US3323901A (en) Process of pelletizing ores
CN1042175A (en) Briquetting process
KR930001949B1 (en) Method for manufacturing cold bonded pellets
US5364572A (en) Process for making high-strength synthetic aggregates
US4404032A (en) Process for producing cement clinker
CN1101635A (en) Carbide powder coal ash block and its making method
US4226819A (en) Method of producing Keramzit
JPS63149331A (en) Production of burnt agglomerated ore
JP3005770B2 (en) Method of manufacturing flux for refining molten metal
JPS5853054B2 (en) Method for manufacturing non-fired agglomerate for iron manufacturing
RU2782595C1 (en) Method for producing pellets from ore materials
JPS61253330A (en) Manufacture of uncalcined briquetted ore
JPH0629472B2 (en) Cold bonding method for particulate materials
JPS6033319A (en) Manufacture of unburnt briquette
JPS6236050A (en) Manufacture of anhydrous or low water content burnt lime
JPS6144137A (en) Ferruginous conglomerated grain by product generated from direct reduction iron making mill
JPS62177132A (en) Manufacture of unfired briquetted ore
US3497581A (en) Method of bonding sintered dolomite grains utilizing co2 gas
JPH0236540B2 (en)