JP2022501497A - A method for utilizing side currents containing metal oxides in the ferrochrome smelting process. - Google Patents

A method for utilizing side currents containing metal oxides in the ferrochrome smelting process. Download PDF

Info

Publication number
JP2022501497A
JP2022501497A JP2021514333A JP2021514333A JP2022501497A JP 2022501497 A JP2022501497 A JP 2022501497A JP 2021514333 A JP2021514333 A JP 2021514333A JP 2021514333 A JP2021514333 A JP 2021514333A JP 2022501497 A JP2022501497 A JP 2022501497A
Authority
JP
Japan
Prior art keywords
briquette
ferrochrome
furnace
metal
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021514333A
Other languages
Japanese (ja)
Other versions
JP7322141B2 (en
Inventor
ヴァロ、キモ
リンジャ、ペテリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of JP2022501497A publication Critical patent/JP2022501497A/en
Application granted granted Critical
Publication of JP7322141B2 publication Critical patent/JP7322141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces
    • C21B13/125By using plasma
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

本発明は、金属酸化物ダスト及び微細な材料をセメント系結合剤でブリケット化することを対象とする。この後、既に既存の入口システムを通じて、フェロクロム製造用のアーク炉にブリケットを供給することができる。【選択図】図1The present invention is intended to briquette metal oxide dust and fine materials with a cement-based binder. After this, briquettes can be supplied to the arc furnace for ferrochrome production through the already existing inlet system. [Selection diagram] Fig. 1

Description

本発明は、フェロクロム製造用のサブマージアーク炉にセメント系ブリケットを使用することによって、金属酸化物をリサイクルして金属を回収することに関する。本方法では、フェロクロム及びファインスチール製造からの側流は、セメントとともにブリケットへと形成され、このブリケットは、標準的な入口システムを通じて、かつ予熱炉を通じて、サブマージアーク炉に供給され得る。サブマージアーク炉では、金属酸化物は、主に炭素で金属に還元され、金属は、フェロクロム製品中で回収される。 The present invention relates to the recycling of metal oxides to recover metals by using cement-based briquettes in a submerged arc furnace for ferrochrome production. In this method, side currents from ferrochrome and fine steel production are formed into briquettes with cement, which briquettes can be fed to the submerged arc furnace through a standard inlet system and through a preheating furnace. In submerged arc furnaces, metal oxides are reduced to metals, primarily carbon, and the metals are recovered in ferrochrome products.

フェロクロム炉では、小さい粒径を有する材料は、反応領域に到達しないが、電荷層上に存在するガス流により停止されるので、使用することができない。フェロクロム及びステンレス鋼の製造において作り出される金属酸化物ダストは、典型的には非常に微細であり、サブマージアーク炉などに供給することができない。加えて、微細な金属酸化物は、炉内部の電荷層の導電率を増加させ、製造能力を低減する。これらの上述の理由から、全ての微細な材料は、フェロクロム製造用のサブマージアーク炉に供給する前に、凝集されなければならない。 In a ferrochrome furnace, materials with a small particle size cannot be used because they do not reach the reaction region but are stopped by the gas flow present on the charge layer. The metal oxide dust produced in the production of ferrochrome and stainless steel is typically very fine and cannot be supplied to a submerged arc furnace or the like. In addition, the fine metal oxides increase the conductivity of the charge layer inside the furnace and reduce the production capacity. For these reasons mentioned above, all fine materials must be agglomerated before being supplied to the submerge arc furnace for ferrochrome production.

ブリケットへと形成される材料(複数可)は、典型的に、セメント及び水とともに、コンクリートミキサ内で混合される。混合物を使用して、ブリッケットマシンで所望のサイズのブリケットを形成し、所望の期間乾燥させて、必要な強度に到達させる。本明細書の製造方法は、セメント系石板を製造するために使用されるものと同じである。 The material (s) formed into the briquette are typically mixed with cement and water in a concrete mixer. The mixture is used to form a briquette of the desired size on a briquette machine and dried for the desired period to reach the required strength. The manufacturing method described herein is the same as that used for manufacturing cement-based stone plates.

選択された条件下で、サブマージアーク炉で還元することができる、フェロクロム製造からの金属酸化物を使用して、ブリケットを形成することができる。ファインスチール製造では、好適な破片は、例えば、フィルタプラントからのダスト、鋳造及び圧延機からのフレーク、水処理からのスラリー、冷間ローラからのショットブラストダスト、並びにアニーリング−酸洗プロセスでの酸処理によって形成される金属沈殿物である。フェロクロム製造では、好適な破片は、例えば、ペレット化及び炉供給中に形成される微細な材料である。金属収率を改善するために、炭素などの好適な還元材料をブリケットに添加して反応速度を加速させることができる。 Under selected conditions, metal oxides from ferrochrome production that can be reduced in a submerged arc furnace can be used to form briquettes. In fine steel production, suitable debris are, for example, dust from filter plants, flakes from casting and rolling mills, slurry from water treatment, shot blast dust from cold rollers, and acids in annealing-pickling processes. It is a metal precipitate formed by the treatment. In ferrochrome production, a suitable debris is, for example, a fine material formed during pelletization and furnace feeding. In order to improve the metal yield, a suitable reducing material such as carbon can be added to the briquette to accelerate the reaction rate.

フェロクロム製造における本発明の潜在性は、クロム収率の改善、廃棄物の低減、原料のより良好な使用、及び埋立費用の回避である。ブリケットの組成を改変することにより、フェロクロムの組成を顧客が望むように改変することができる。ファインスチール製造では、側流の現在のリサイクルを改善し、安価にリサイクルすることが有利であろう。 The potential of the present invention in ferrochrome production is to improve chromium yields, reduce waste, better use of raw materials, and avoid landfill costs. By modifying the composition of the briquette, the composition of ferrochrome can be modified as desired by the customer. In fine steel production, it would be advantageous to improve the current recycling of sidestreams and recycle cheaply.

リサイクル側流に関係する問題に対する以前の解決策は、有機結合剤を用いてブリケットを形成する別個のダスト製錬機、及び直接還元プロセスに基づくものであった。ダスト製錬機及び直接還元プロセスは、巨額の投資が必要であること、及び高ランニングコストの可能性に起因して困難である。糖蜜などの有機結合剤を使用すると、フェロクロム製造用のサブマージアーク炉の反応領域に到達する前に、ブリケットの崩壊が生じ得る。ファインスチール製造では、アーク炉にこれらのブリケットを使用するとエネルギー効率が低減され、したがって収率が低減される。 Previous solutions to problems related to recycling sidestream were based on a separate dust smelter to form briquettes with organic binders, and a direct reduction process. Dust smelters and direct reduction processes are difficult due to the large investment required and the potential for high running costs. The use of organic binders such as molasses can result in briquette disintegration before reaching the reaction region of a submerged arc furnace for ferrochrome production. In fine steel production, the use of these briquettes in an arc furnace reduces energy efficiency and thus yields.

米国特許第8409320(B2)号は、酸化物を含有する鋼製造側流を糖蜜でブリケット化し、これらを製錬プラントのアーク炉に供給し、ここで、金属が還元され、スラグが沸騰されることを開示している。この特許は、セメントを用いて酸化物材料をブリケット化し、ブリケットをフェロクロム製造用のサブマージアーク炉に、又は鋼製造用のアーク炉に供給することを扱っていない。 U.S. Pat. No. 8,409,320 (B2) briquette oxide-containing steelmaking sidestreams with syrup and supply them to the arc furnace of a smelting plant, where the metal is reduced and the slag is boiled. It discloses that. This patent does not cover using cement to briquette the oxide material and supply the briquette to a submerged arc furnace for ferrochrome production or to an arc furnace for steel production.

米国特許出願公開第2014/0352496号及び同第2013/192422号は、セメント及び糖蜜系のブリケットの調製、及びファインスチール製造用のアーク炉での使用を開示している。この特許は、アーク炉において、ブリケットとともにスラグを沸騰させることに集中している。この特許は、フェロクロム製造で使用されるサブマージアーク炉でのブリケットの使用を扱っていない。 US Patent Application Publication Nos. 2014/0352496 and 2013/192422 disclose the preparation of cement and molasses-based briquettes and their use in arc furnaces for the production of fine steel. This patent focuses on boiling slag with briquettes in an arc furnace. This patent does not cover the use of briquettes in submerged arc furnaces used in ferrochrome production.

フェロクロム製造で使用されるサブマージアーク炉を使用する従来技術を提示する公開物はない。サブマージアーク炉は、スラグが沸騰する条件を作り出すことはできず、還元ゾーンでの反応及び乱流ガスにより、沸騰スラグから材料を還元するのに好適ではない。 There is no publication presenting prior art using submerged arc furnaces used in ferrochrome production. Submerged arc furnaces cannot create conditions for boiling slag and are not suitable for reducing material from boiling slag by reaction in the reduction zone and turbulent gas.

本発明による解決策は、任意の他の技術では使用が困難であろうフェロクロム及びファインスチールの製造の側流からの材料を、フェロクロム炉に供給することに基づく。加えて、金属工業及び採掘工業からの、炭素を用いて還元することができる金属酸化物を含有する他の側流を、フェロクロムアーク炉に供給することが可能であり、かつ合理的である。 The solution according to the invention is based on supplying the ferrochrome furnace with material from the sidestream of ferrochrome and fine steel production, which would be difficult to use with any other technique. In addition, it is possible and rational to supply other sidestreams containing metal oxides that can be reduced with carbon from the metal and mining industries to the ferrochrome arc furnace.

供給材料の主要較正成分の化学組成を、表1に提示する。 The chemical composition of the main calibration components of the feed material is presented in Table 1.

Figure 2022501497
Figure 2022501497

表1による材料を使用して、混合物をセメント及び水で形成する。補強材としてのセメントに加えて、例えば、高炉スラグを所望に応じて使用してもよい。例えば、6つの角を有する60×60×60mmサイズのブリケットとして、混合物を鋳造する。典型的には、完成したブリケットは、2〜30%のセメントを含有し、その一部(10〜70%)は、例えば、高炉スラグに置き換えてもよい。ブリケットのサイズは、使用されるサブマージアーク炉の供給若しくは入口システムに依存するか、又はそれに影響される。ブリケットは、炉に供給する前に最終的な強度に到達するように、屋外条件下で約4週間乾燥させる。促進剤を使用し、加熱して硬度を調節することも可能である。所望される場合、0〜25%の還元剤(コークス、フェロシリコン、アルミニウム、炭化ケイ素)をブリケットに添加してもよく、還元剤自体が金属酸化物に物理的に近いので、それにより還元がより良好になる。 Using the materials according to Table 1, the mixture is formed with cement and water. In addition to cement as a reinforcing material, for example, blast furnace slag may be used as desired. For example, the mixture is cast as a 60 x 60 x 60 mm size briquette with 6 corners. Typically, the finished briquette contains 2-30% cement, some of which (10-70%) may be replaced, for example, with blast furnace slag. The size of the briquette depends on or is influenced by the supply or inlet system of the submerged arc furnace used. Briquettes are dried under outdoor conditions for about 4 weeks to reach their final strength before being fed to the furnace. It is also possible to use an accelerator and heat to adjust the hardness. If desired, a 0-25% reducing agent (coke, ferrosilicon, aluminum, silicon carbide) may be added to the briquette, thereby reducing the reducing agent itself as it is physically close to the metal oxide. It will be better.

好ましくは、CO雰囲気下でブリケットを乾燥させ、かつおよそ500℃に加熱する予熱炉を介して、ブリケットはサブマージアーク炉に供給される。これにより、ケイ酸塩結合が破壊され、炭酸塩結合に置き換えられるが、ブリケットの強度は維持される。ブリケットは、プラグ流として、入口管を通って、サブマージアーク炉のポットへと流れ、炉のガスにより同時に加熱が開始される。ブリケットが融解ゾーンに到達すると、出発還元内の金属酸化物は、最初に酸化鉄がポットガスによって部分的に還元され、最終的に酸化クロムが還元される。フェロクロム製造用のサブマージアーク炉では、ブリケットに含有されるセメントは、スラグのpHを上昇させ、したがって、スラグのクロム含有量をおよそ0.5〜5%低減する。還元された金属は融解し、炉内の金属に溶解し、溶融物は、鋳造可能な合金として炉から溶け出し、その組成は、供給物の金属含有量に依存する。実際には、例えば、供給物中の全てのNi、Mo、及びFe破片は、金属に還元される。金属及びスラグの組成を、表2に提示する。 Preferably, the briquette is fed to the submerge arc furnace via a preheating oven that dries the briquette in a CO 2 atmosphere and heats it to approximately 500 ° C. This breaks the silicate bond and replaces it with a carbonate bond, but maintains the strength of the briquette. The briquette flows as a plug flow through the inlet pipe to the pot of the submerged arc furnace, and heating is started at the same time by the gas of the furnace. When the briquette reaches the melting zone, the metal oxide in the starting reduction is first partially reduced in iron oxide by the pot gas and finally in chromium oxide. In a submerged arc furnace for ferrochrome production, the cement contained in the briquette raises the pH of the slag and thus reduces the chromium content of the slag by approximately 0.5-5%. The reduced metal melts and dissolves in the metal in the furnace, the melt melts out of the furnace as a castable alloy, the composition of which depends on the metal content of the feed. In practice, for example, all Ni, Mo, and Fe debris in the feed are reduced to metal. The composition of the metal and slag is presented in Table 2.

Figure 2022501497
一実施形態では、触媒などの様々な二次原料を、ブリケット原料として使用して、金属酸化物中の金属をフェロクロム中へと回収することを可能にする。これらの原料は、ニッケル、モリブデン、チタン、銅、マンガン、又はコボルト(cobolt)を含有する金属酸化物であり得る。
Figure 2022501497
In one embodiment, various secondary raw materials such as catalysts can be used as briquette raw materials to allow the metal in the metal oxide to be recovered into ferrochrome. These raw materials can be nickel, molybdenum, titanium, copper, manganese, or metal oxides containing cobolt.

次に、添付の図面を参照して本発明をより詳細に説明する。
金属酸化物の還元順序を図示するエリンガムダイアグラムを示す。 供給実験中のフェロクロム製品中のニッケル及びマンガンのレベルの変化を示す。 実験中のフェロクロム製品のクロム含有量の変化を示す。 実験中のフェロクロム製品の炭素及びケイ素含有量を示す。
Next, the present invention will be described in more detail with reference to the accompanying drawings.
The Ellingham diagram which illustrates the reduction order of a metal oxide is shown. Changes in nickel and manganese levels in ferrochrome products during supply experiments are shown. The change in the chromium content of the ferrochrome product during the experiment is shown. The carbon and silicon contents of the ferrochrome product during the experiment are shown.

金属酸化物の還元順序は、図1のエリンガムダイアグラムによって定義される。選択された条件下のアーク炉内で、炭素によって還元され得る異なる金属を見ることができる。炭素は、炭素の反応を提示する線の上方にある金属を還元することが可能である。この還元反応自体は、温度及び圧力に依存する。実際には、希元素は最初に還元されるので、還元順序はNi、Mo、Fe、Crである。ダイアグラムはまた、酸化段階によって変動する、還元の反応式、例えば、鉄の異なる酸化段階の個々の式を示す。 The reduction order of the metal oxide is defined by the Ellingham diagram of FIG. In the arc furnace under the selected conditions, different metals that can be reduced by carbon can be seen. Carbon is capable of reducing the metal above the line that presents the reaction of carbon. The reduction reaction itself depends on temperature and pressure. In practice, the rare element is reduced first, so the reduction order is Ni, Mo, Fe, Cr. The diagram also shows the reaction equations for reduction, eg, individual equations for different oxidation stages of iron, which vary with the oxidation stage.

本発明によれば、セメントは、400〜600度の予熱炉温度でブリケットをまとめることができる唯一の結合材料である。加えて、ブリケットに適切な機械的強度を与えるので、入口システムを通じてブリケットを炉内に供給することができる。セメントの化学結合は、予熱オーブンの熱により炭酸塩結合に変化し、それにより、ブリケットの元の強度はほぼ完全に維持される。また、セメント系ブリケットを使用することにより、スラグのpHを上昇させてクロムのより高い還元度及びより高い収率をもたらす石灰をサブマージアーク炉に提供する。 According to the present invention, cement is the only binding material capable of assembling briquettes at preheating furnace temperatures of 400-600 degrees. In addition, it provides the briquette with adequate mechanical strength so that the briquette can be supplied into the furnace through the inlet system. The chemical bonds of the cement are transformed into carbonate bonds by the heat of the preheating oven, thereby maintaining the original strength of the briquette almost completely. Also, by using cement-based briquettes, lime is provided to the submerge arc furnace by increasing the pH of the slag, resulting in higher reduction and higher yield of chromium.

ブリケットの粒径分布は、ブリケットの形成で使用される原料に依存する。使用されるセメントの量を最小限に抑え、原料の節約を提供することを可能にするので、粒径分布は、可能な限り厳密にフラー曲線に従うべきである。添加されるブリケットの量は、現在の得られたスラグ材料の分析に依存して、総材料供給量のうちの最大20重量%、好ましくは3〜10重量%であり得る。 The particle size distribution of the briquette depends on the raw material used in the formation of the briquette. The particle size distribution should follow the Fuller curve as closely as possible, as it allows to minimize the amount of cement used and provide raw material savings. The amount of briquette added can be up to 20% by weight, preferably 3-10% by weight, of the total material supply, depending on the analysis of the currently obtained slag material.

本発明は、上に提示される原料に限定されない。本方法によって、金属酸化物を含有する他の側流も経済的に使用することができる。例えば、ニッケル業界からの酸化物は、ニッケルをフェロクロムにブレンドし、このように形成されたフェロクロムは、オーステナイト鋼グレードの製造により良好に適するであろう。 The present invention is not limited to the raw materials presented above. By this method, other side currents containing metal oxides can also be economically used. For example, oxides from the nickel industry will blend nickel with ferrochrome, and ferrochromes thus formed will be better suited for the production of austenitic steel grades.

図2〜4は、ファインスチール製造からのフレークを含有するセメント系のブリケットを、フェロクロム製造で使用されるサブマージアーク炉に供給した実験の結果を示す。 FIGS. 2-4 show the results of an experiment in which a cement-based briquette containing flakes from fine steel production was supplied to a submerged arc furnace used in ferrochrome production.

図2は、供給実験中のフェロクロム製品のニッケル及びマンガン含有量の変化、すなわち、金属酸化物が、最終製品へと還元されることを示している。 FIG. 2 shows that changes in the nickel and manganese content of ferrochrome products during supply experiments, i.e., metal oxides, are reduced to the final product.

図3は、実験中の最終製品中のフェロクロム製品のクロム濃度の変化を示す。クロム濃度は、他の金属の割合が増加した際、予想どおりに低下した。 FIG. 3 shows changes in the chromium concentration of ferrochrome products in the final product under experiment. Chromium concentration decreased as expected when the proportion of other metals increased.

図4は、ブリケット実験中の炭素及びケイ素の濃度が、最終製品中で通常のレベルで残存したことを示す。 FIG. 4 shows that carbon and silicon concentrations during briquette experiments remained at normal levels in the final product.

Claims (6)

工業用金属酸化物を含有する側流を利用するための方法であって、金属酸化物を含有する材料がセメントでブリケット化され、前記ブリケットがフェロクロム製造用のサブマージアーク炉に供給されることを特徴とする、方法。 A method for utilizing a sidestream containing an industrial metal oxide, wherein the material containing the metal oxide is cemented into a briquette and the briquette is supplied to a submerged arc furnace for ferrochrome production. The method to be characterized. 前記金属酸化物を含有する材料が、鋳造機からのフレーク、圧延機からのフレーク、濾過作業からのダスト、水処理からの側流、又はアニーリング−酸洗ラインからの金属スラリーであることを特徴とする、請求項1に記載の方法。 The material containing the metal oxide is characterized by flakes from a foundry, flakes from a rolling mill, dust from a filtering operation, sidestream from water treatment, or a metal slurry from an annealing-pickling line. The method according to claim 1. ブリケットが、予熱炉を通じて供給されることを特徴とする、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the briquette is supplied through a preheating furnace. 前記予熱炉内の前記温度が、400〜600℃であることを特徴とする、請求項3に記載の方法。 The method according to claim 3, wherein the temperature in the preheating furnace is 400 to 600 ° C. ブリケットが、総供給量の最大20%を構成するように添加されることを特徴とする、請求項1〜4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the briquette is added so as to constitute up to 20% of the total supply amount. 前記金属酸化物を含有する材料が、クロム、鉄、ニッケル、チタン、コバルト、マンガン、及び銅からなる群から選択される金属の酸化物を含有することを特徴とする、請求項1〜5のいずれか一項に記載の方法。 The material containing the metal oxide is characterized by containing an oxide of a metal selected from the group consisting of chromium, iron, nickel, titanium, cobalt, manganese, and copper, according to claims 1 to 5. The method described in any one of the items.
JP2021514333A 2018-09-26 2019-09-25 Method for utilizing a side stream containing metal oxides in a ferrochromium smelting process Active JP7322141B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20185805 2018-09-26
FI20185805A FI130393B (en) 2018-09-26 2018-09-26 Method for using sidestreams containing metal oxides in ferrochrome smelting processes
PCT/FI2019/050687 WO2020065134A1 (en) 2018-09-26 2019-09-25 A method for utilizing metal oxide containing side streams in ferrochrome smelting processes

Publications (2)

Publication Number Publication Date
JP2022501497A true JP2022501497A (en) 2022-01-06
JP7322141B2 JP7322141B2 (en) 2023-08-07

Family

ID=69952936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514333A Active JP7322141B2 (en) 2018-09-26 2019-09-25 Method for utilizing a side stream containing metal oxides in a ferrochromium smelting process

Country Status (8)

Country Link
JP (1) JP7322141B2 (en)
KR (1) KR20210065943A (en)
CN (1) CN112689683A (en)
FI (1) FI130393B (en)
SE (1) SE545037C2 (en)
TW (1) TWI820222B (en)
WO (1) WO2020065134A1 (en)
ZA (1) ZA202101409B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130615A (en) * 1974-04-02 1975-10-16
JPS5288520A (en) * 1976-01-21 1977-07-25 Nisshin Steel Co Ltd Treatment of waste generated in manufacturing alloy steel
JPS531103A (en) * 1976-06-25 1978-01-07 Nisshin Steel Co Ltd Treatment of plating sludge
JPS5848642A (en) * 1981-09-18 1983-03-22 Nippon Kokan Kk <Nkk> Manufacture of unfired agglomerated ore
JPS61163221A (en) * 1985-01-14 1986-07-23 Nippon Steel Corp Manufacture of nonsintered type briquetted ore
JP2007523256A (en) * 2003-09-23 2007-08-16 コールド−ボール・メタラジー・カンパニー・リミテッド Self-reducing low temperature bonded pellets
WO2010103343A1 (en) * 2009-03-10 2010-09-16 Tata Steel (Kzn) (Pty) Limited An improved process for production of high carbon ferrochrome (hcfecr) and charge chrome with the use of a new type of chromite ore agglomerates

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947267A (en) * 1973-07-23 1976-03-30 Armco Steel Corporation Process for making stainless steel
US5654976A (en) * 1995-04-18 1997-08-05 Elkem Technology A/S Method for melting ferrous scrap metal and chromite in a submerged arc furnace to produce a chromium containing iron
CN1158903A (en) * 1996-12-03 1997-09-10 吕美竺 Industrial production method of cold-cured pellet used directly for iron and steel smelting
KR101368541B1 (en) * 2010-12-28 2014-02-27 주식회사 포스코 Smelting reductant for the use of molten stainless steel and a smelting reduction method using the same
CN103436694A (en) * 2013-09-04 2013-12-11 宁夏天元锰业有限公司 Method for preparing chrome ore pellets
CN104962763B (en) * 2015-05-25 2016-11-30 北京科技大学 A kind of crystalline silicon cutting waste material produces the method for chromium system ferroalloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130615A (en) * 1974-04-02 1975-10-16
JPS5288520A (en) * 1976-01-21 1977-07-25 Nisshin Steel Co Ltd Treatment of waste generated in manufacturing alloy steel
JPS531103A (en) * 1976-06-25 1978-01-07 Nisshin Steel Co Ltd Treatment of plating sludge
JPS5848642A (en) * 1981-09-18 1983-03-22 Nippon Kokan Kk <Nkk> Manufacture of unfired agglomerated ore
JPS61163221A (en) * 1985-01-14 1986-07-23 Nippon Steel Corp Manufacture of nonsintered type briquetted ore
JP2007523256A (en) * 2003-09-23 2007-08-16 コールド−ボール・メタラジー・カンパニー・リミテッド Self-reducing low temperature bonded pellets
WO2010103343A1 (en) * 2009-03-10 2010-09-16 Tata Steel (Kzn) (Pty) Limited An improved process for production of high carbon ferrochrome (hcfecr) and charge chrome with the use of a new type of chromite ore agglomerates

Also Published As

Publication number Publication date
ZA202101409B (en) 2023-10-25
TWI820222B (en) 2023-11-01
KR20210065943A (en) 2021-06-04
CN112689683A (en) 2021-04-20
SE545037C2 (en) 2023-03-07
SE2150308A1 (en) 2021-03-18
WO2020065134A1 (en) 2020-04-02
FI20185805A1 (en) 2020-03-27
JP7322141B2 (en) 2023-08-07
FI130393B (en) 2023-08-09
TW202024343A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
TWI298350B (en) Method for manufacturing titanium oxide-containing slag
CN104278190B (en) The method for manufacturing nickeliferous ferroalloy
WO2020211689A1 (en) Smelting method and smelting device for processing iron-based polymetallic mineral materials using short process
CN105907984B (en) The method for comprehensively utilizing vanadium slag
CN103255255A (en) Gas-based shaft furnace direct reduction-electric furnace smelting separation process of vanadium titano-magnetite
CN102337408B (en) Two-step reduction method for recycling stainless steel scales
CN105112663B (en) A kind of combined producing process of high carbon ferro-chrome and semi-coke
TWI392742B (en) Verfahren zur rostfreistahlerzeugung mit direktreduktionsoefen fuer ferrochrom und ferronickel auf der primaerseite eines konverters
CN101219509B (en) High-carbon high-alloy buried arc automatic weld deposit welding flux
TW422884B (en) Mineral feed processing
RU2399680C2 (en) Procedure for metallisation of titanium-magnesium concentrates at production of iron pellets and titanium-vanadium slag
CN106636540A (en) Electric furnace steel making process capable of simultaneously and directly alloying manganese oxide and molybdenum oxide
CN106702177A (en) Technology of direct reduction of nickel-iron particles from laterite-nickel ores in rotary kiln
JP7322141B2 (en) Method for utilizing a side stream containing metal oxides in a ferrochromium smelting process
WO2001086006A2 (en) Improved process for the production of stainless steels and high chromium steels and stainless steelproduced thereby
US2674531A (en) Iron recovery
JP2000045008A (en) Production of reduced metal
RU2804821C2 (en) Method for application of by-products containing metal oxide in ferrochrome melting processes
WO2020178480A1 (en) Combined smelting of molten slags and residuals from stainless steel and ferrochromium works
CN110016550A (en) A kind of low dirt Ferrous Metallurgy method
CN111334703B (en) Production method of low-titanium-phosphorus iron alloy
CN112126732B (en) 3D printing-based method for directly preparing foundry pig iron by using iron concentrate powder
CN109477158A (en) Manufacture the method with the agglomerate containing chromium and iron of the different material additions containing manganese, nickel and molybdenum
CN205907325U (en) System for carry out integrated treatment to vanadium slag
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7322141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150