JPS62177132A - Manufacture of unfired briquetted ore - Google Patents

Manufacture of unfired briquetted ore

Info

Publication number
JPS62177132A
JPS62177132A JP1593986A JP1593986A JPS62177132A JP S62177132 A JPS62177132 A JP S62177132A JP 1593986 A JP1593986 A JP 1593986A JP 1593986 A JP1593986 A JP 1593986A JP S62177132 A JPS62177132 A JP S62177132A
Authority
JP
Japan
Prior art keywords
curing
ore
molded bodies
strength
unfired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1593986A
Other languages
Japanese (ja)
Inventor
Makoto Muramoto
真 村本
Hidemi Watanabe
秀美 渡辺
Junsuke Haruna
春名 淳介
Hajime Yamada
肇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1593986A priority Critical patent/JPS62177132A/en
Publication of JPS62177132A publication Critical patent/JPS62177132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture unfired briquetted ore having strength necessary for charging into a blast furnace in a short time by adding powdery dicalcium silicate to powder as starting material, kneading and compression-molding them, regulating the water content in the resulting molded bodies and bringing the molded bodies into contact with gaseous CO2. CONSTITUTION:Powdery dicalcium silicate as a binder is added to iron ore-base powder as starting material for a blast furnace. They are kneaded and compression-molded with a roll to form molded bodies such as flakes and the water content in the molded bodies is regulated to 0.1-4.5wt% by drying or other method. The molded bodies are then hardened by carbonation curing in an atmosphere contg. >=5vol% gaseous CO2. By this method, the curing time can be shortened and unfired briquetted ore having improved strength after curing is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非焼成塊成鉱の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing uncalcined agglomerated ore.

(従来の技術) 鉄分を含有する製鉄原料は、それぞれの用途により塊成
化する必要があり、塊成化法として、(1)焼結法(2
)焼成ベレット法及び焼成ブリケット法(3)非焼成塊
成法(コールドペレット、ブリケット、ロール成形物)
などがある。
(Prior art) Iron-making raw materials containing iron need to be agglomerated depending on their purpose, and the agglomeration methods include (1) sintering method (2)
) Baked pellet method and fired briquette method (3) Non-fired agglomeration method (cold pellets, briquettes, roll molded products)
and so on.

上記(1) 、 (2)については、製造物の強度を付
加させるために焼成する必要があるため、大規模な設備
とエネルギー全使用するばかりでなく、焼成過程にて発
生するイオウ酸化物、窒素酸化物、粉塵等の排出があり
公害の原因となる問題を有している。
Regarding (1) and (2) above, since it is necessary to sinter the product in order to add strength to the product, not only large-scale equipment and energy are used, but also sulfur oxides generated during the sintering process, The problem is that nitrogen oxides, dust, etc. are emitted, causing pollution.

また上記(3)については、上記(1) 、 (2)の
問題点全解消するために近年急速に開発されてきたが、
強度発現までに長時間(通常7〜10日間)を要し。
Regarding (3) above, it has been rapidly developed in recent years to solve all of the problems in (1) and (2) above.
It takes a long time (usually 7 to 10 days) to develop strength.

大規模な養生設備全必要するとともに、養生時間が長(
なることによる生産性の低下などの欠点ケ有している。
In addition to requiring large-scale curing equipment, curing time is long (
However, it does have disadvantages such as reduced productivity due to

これらの欠点全解決するために、例えば特開昭48−2
3613号公報にあるように、造粒物の強度全向上させ
るため+/Il:、炭酸ガス含有気流中に数日間暴露し
、lペレット当ff 20 k1以上の圧潰強度を確保
する方法がある。又、特開昭57−92143号公報に
あるように、バインダーに粉末ダイカルシウムシリケー
ト(2CaO−8IO□で表わす)音用いたペレツ)’
(H,CO2ガス雰囲気で養生硬化することが開示され
ている。
In order to solve all of these drawbacks, for example, Japanese Patent Application Laid-Open No. 48-2
As described in Japanese Patent No. 3613, in order to improve the strength of the granulated material, there is a method of exposing the granulated material to an air flow containing carbon dioxide gas for several days to ensure a crushing strength of ff 20 k1 or more per 1 pellet. Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 57-92143, pellets using powdered dicalcium silicate (represented by 2CaO-8IO□) as a binder are used.
(It is disclosed that curing is performed in an H, CO2 gas atmosphere.

(発明が解決しようとする問題点) 従来非焼成塊成法で成形された成形物の強度向上及び強
度発現の短時間化のため、炭酸化養生法におけるバイン
ダーの種類、バインダーの添加量、バインダー添加法及
び養生方法(養生時間、炭酸ガス濃度、炭酸ガス量)が
種々検討されてきたが、養生時の成形物の水分量や成形
物原料種、成形物粒径が変化した場合に、その養生効果
が大きく変化し、実操業時に所望の強度を得ることがで
きぬ場合があり、微粉の発生や必要以上のバインダー使
用の増加、または養生時間の延長をまねき、製造コスト
の上昇、生産量の低下、生産量変動という大きな問題と
なっていた。
(Problems to be Solved by the Invention) In order to improve the strength of molded products conventionally formed by the non-fired agglomeration method and shorten the time for strength development, the type of binder, the amount of binder added, and the amount of binder used in the carbonation curing method have been developed. Various addition methods and curing methods (curing time, carbon dioxide concentration, carbon dioxide amount) have been studied, but if the moisture content of the molded product, the type of raw material for the molded product, or the particle size of the molded product changes during curing, The curing effect changes significantly, and it may not be possible to obtain the desired strength during actual operation, resulting in the generation of fine powder, an increase in the use of binder more than necessary, or an extension of curing time, resulting in an increase in manufacturing costs and production volume. This caused major problems such as a decline in production and fluctuations in production.

本発明は上記のような実情に鑑み、非焼成塊成鉱を高炉
装入に必要な強度金、短時間で連続して得る方法金提供
するものである。
In view of the above-mentioned circumstances, the present invention provides a method for continuously obtaining uncalcined agglomerated ore with the strength necessary for charging into a blast furnace in a short period of time.

(問題点全解決するための手段と作用)本発明は、鉄鉱
石全主体とした粉粒体にバインダーとして炭酸塩及び水
和物の形成により、硬化反応がいちじるしく早い粉末の
2 CaO・SiO□を添加するとともに、必要ならば
水分ケ加え混合後、ロール成形機で圧縮成形したフレー
ク状成形物を、乾燥等により該成形物の水分’i 0.
1〜4.5wt%に保持して、炭酸ガス5 Vo1%以
上含有するガスで炭酸化養生処理を行なうことにより、
成形物の成形特水分や、原料種、原料粒径が変化した場
合においても、常に高強度の養生後強度を有する成形物
を、短時間に製造することが可能となる非焼成塊成鉱の
製造方法である。
(Means and effects for solving all the problems) The present invention provides 2 CaO/SiO□, a powder whose hardening reaction is extremely rapid, by forming carbonate and hydrate as a binder in a powder mainly composed of iron ore. and water if necessary. After mixing, the flaky molded product is compressed using a roll molding machine and dried, etc. until the moisture content of the molded product is 0.
By maintaining the concentration at 1 to 4.5 wt% and carrying out carbonation curing treatment with a gas containing 1% or more of carbon dioxide 5Vo,
The use of non-calcined agglomerate ore makes it possible to produce molded products with consistently high strength after curing in a short time even when the special water content, raw material type, and raw material particle size change. This is the manufacturing method.

以下本発明について詳述する。The present invention will be explained in detail below.

図は実験によるバインダーとして粉末の2 CaO・S
iO□を添加し、ロール成形機にて600 kP/ c
m2の圧縮力で成形した成形物を、炭酸化養生する場合
に、養生時の成形物水分と養生時間が、養生後強度にあ
たえる影響を示したものである。
The figure shows powdered 2CaO・S as a binder in experiments.
Add iO□ and use a roll forming machine to produce 600 kP/c
This figure shows the influence of the moisture content of the molded product during curing and the curing time on the strength after curing when a molded product molded with a compression force of m2 is carbonated and cured.

これよりバインダーとして粉末の2CaO−8102を
添加し、ロール成形機にて成形した成形物全炭酸化養生
する場合に、炭酸化養生後強度?向上させるためには、
炭酸化養生時の養生される成形物の水分に、適切水分範
囲が存在し、この適切水分範囲は、養生される成形物の
水分が4.5wt%以下であることが判明した。
From this, when powdered 2CaO-8102 is added as a binder and the molded product is fully carbonated and cured using a roll molding machine, what is the strength after carbonation and curing? In order to improve
It has been found that there is an appropriate moisture range for the moisture content of the molded product to be cured during carbonation curing, and this appropriate moisture range is such that the moisture content of the cured molded product is 4.5 wt % or less.

従来2CaO−8iO2の粉末は、水利反応速度が遅い
ため硬化剤としては不適なものとされてきたが、CO2
ガス雰囲気中ではその水利反応が促進され、硬化に有効
な硅酸カルシウム水和物とCa Co 3Kl”生成す
る。すなわち2CaO−8iO2の炭酸化による強度発
見は、次のような反応により進行すると考えられる。
Conventionally, 2CaO-8iO2 powder was considered unsuitable as a curing agent due to its slow water utilization reaction rate, but CO2
In a gas atmosphere, the water utilization reaction is promoted, producing calcium silicate hydrate and CaCo3Kl, which are effective for hardening.In other words, the discovery of strength through carbonation of 2CaO-8iO2 is thought to proceed through the following reaction. It will be done.

Co2+ I(20→H2CO3・・・(1)H2Co
3+2 CaO@S io□−+ CaCO3+ Ca
O−S 102−H20・・・(2) 上記反応式より、炭酸化による強度発現全有効に、かつ
迅速に行なわしめるためには、(a)水分?介しての反
応であるため、水分が必要不可欠であるが、もつとも強
度が必要な粉粒体粒子の接触点に、水分及びノ、<イン
グーが存在していることが必要である。(b)また炭酸
ガスの成形物内への浸透を有利に行なわせるためには、
炭酸ガスの経路として、気孔の確保が必要である。
Co2+ I(20→H2CO3...(1)H2Co
3+2 CaO@S io□−+ CaCO3+ Ca
O-S 102-H20...(2) From the above reaction formula, in order to develop strength through carbonation effectively and quickly, (a) Moisture? Since the reaction occurs through the reaction, moisture is essential, but it is also necessary that moisture and ``ingu'' exist at the contact points of the powder particles, which require strength. (b) In order to advantageously allow carbon dioxide to penetrate into the molded product,
It is necessary to secure pores as a path for carbon dioxide gas.

したがって、例えばペレタイザーでペレットに成形する
場合に必要な8〜10 wt%全添加して、成形した成
形物全低水分にすることは、毛細管現象により、粉粒体
粒子の接触点に水分及びバインダーを優先的に存在させ
る作用と、炭酸ガスの経路全確保する作用を、発揮させ
ることになる。
Therefore, when molding into pellets using a pelletizer, for example, adding all of the 8 to 10 wt% required to make the molded product have a total low moisture content is important because moisture and binder are added to the contact points of powder particles due to capillary action. This results in the effect of preferentially allowing carbon dioxide to exist, and the effect of ensuring all routes for carbon dioxide gas.

このような作用を行なわせるには、ロール圧縮成形が最
も効果?発揮するものである。すなわち、■添加した水
分が成形時に、成形物の系外(C滲みだすため前記作用
を助長させる。■成形水分が低減できる。■バインダー
全ベレットよりも減少できる。■鉱石粒度全ベレットよ
りも粗粒にできるので、粉砕動力費全低減できる。■成
形物の強度が早いので連続して生産できる。■フレーク
状に成形できるので、安息角が高炉で偏在現象が防止で
きる等である。
Is roll compression molding the most effective way to achieve this effect? It is something that can be demonstrated. In other words, (1) the added moisture oozes out of the system of the molded product (C) during molding, thereby promoting the above-mentioned effects; (1) molding moisture can be reduced; (2) the binder can be reduced compared to all pellets; (2) ore grain size coarser than all pellets; Since it can be made into granules, the power cost for crushing can be completely reduced. ■ The strength of the molded product is fast, so it can be produced continuously. ■ Since it can be molded into flakes, the angle of repose can prevent uneven distribution in the blast furnace.

本発明における成形物の水分(5,0,1〜4.5wt
%にする方法としては、混練時の水分添加量をこの範囲
にしてもよいが、この場合強力な圧縮力が必要となり、
電力費等が増大するので、成形後乾燥にて水分を低減す
ることが好ましい。
Moisture of the molded product in the present invention (5.0.1 to 4.5wt
%, the amount of water added during kneading may be within this range, but in this case a strong compressive force is required.
Since power costs and the like increase, it is preferable to reduce moisture content by drying after molding.

成形物の水分保有範囲は、前記実験図で説明した如(最
高4.5wt%であり、最低は保有水分がほとんどゼロ
のときは、バインダーの炭酸化反応はほとんど進行せず
、0.1 wt%以上必要であるが、最も好ましい適正
範囲は0.5〜4.0wt%である。
The moisture retention range of the molded product is as explained in the experimental diagram above (the maximum is 4.5 wt%, and the minimum is 0.1 wt% when the moisture content is almost zero, the carbonation reaction of the binder hardly progresses). % or more, but the most preferable appropriate range is 0.5 to 4.0 wt%.

炭酸ガス濃度は、炭酸化反応から5Vo1%以上とする
必要があり、CO2ガスとしては、CO2全大量に含む
熱風炉、或はコークス炉等の排ガスを用いても、充分効
果は発揮できるものである。
The carbon dioxide concentration needs to be 5Vo1% or more from the carbonation reaction, and even if exhaust gas from a hot blast oven or coke oven, etc., which contains a large amount of CO2, is used as the CO2 gas, sufficient effects can be achieved. be.

また本発明に用いられる2 CaO−8iO□としては
、これを大量に含有する転炉スラグ、或は電気炉スラグ
全周いてもよく、また例えば石灰石全珪石全添加して、
2CaO−8iO2になるように調整し、セメントキル
ンで焼成し製造してもよい。
Further, the 2CaO-8iO□ used in the present invention may be a converter slag containing a large amount of 2CaO-8iO□ or an electric furnace slag all around the slag, or, for example, by adding all the limestone and silica stone,
It may be manufactured by adjusting the composition to 2CaO-8iO2 and firing it in a cement kiln.

(実施例) 各鍾鉱石原料にバインダーとして、2CaO−8I02
(2CaO”5i02に大量に含有する電気炉スラグ、
或は転炉スラグを用いた。)を添加配合して、成形に必
要な水金添加しなから充分混練し、成形力500〜80
0kJ/cFn2でロール成形して、フレーク状の塊成
鉱全作り、養生室を設けて塊成鉱の水分が本発明の範囲
になるように乾燥保持しながら、CO□ガス雰囲気で養
生硬化させた。
(Example) 2CaO-8I02 was added as a binder to each limestone raw material.
(Electric furnace slag containing a large amount in 2CaO”5i02,
Alternatively, converter slag was used. ), add water and gold necessary for molding, and knead thoroughly to obtain a molding force of 500 to 80.
Roll forming the agglomerate at 0 kJ/cFn2 to make the entire flake-like agglomerate ore, set up a curing chamber, keep the agglomerate dry and dry so that the moisture content of the agglomerate falls within the range of the present invention, and cure and harden in a CO□ gas atmosphere. Ta.

これら製造条件とその結果を、比較例として従来の各種
鉱石原料にバインダーとしてセメント全添加配合して、
成形に必要な水を添加して、これ全成形力500〜80
0kt/crn2で、ロール成形してフレーク状の塊成
鉱を作り、これ’1 co2ガス雰囲気で養生硬化させ
た結果と共に、第1表だ示した。
These manufacturing conditions and results were used as a comparative example by adding all the cement as a binder to conventional various ore raw materials.
Adding the water necessary for molding, the total molding force is 500 to 80
A flaky agglomerate was formed by roll forming at 0 kt/crn2, and Table 1 shows the results of curing and hardening this in a CO2 gas atmosphere.

上記表からも明ら力)の如く、本実施例では飲用原料種
や原料粒径が変化しても、それほどその影響全骨けず、
かつ養生時間の短縮と養生後の強度が、従来法に比べ大
巾に改善された。
As can be seen from the table above, in this example, even if the type of drinking raw material or the particle size of the raw material changes, the effect is not that great.
Moreover, the curing time was shortened and the strength after curing was greatly improved compared to the conventional method.

(発明の効果) 以上のごとく本発明によれば、炭酸化養生時間の大巾な
短縮と、炭酸化養生時間度の大巾な改善が可能となり、
また従来法において、養生時間の短縮及び養生波強度の
確保のために、使用していたバインダーの削減も可能と
なった。
(Effects of the Invention) As described above, according to the present invention, it is possible to greatly shorten the carbonation curing time and greatly improve the carbonation curing time.
Furthermore, in the conventional method, it has become possible to reduce the amount of binder used in order to shorten the curing time and ensure the strength of the curing waves.

また使用原料種や原料粒径が変化しても、常に最適な炭
酸化養生を行なうことが可能となり、炭酸化養生法全飛
躍的に向上させることが可能となる優れた効果がある。
Furthermore, even if the type of raw material used or the particle size of the raw material changes, it is possible to always carry out optimal carbonation curing, which has the excellent effect of dramatically improving the overall carbonation curing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実験におけるCO2養生における成形物の水分
とシャッター強度の関係図表である。
FIG. 1 is a graph showing the relationship between the moisture content of molded products and shutter strength during CO2 curing in experiments.

Claims (1)

【特許請求の範囲】[Claims] 鉄鉱石を主体とした高炉用原料粉体に、バインダーとし
て粉末ダイカルシウムシリケート(2CaO・SiO_
2)を添加して混練し、ロール圧縮成形した成形物の保
有水分を0.1〜4.5wt%に調整し、炭酸ガスを5
Vol%以上含有するガスと接触させ、硬化させること
を特徴とする非焼成塊成鉱の製造方法。
Powdered dicalcium silicate (2CaO・SiO_
2) was added and kneaded, the moisture content of the molded product was adjusted to 0.1 to 4.5 wt% by roll compression molding, and the carbon dioxide was
A method for producing uncalcined agglomerate ore, which comprises hardening the ore by contacting it with a gas containing vol% or more.
JP1593986A 1986-01-29 1986-01-29 Manufacture of unfired briquetted ore Pending JPS62177132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1593986A JPS62177132A (en) 1986-01-29 1986-01-29 Manufacture of unfired briquetted ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1593986A JPS62177132A (en) 1986-01-29 1986-01-29 Manufacture of unfired briquetted ore

Publications (1)

Publication Number Publication Date
JPS62177132A true JPS62177132A (en) 1987-08-04

Family

ID=11902728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1593986A Pending JPS62177132A (en) 1986-01-29 1986-01-29 Manufacture of unfired briquetted ore

Country Status (1)

Country Link
JP (1) JPS62177132A (en)

Similar Documents

Publication Publication Date Title
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JPS62177132A (en) Manufacture of unfired briquetted ore
JP6992644B2 (en) Method for producing uncalcined agglomerate for blast furnace and method for producing pozzolan-reactive iron-containing raw material
JPS6020453B2 (en) Method for producing unfired pellets
JPS61253330A (en) Manufacture of uncalcined briquetted ore
JPH0629472B2 (en) Cold bonding method for particulate materials
JPS5853054B2 (en) Method for manufacturing non-fired agglomerate for iron manufacturing
JPS61163221A (en) Manufacture of nonsintered type briquetted ore
JPH0377258B2 (en)
JPH0154415B2 (en)
JP2012211363A (en) Method for producing carbon containing nonfired agglomerated ore for blast furnace
JPS5836054B2 (en) Uncalcined agglomerate for iron making
JPS6256936B2 (en)
JPS596333A (en) Treatment of caustic lime dust
JPS60248831A (en) Manufacture of uncalcined lump ore
JPS6256536A (en) Manufacture of unfired briquetted ore
JPS63103030A (en) Method and apparatus for producing non-calcined lump ore
JPH0512417B2 (en)
JP2003027150A (en) Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore
JP2000119760A (en) Production of non-fired agglomerate
KR20200065993A (en) Pellet using ferronickel dust and method for manufacturing of the same
JP2627854B2 (en) Method for producing unfired agglomerate
JPS6247928B2 (en)
JPS62211327A (en) Pseudo pelletization method for pulverized ore
JPS59126727A (en) Method for cold agglomerating starting material for iron manufacture