JPS62176983A - Device for producing iii-v compound semiconductor - Google Patents

Device for producing iii-v compound semiconductor

Info

Publication number
JPS62176983A
JPS62176983A JP1940286A JP1940286A JPS62176983A JP S62176983 A JPS62176983 A JP S62176983A JP 1940286 A JP1940286 A JP 1940286A JP 1940286 A JP1940286 A JP 1940286A JP S62176983 A JPS62176983 A JP S62176983A
Authority
JP
Japan
Prior art keywords
crystal
thermal strain
temp
compound semiconductor
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1940286A
Other languages
Japanese (ja)
Other versions
JPH0694397B2 (en
Inventor
Takao Matsumura
松村 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1940286A priority Critical patent/JPH0694397B2/en
Publication of JPS62176983A publication Critical patent/JPS62176983A/en
Publication of JPH0694397B2 publication Critical patent/JPH0694397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain the titled device capable of reducing the dislocation number in a crystal and highly integrating the compd. semiconductor IC by providing a part for measuring the surface temp. of the crystal during growth, a crystal form arithmetic part by a gravitational method, a thermal strain calculating part, the minimum thermal strain form estimating part, and a controlling variable arithmetic part. CONSTITUTION:In the device for producing a III-V compd. semiconductor (e.g., GaAs) by the (liq.-sealed) Czochralski method, the form of the grown crystal 2 is initially calculated by the signal from a weight sensor 10 in the crystal form arithmetic part 12. The residual thermal strain is obtained by using the form in the thermal strain calculating part 13. In this case, the surface temp. Ts of the crystal is measured and obtained in the surface temp. measuring part 11 by using an IR temp. sensor 1. Then the crystal form wherein the thermal strain distribution obtained by the calculation during crystal growth is minimized is estimated in the minimum thermal strain form estimating part 14. Then the temp. of a heater is controlled by the controlling variable arithmetic part 15 so that the desired form is approached. Such controls are repeated during crystal growth, and the crystal is grown in the form wherein the residual thermal strain is minimized.

Description

【発明の詳細な説明】 本発明は■−v族化合物半導体単結晶の製造装置に関し
、特に無転位又は低転位結晶を得るための製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a single crystal of a ■-v group compound semiconductor, and more particularly to an apparatus for producing a dislocation-free or low-dislocation crystal.

〔従来の技術〕[Conventional technology]

近年■−■族化合物半導体は高品質の結晶が得られる様
になシ集積回路、光電子集積回路などに広く用いられる
様になってきた。■−v族化合物半導体の中でもガリウ
ム砒素(GaAs)やインジウム・リン(IrP)等は
電子移動度が大きく、発光し易い等の特徴を有しマイク
ロ波用トランジスタや高速集積回路、太陽電池及び光・
電子素子材料として広く用いられつつある。
In recent years, compound semiconductors of the ■-■ group have come to be widely used in integrated circuits, optoelectronic integrated circuits, etc., as high-quality crystals can be obtained. ■-Among group V compound semiconductors, gallium arsenide (GaAs) and indium phosphide (IrP) have high electron mobility and are easy to emit light, and are used in microwave transistors, high-speed integrated circuits, solar cells, and optical devices.・
It is becoming widely used as an electronic device material.

化合物半導体単結晶が上述の集積回路用基板として用い
られるには比抵抗が1010・cm以上の半絶縁性を有
する事、結晶中に転位がない事、残留不純物が少ない事
、等が要求される。この中で特に転位は集積回路の特性
に影響を与え歩留シを低下させる原因となっている。
In order for a compound semiconductor single crystal to be used as a substrate for the above-mentioned integrated circuit, it is required to have semi-insulating properties with a resistivity of 1010 cm or more, no dislocations in the crystal, and a small amount of residual impurities. . Among these, dislocations in particular affect the characteristics of integrated circuits and cause a decrease in yield.

結晶中の転位は、結晶成長中及び冷却中に生じる結晶内
の温度分布に主に起因しておシ、結晶内温度差が小さい
程それによる熱的表歪が導入されにくく転位は少くなる
Dislocations in the crystal are mainly caused by the temperature distribution within the crystal that occurs during crystal growth and cooling, and the smaller the temperature difference within the crystal, the less likely thermal strain is introduced and the number of dislocations decreases.

従来、低転位結晶を作製するには炉内のカーボン保温材
や熱遮蔽板の形状を工夫して、低温度勾配化を行い結晶
内温度分布を改善して行っている。
Conventionally, low-dislocation crystals have been produced by modifying the shape of the carbon heat insulating material and heat shielding plates in the furnace to lower the temperature gradient and improve the temperature distribution within the crystal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一方、結晶中の転位分布は成長中の結晶の形状に依存す
る事が経験的に知られている。従って低転位結晶を得る
には1.炉内の温度分布を改善する事に加えて、転位分
布が少くなる様な形状を予測し、その形状を制御する必
要がある。
On the other hand, it is empirically known that the dislocation distribution in a crystal depends on the shape of the growing crystal. Therefore, in order to obtain a low dislocation crystal, 1. In addition to improving the temperature distribution inside the furnace, it is necessary to predict a shape that will reduce the dislocation distribution and control that shape.

従来、重量法によシ結晶形状を演算し結晶半径を一定に
して成長する事を可能にした自動直径制御引上げ装置が
あるが、この方法では結晶中の残留応力について何ら知
見が得られない。
Conventionally, there is an automatic diameter control pulling device that calculates the crystal shape using a gravimetric method and makes it possible to grow the crystal with a constant radius, but this method does not provide any knowledge about the residual stress in the crystal.

本発明は、上記欠点を除いた■−■族化合物半導体の製
造装置を提供するものである。
The present invention provides an apparatus for manufacturing a ■-■ group compound semiconductor which eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は■−■族化合物半導体単結晶をチョクラルスキ
ー法及び液体封じチョクラルスキー法で作製する装置に
おいて成長中の結晶の表面温度測定部重量法による結晶
形状演算部、熱歪計算部最少熱歪形状予測部、及び制御
量演算部を有する事を特徴とする■−■族化合物半導体
の製造装置である。
The present invention is an apparatus for manufacturing a ■-■ group compound semiconductor single crystal by the Czochralski method or the liquid-filled Czochralski method, in which the surface temperature of the growing crystal is measured, the crystal shape calculation section using the gravimetric method, and the minimum thermal strain calculation section. This is a manufacturing apparatus for a ■-■ group compound semiconductor characterized by having a thermal distortion shape prediction section and a control amount calculation section.

第1図に本発明による装置のブロック図を示す。FIG. 1 shows a block diagram of a device according to the invention.

まず重量センサー10の信号により成長結晶2の形状を
結晶形状演算部12にて演算する。次にその形状を用い
て結晶中の残留熱歪を熱歪計算部13で求める訳である
が、この計算にはJ、Cryst、Growfh  6
1  (1983)576に示される様に結晶の表面温
度Tsを求める事が必要である。我々はTsを赤外線温
度センサー1を用いた、表面温度測定部11で測定して
求めた。計算に用いた他の物理定数は先の文献に示され
ている値を用いている。
First, the shape of the growing crystal 2 is calculated by the crystal shape calculating section 12 based on the signal from the weight sensor 10. Next, using this shape, the residual thermal strain in the crystal is calculated by the thermal strain calculation unit 13, and this calculation is performed using J, Crystal, Growfh 6
1 (1983) 576, it is necessary to determine the surface temperature Ts of the crystal. We determined Ts by measuring it with a surface temperature measuring section 11 using an infrared temperature sensor 1. Other physical constants used in the calculations are the values shown in the previous literature.

次に結晶成長中、計算によって得られた熱歪分布が最小
になる様な結晶形状を最少熱歪形状予測部14で予測す
る。この予測は次の様にして行う。
Next, during crystal growth, a minimum thermal strain shape prediction unit 14 predicts a crystal shape that minimizes the thermal strain distribution obtained by calculation. This prediction is made as follows.

引き上げ軸方向をZ軸として結晶半径rをZの2次の関
数で解析接続によシ表した時、Zの2次の項の係数の絶
対値aがθ〜0.020の範囲にある様な結晶形状のう
ち数通シを、現時点よシも20〜60分結晶成長が進行
した時点で想定し、その各々に対して熱歪解析を行ない
、残留熱歪値とa値との関係から熱歪値が最少であるa
値を求め、そのa値を持つ形状を最少熱歪形状とする。
When the crystal radius r is expressed by analytical continuation as a quadratic function of Z with the pulling axis direction as the Z axis, the absolute value a of the coefficient of the quadratic term of Z is in the range of θ ~ 0.020. Several crystal shapes are assumed at the time when crystal growth has progressed for 20 to 60 minutes, and thermal strain analysis is performed on each of them, and the relationship between the residual thermal strain value and the a value is calculated. a with the lowest thermal strain value
The value is determined, and the shape with that a value is defined as the shape with the least thermal distortion.

次に制御量演算部15によシ、この目標形状に近づく様
にヒーターの温度を制御する。
Next, the control amount calculating section 15 controls the temperature of the heater so as to approach this target shape.

結晶成長中、この様な制御を繰シ返し熱雷熱歪が最少と
なる形状で結晶を育成する。
During crystal growth, such control is repeated to grow the crystal in a shape that minimizes thermal distortion due to thermal lightning.

尚、有限要素法による一つの形状の計算時間は約4分で
あるので20〜60分の間で5〜15通シの形状につい
て計算できる。
Since the calculation time for one shape using the finite element method is about 4 minutes, it is possible to calculate 5 to 15 shapes in 20 to 60 minutes.

〔実施例〕〔Example〕

以下、本発明による具体的実施例を示す。 Hereinafter, specific examples according to the present invention will be shown.

4インチ径のPBNるつぼ中にガリウムと砒素を等化学
当量ずつ1500gチャージし、Btusの厚さは10
mmとした。ヒーターの上部にそれを覆う様にして熱遮
蔽板を置き、るつぼの底の熱電対が1350℃で45分
間直接合成を行った。また結晶成長時は炉内の三つのヒ
ーターを制御して固液界面の温度勾配を20℃とした。
A PBN crucible with a diameter of 4 inches was charged with 1500 g of equal chemical equivalents of gallium and arsenic, and the thickness of Btus was 10
mm. A heat shield plate was placed on top of the heater to cover it, and the thermocouple at the bottom of the crucible carried out direct synthesis at 1350° C. for 45 minutes. During crystal growth, three heaters in the furnace were controlled to maintain a temperature gradient of 20° C. at the solid-liquid interface.

上記のアンドープ結晶の他にインジウムを融液中に1.
0X10”6cm”ドープしてインジウム・ドープ結晶
も作製した。作製条件はアンドープのものと同じである
。これらのインジウム・ドープ結晶とアンドープ結晶の
各々に対して本方法による装置と従来の方法による装置
を用い、計4種類の実験を行った。残留ストレスを計算
する際のプログラムにはUAI/NASTRANを用い
た。1つの形状の計算時間は3分30秒であったので、
異なるa値について13回の計算を行ない、その結果か
ら最少熱歪形状を求めた。
In addition to the above undoped crystal, indium is added to the melt in 1.
Indium doped crystals were also made with 0x10"6 cm" doping. The manufacturing conditions are the same as those for undoped. A total of four types of experiments were conducted on each of these indium-doped crystals and undoped crystals using an apparatus according to the present method and an apparatus according to the conventional method. UAI/NASTRAN was used as the program for calculating residual stress. The calculation time for one shape was 3 minutes and 30 seconds, so
Calculations were performed 13 times for different a values, and the minimum thermal distortion shape was determined from the results.

従来の方法による結晶と本発明の方法による結晶の転位
数をアンドープ結晶とインジウム・ドープ結晶の各々に
つき、結晶の各固化率に対して表1に示す。転位数はK
OH溶液による化学腐食法によシ求めたものであシ2イ
ンチウェ・・−内で9点の平均で示しである。
Table 1 shows the number of dislocations of the crystal obtained by the conventional method and the crystal obtained by the method of the present invention for each of the undoped crystal and the indium-doped crystal, with respect to each solidification rate of the crystal. The number of dislocations is K
It was determined by a chemical corrosion method using an OH solution, and is shown as an average of 9 points within a 2-inch wafer.

表1かられかる様に成長中の結晶の残留熱歪を計算し、
それが最少となる45分後の形状を予測し、成長中の形
状にフィード・バックする。
Calculate the residual thermal strain of the growing crystal as shown in Table 1,
The shape after 45 minutes when this will be the minimum is predicted and fed back to the shape during growth.

本発明の方法によれば結晶中の転位が低減できる。According to the method of the present invention, dislocations in the crystal can be reduced.

第1表 〔発明の効果〕 以上説明した様に本発明の装置によれば結晶中の転位数
が低減でき、この結晶から得られるウェハーにFETを
作製する事によシ特性バラツキの極めて少ないFETが
得られ、化合物半導体ICを高集積化できる効果がある
。さらにこのウェハーにエピタキシャル層を成長させた
場合、転位の少ない結晶性の優れた層を形成する事がで
き光・電子結合型集積回路用基板として使用できる効果
がある。
Table 1 [Effects of the Invention] As explained above, according to the device of the present invention, the number of dislocations in the crystal can be reduced, and by manufacturing an FET on a wafer obtained from this crystal, an FET with extremely small variation in characteristics can be produced. This has the effect of increasing the degree of integration of compound semiconductor ICs. Furthermore, when an epitaxial layer is grown on this wafer, a layer with excellent crystallinity with few dislocations can be formed, which has the effect of being usable as a substrate for optical/electronic coupled integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の装置をブロック図で示したものであ
シ、 1・・・・・・・・・温度センサ一部 2・・・・・・・・・化合物半導体単結晶3・・・・・
・・・・液体封止剤 4・・・・・・・・・化合物半導体融液5・・・・・・
・・・ヒーター
FIG. 1 shows a block diagram of the device of the present invention, which includes: 1. Temperature sensor part 2. Compound semiconductor single crystal 3.・・・・・・
...Liquid sealant 4...Compound semiconductor melt 5...
···heater

Claims (1)

【特許請求の範囲】[Claims]  III−V族化合物半導体単結晶をチョクラルスキー法
及び、液体封じチョクラルスキー法で作製する装置にお
いて、成長中の結晶の表面温度測定部、重量法による結
晶形状演算部、熱歪計算部、最少熱歪形状予測部、及び
制御量演算部を有する事を特徴とするIII−V族化合物
半導体の製造装置。
In an apparatus for producing a III-V compound semiconductor single crystal by the Czochralski method or the liquid-sealed Czochralski method, there is a surface temperature measurement section of a growing crystal, a crystal shape calculation section using a gravimetric method, a thermal strain calculation section, A manufacturing apparatus for a III-V compound semiconductor, characterized by having a minimum thermal distortion shape prediction section and a control amount calculation section.
JP1940286A 1986-01-30 1986-01-30 (III) -Group V compound semiconductor manufacturing apparatus Expired - Lifetime JPH0694397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1940286A JPH0694397B2 (en) 1986-01-30 1986-01-30 (III) -Group V compound semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1940286A JPH0694397B2 (en) 1986-01-30 1986-01-30 (III) -Group V compound semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS62176983A true JPS62176983A (en) 1987-08-03
JPH0694397B2 JPH0694397B2 (en) 1994-11-24

Family

ID=11998271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1940286A Expired - Lifetime JPH0694397B2 (en) 1986-01-30 1986-01-30 (III) -Group V compound semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0694397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264992A (en) * 1988-04-13 1989-10-23 Toshiba Ceramics Co Ltd Single crystal pulling up device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264992A (en) * 1988-04-13 1989-10-23 Toshiba Ceramics Co Ltd Single crystal pulling up device

Also Published As

Publication number Publication date
JPH0694397B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
Rudolph et al. Bulk growth of GaAs An overview
Mueller The Czochralski Method‐where we are 90 years after Jan Czochralski’s invention
EP0390672B1 (en) Method for heat process of silicon
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JPS62176983A (en) Device for producing iii-v compound semiconductor
Clemans et al. Bulk III‐V Compound Semi‐Conductor Crystal Growth
JPH0413319B2 (en)
Kuroda Temperature oscillation at the growth interface in silicon crystals
JPS627695A (en) Production of compound semiconductor single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JPH0557240B2 (en)
Holmes et al. Dislocation reduction in large-diameter LEC GaAs growth: I. Low gradient growth and indium doping
US20230160095A1 (en) Method for producing silicon ingot single crystal
US6284041B1 (en) Process for growing a silicon single crystal
Lin et al. Improvement of stoichiometry in semi-insulating gallium arsenide grown under microgravity
JP3134415B2 (en) Single crystal growth method
JPS6243959B2 (en)
Ware et al. Growth and properties of very large crystals of semi-insulating gallium arsenide
JPH11130578A (en) Growth of single crystal and apparatus therefor
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
Sahr et al. Growth of S-doped 2" InP-crystals by the vertical gradient freeze technique
JPH05319973A (en) Single crystal production unit
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
JPH07110797B2 (en) Method for producing compound semiconductor single crystal containing high vapor pressure component
Bourret Vertical Bridgman and gradient freeze growth of III-V compound semi-conductors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term