JPS627695A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPS627695A
JPS627695A JP14783785A JP14783785A JPS627695A JP S627695 A JPS627695 A JP S627695A JP 14783785 A JP14783785 A JP 14783785A JP 14783785 A JP14783785 A JP 14783785A JP S627695 A JPS627695 A JP S627695A
Authority
JP
Japan
Prior art keywords
single crystal
melt
crystal
gaas
amt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14783785A
Other languages
Japanese (ja)
Other versions
JPH0639355B2 (en
Inventor
Takao Matsumura
松村 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60147837A priority Critical patent/JPH0639355B2/en
Publication of JPS627695A publication Critical patent/JPS627695A/en
Publication of JPH0639355B2 publication Critical patent/JPH0639355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled dislocation-free high-purity group III-V compd. semiconductor single crystal by detecting the amt. of the splashed group V volatile element in the melt and growing the single crystal while injecting the element equivalent to the detected amt. and correcting the composition. CONSTITUTION:In an airtight vessel 1 using a gaseous Ar at 5kg/cm<2> pressure as the atmospheric gas, the melt 2 of GaAs in a crucible 3 is kept at a prescribed temp. with a heater 5 and an insulating material 6 and a pulling rod 9 is lowered and then pulled up to grow a GaAs single crystal on the leading end of the rod. In the device, the weight of the melt 2 in the crucible 3 is detected by a lower weight sensor 8 and a sensor rod 7 for supporting a supporting cylinder 4 for the crucible 3, the weight of the formed single crystal is also detected by the pulling rod 9 and an upper weight sensor 10, and the amt. of As splashed is calculated by a computer 13 from the detected values. Then a heater 12 is controlled and As equivalent to the amt. of the splashed As is injected and replenished into the melt 2 from an As injector 11 to satisfy the stoichiometrical composition and the crystal is grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は揮発性元素をV族に存するm−v族化合物半導
体単結晶をチョクラルスキー法で製造する方法に関し、
特に無転位結晶を液体封止剤を用いずに製造する方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an m-v group compound semiconductor single crystal in which volatile elements are in the V group by the Czochralski method.
In particular, the present invention relates to a method for manufacturing dislocation-free crystals without using a liquid sealant.

〔従来の技術〕[Conventional technology]

近年、m−v族化合物半導体は高品質の結晶が得られる
ようになり、集積回路、光−電子集積回路及び電子材料
等に広く用いられる様になってきている。m−v族化合
物半導体の中でもガリウムひ素(GaAs)は電子移動
度が大きく、発光し易く、また光を検知する等の特徴を
有し、マイクロ波用トランジスタ、高速集積回路、太陽
電池或いは光−電子材料として利用されつつある。
In recent years, high-quality crystals of m-v group compound semiconductors have become available, and they have come to be widely used in integrated circuits, opto-electronic integrated circuits, electronic materials, and the like. Among m-v group compound semiconductors, gallium arsenide (GaAs) has characteristics such as high electron mobility, easy luminescence, and light detection, and is used in microwave transistors, high-speed integrated circuits, solar cells, and light-emitting devices. It is being used as an electronic material.

GaAs単結晶が上述の集積回路用の基板として用いら
れるには比抵抗が107Ωcm以上の半絶縁性を有する
こと、転位、格子欠陥等の物理的、化学的欠陥がないこ
と、残留不純物が少ないこと、更に熱処理特性が良いこ
と等が要求される。この中で、特に転位や格子欠陥は集
積回路の特性に影響を与え、歩留を低下させる原因とな
っている。
In order for a GaAs single crystal to be used as a substrate for the above-mentioned integrated circuit, it must have semi-insulating properties with a resistivity of 107 Ωcm or more, be free of physical and chemical defects such as dislocations and lattice defects, and have little residual impurities. Furthermore, it is required to have good heat treatment characteristics. Among these, dislocations and lattice defects particularly affect the characteristics of integrated circuits and cause a decrease in yield.

ところで二m−v族化合物半導体単結晶は、従来から液
体封止チョクラルスキー法(LEC法)で製造されてい
る。即ら、GaAs融液を引き上げ成長させてGaAs
単結晶を成長させているが、この際に、この融液を液体
封止剤である酸化ボロン(BzOl)で覆い、V族元素
の蒸発を抑制させている。
By the way, 2m-v group compound semiconductor single crystals have conventionally been manufactured by the liquid-encapsulated Czochralski method (LEC method). That is, by pulling up the GaAs melt and growing it, GaAs
While growing a single crystal, this melt is covered with boron oxide (BzOl), which is a liquid sealant, to suppress evaporation of group V elements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したm−v族化合物半導体単結晶の製造方法では、
液体封止剤に熱伝達係数の大きな酸化ボロンを用いてい
るためにGaAs固液界面の温度勾配が大きくなり、転
位のない高品質な結晶を得るために必要とされるGaA
sの固液界面の低温度勾配化を実現することが難しい。
In the method for manufacturing the m-v group compound semiconductor single crystal described above,
Since boron oxide, which has a large heat transfer coefficient, is used as the liquid sealant, the temperature gradient at the GaAs solid-liquid interface increases, which is necessary to obtain a high-quality crystal without dislocations.
It is difficult to realize a low temperature gradient at the solid-liquid interface of s.

また酸化ボロンを通してのひ素の飛散も無視できなく、
■族元素と■族元素の組成のずれを生じ、これが転位や
固有欠陥の原因になっている。更に、酸化ボロンは結晶
成長中にGaAs単結晶に取り込まれ、LEC法による
GaAs中には101b〜10 ”C11−”のポロン
が含まれており、結晶の高純度化を阻害している。
Also, the scattering of arsenic through boron oxide cannot be ignored.
This causes a difference in composition between group (I) and group (II) elements, which causes dislocations and inherent defects. Further, boron oxide is incorporated into the GaAs single crystal during crystal growth, and GaAs produced by the LEC method contains 101b to 10 "C11-" poron, which inhibits high purity of the crystal.

なお、これらの問題を解消する方法としてひ素工制御チ
ョクラルスキー法が提案されているが、この方法は炉内
に設置されたひ素工をコントロールするために、石英容
器の中で結晶を育成しているので、結晶中にシリコン元
素が混入し、半絶縁性の基板を得ることは不可能である
The arsenic control Czochralski method has been proposed as a method to solve these problems, but this method involves growing crystals in a quartz container in order to control the arsenic installed in the furnace. As a result, silicon elements are mixed into the crystal, making it impossible to obtain a semi-insulating substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化合物半導体単結晶の製造方法は、無転位結晶
を液体封止剤を用いることなく製造するために、チョク
ラルスキー法で化合物半導体単結晶を成長する際に、■
族元素の飛散量を重量センサで検出し、この飛散量に相
当する量を融液中に注入補正して化学量論組成を満たし
ながら単結晶の成長を行う方法である。
The method for manufacturing a compound semiconductor single crystal of the present invention includes:
In this method, the amount of scattered group elements is detected by a weight sensor, and an amount corresponding to this amount of scattered elements is injected into the melt for correction, thereby growing a single crystal while satisfying the stoichiometric composition.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明方法によりGaAs単結晶を製造する装
置の構成図である。図において、気密容器l内には、G
aAs融液2を入れたるつぼ3(例えば4インチ径のP
BNるつぼ)を支持筒4により支持し、これらをカーボ
ンヒータ5およびカーボン保温材6で包囲して所定の温
度に保っている。前記支持筒4には、下方に延びるセン
サロッド7を接続し、このセンサロッド7の下端には下
重量センサ8を取着してるつぼ3やGaAs融液2の重
量を検出する。また、前記るつぼ3の上方には引き上げ
ロッド9を垂直に延設し、その上端に下重量センサ10
を取着して引き上げるGaAS結晶の重量を検出する。
FIG. 1 is a block diagram of an apparatus for producing GaAs single crystals by the method of the present invention. In the figure, inside the airtight container l, G
A crucible 3 containing aAs melt 2 (for example, a 4-inch diameter P
A BN crucible) is supported by a support tube 4, which is surrounded by a carbon heater 5 and a carbon heat insulating material 6 to maintain a predetermined temperature. A sensor rod 7 extending downward is connected to the support cylinder 4, and a lower weight sensor 8 is attached to the lower end of the sensor rod 7 to detect the weight of the crucible 3 and the GaAs melt 2. Further, a lifting rod 9 is vertically extended above the crucible 3, and a lower weight sensor 10 is installed at the upper end of the pulling rod 9.
The weight of the GaAS crystal that is attached and pulled is detected.

また、前記気密容器lには、ひ素注入装置11を内装し
、前記GaAs融液2内にひ素を追加注入できる。この
ひ素注入装置11にはひ素性入用ヒータ装置12を連設
し、ひ素注入装置11の加熱温度を制御することにより
ひ素の注入量をコントロールできる。また、このひ素性
入用ヒータ装置12は、コンピュータ13により制御で
き、このコンピュータ13には前記上、下の各重量セン
サ8.IOの検出信号が入力される。図中、14は観察
窓であり、また図示は省略するが気密容器1内にはアル
ゴン等の雰囲気ガスが供給できるようになっている。
Furthermore, an arsenic injection device 11 is installed inside the airtight container 1, and arsenic can be additionally injected into the GaAs melt 2. This arsenic injection device 11 is connected with an arsenic injection heater device 12, and by controlling the heating temperature of the arsenic injection device 11, the amount of arsenic to be injected can be controlled. The arsenic heater device 12 can be controlled by a computer 13, which includes the upper and lower weight sensors 8. An IO detection signal is input. In the figure, 14 is an observation window, and although not shown, an atmospheric gas such as argon can be supplied into the airtight container 1.

この装置を用いて、るつぼ3中にGaとAsを等化学当
量ずつ2 kgチャージした、雰囲気ガスはアルゴンを
用い、直接合成時の圧力は80kg/cal、結晶成長
時の圧力は5 kg / ctAである。このような条
件下で、るつぼ3のGaAs融液を引き上げ口    
   1ツド9で引き上げて結晶成長させる。そして0
、これと共に下重量センサ8および下重量センサ10で
夫々重量を検出し、これらの値をコンピュータ13で演
算することによりGaAs融液2から飛散されたひ素置
を算出する。コンピュータ13は算出値に基ずいてひ素
性入用ヒータ12を制御し、ひ素注入装置11を介して
飛散したひ素に相当する分だけGaAs融液2中にひ素
を追加注入して補正し、化学量論組成を満足させる。こ
れにより、直径540、長さ100BのGaAs単結晶
Aを製造した。
Using this device, 2 kg of equal chemical equivalents of Ga and As were charged into the crucible 3, argon was used as the atmosphere gas, the pressure during direct synthesis was 80 kg/cal, and the pressure during crystal growth was 5 kg/ctA. It is. Under these conditions, the GaAs melt in crucible 3 was pulled up and
The crystal is grown by pulling it up with a single pin 9. and 0
At the same time, the weights are detected by the lower weight sensor 8 and the lower weight sensor 10, respectively, and these values are calculated by the computer 13 to calculate the amount of arsenic scattered from the GaAs melt 2. The computer 13 controls the arsenic injector heater 12 based on the calculated value, corrects it by additionally injecting arsenic into the GaAs melt 2 in an amount corresponding to the arsenic scattered via the arsenic injection device 11, and Satisfy the stoichiometric composition. As a result, a GaAs single crystal A having a diameter of 540 mm and a length of 100 B was manufactured.

なお、この単結晶Aと比較するために、同じ装置を用い
、2 kgのGaとAsの他に300gの酸化ボロンを
チャージし、飛散したひ素の補正を行わず通常のLEC
法で5kg/cmのアルゴン圧力下でGaAs単結晶B
、即ち従来と同じ結晶を製造した。
In order to compare with this single crystal A, we used the same device and charged 300 g of boron oxide in addition to 2 kg of Ga and As, and used normal LEC without making any correction for the scattered arsenic.
GaAs single crystal B under argon pressure of 5 kg/cm by method
In other words, the same crystal as the conventional one was produced.

ここで、酸化ボロンは第2図のように熱伝達係数が大き
いが、前記アルゴン等の不活性ガスはその分子量が大き
い程熱伝達係数が小さくなる性質を有し、同図のように
一番分子量の小さいヘリウムガスでさえも成長温度にお
ける熱伝達係数は酸化ボロンよりも一桁以上小さい。し
たがって、入手の容易な窒素ガスやアルゴンガスを用い
た本例では、LEC法に比較してGaAs固液界面の温
度勾配を大幅に低減できる。
Here, boron oxide has a large heat transfer coefficient as shown in Figure 2, but the inert gas such as argon has a property that the larger the molecular weight, the smaller the heat transfer coefficient. Even helium gas, which has a small molecular weight, has a heat transfer coefficient at the growth temperature that is more than an order of magnitude smaller than that of boron oxide. Therefore, in this example using readily available nitrogen gas or argon gas, the temperature gradient at the GaAs solid-liquid interface can be significantly reduced compared to the LEC method.

また、前記ひ素注入装置11により飛散したひ素の追加
注入を結晶成長中に自動的にくり返し行うことにより、
GaとAsの化学量論組成を一定に満たした状態で成長
を進行できる。
Furthermore, by automatically repeating additional implantation of arsenic scattered by the arsenic implantation device 11 during crystal growth,
Growth can proceed while the stoichiometric composition of Ga and As is kept constant.

前述のように製造した単結晶AおよびBを、第3図のよ
うに直胴部の上部から20tmの部分からウェハを切り
出し、KOH融液を用いた夫々の転位密度を検査した。
A wafer was cut from the single crystals A and B produced as described above at a distance of 20 tm from the top of the straight body as shown in FIG. 3, and the dislocation density of each crystal was examined using a KOH melt.

この結果、第4図のように、単結晶A(本発明のもの)
は周辺2flを除外すれば1−当たり500個以下の転
位密度であるが、単結晶B(従来のもの)では104個
と多い。また、2次イオン質量分析による残留不純物(
ボロン)の分析を行ったところ、第5図のように結晶A
では10”cm−’以下であるが、結晶Bでは10”c
 m−’以上観測された。更に、X線準禁制反射法によ
るストイキオメトリ−を測定したところ、第6図のよう
に結晶Aでは面内でストイキオメトリ−が一定であるが
、結晶Bでは不均一であった。
As a result, as shown in FIG. 4, single crystal A (of the present invention)
If the peripheral 2fl are excluded, the dislocation density is less than 500 per 1, but in single crystal B (conventional), it is as high as 104. In addition, residual impurities (
When analyzing boron), crystal A was found as shown in Figure 5.
In crystal B, it is less than 10"c-', but in crystal B it is less than 10"c
m-' or more were observed. Furthermore, when the stoichiometry was measured by the X-ray quasi-forbidden reflection method, as shown in FIG. 6, the stoichiometry was constant within the plane for crystal A, but was non-uniform for crystal B.

また、実際に結晶AとBの各ウェハを用いてFETを作
製し、その素子特性の一つであるしきい値電圧(vth
)のバラツキを測定し比較したところ、結晶Aではバラ
ツキの標準偏差が3mVと小さく、結晶Bでは50mV
と大きいことが判明した。
In addition, we actually fabricated FETs using crystal A and B wafers, and demonstrated that the threshold voltage (vth), which is one of the device characteristics, was
), the standard deviation of the variation was as small as 3 mV for crystal A, and 50 mV for crystal B.
It turned out to be a big deal.

これらのことから、本発明による製造方法では、組成制
御された高純度な無転位結晶が得られていることが判る
From these results, it can be seen that the production method according to the present invention produces a highly pure dislocation-free crystal with a controlled composition.

なお、本発明方法を採用した場合、成長した単結晶が高
温に晒されるため、結晶周辺からのひ素の解離に起因す
る転位の発生が懸念されるが、これは前述からも明らか
なように結晶周辺に存在するのみであり、結晶の外周2
nを円筒研削すれば実用上の問題はない。
Furthermore, when the method of the present invention is adopted, since the grown single crystal is exposed to high temperatures, there is a concern that dislocations may occur due to the dissociation of arsenic from the periphery of the crystal. It exists only at the periphery, and the outer periphery 2 of the crystal.
There is no practical problem if n is cylindrically ground.

また、本発明方法はアンドープ結晶およびクロムドープ
結晶において効果的であるが、中性不純物を添加し結晶
を硬化させた場合にも有効である。
Furthermore, although the method of the present invention is effective for undoped crystals and chromium-doped crystals, it is also effective when neutral impurities are added to harden the crystals.

更に、本発明はGaAs以外のm−v族化合物半導体で
あるGaP、InPについても同様な理由で適用するこ
とができる。
Furthermore, the present invention can be applied to GaP and InP, which are m-v group compound semiconductors other than GaAs, for the same reason.

〔発明の効果〕 以上説明したように本発明の化合物半導体単結晶の製造
方法は、チョクラルスキー法で化合物半導体単結晶を成
長する際に、V族元素の飛散量を重量センサで検出し、
この飛散量に相当する量を融液中に注入補正して化学量
論組成を満たしながら単結晶の成長を行っているので、
組成制御された高純度な無転位結晶を得ることができ、
半導体装置を構成した場合にも特性のバラツキの極めて
少ない素子を構成し、優れたm−v族化合物半導体単結
晶乃至その半導体装置を構成することができる。
[Effects of the Invention] As explained above, the method for manufacturing a compound semiconductor single crystal of the present invention detects the amount of scattered group V elements with a weight sensor when growing a compound semiconductor single crystal by the Czochralski method,
Since the amount equivalent to this amount of scattering is injected into the melt and corrected, the single crystal is grown while satisfying the stoichiometric composition.
A highly pure dislocation-free crystal with controlled composition can be obtained,
Even when a semiconductor device is constructed, an element with very little variation in characteristics can be constructed, and an excellent m-v group compound semiconductor single crystal or a semiconductor device thereof can be constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の断面構成図
、第2図は各ガスの熱伝達係数を示すグラフ、第3図は
製造した単結晶のウェハ切り出し位置を説明する図、第
4図は転位密度のウェハ面内分布を示す図、第5図は2
次イオン質量分析による残留ボロンの分析結果を示す図
、第6図はX線準禁制反射法によるストイキオメトリ−
からのずれのウェハ面内分布を示す図である。 1・・・気密容器、2・・・GaAs融液、3・・・る
つぼ、5・・・カーボンヒータ、6・・・カーボン保温
材、8・・・下重量センサ、9・・・引き上げロンド、
10・・・下重量センサ、11・・・ひ素注入装置、1
2・・・ひ素性入用ヒータ、13・・・コンピュータ、
14・・・観察窓。 第1図 第2図 2嵐(K)
FIG. 1 is a cross-sectional configuration diagram of an apparatus for carrying out the method of the present invention, FIG. 2 is a graph showing the heat transfer coefficient of each gas, FIG. 3 is a diagram explaining the position of cutting out the manufactured single crystal wafer, Figure 4 shows the distribution of dislocation density within the wafer surface, and Figure 5 shows the distribution of dislocation density within the wafer surface.
Figure 6 shows the analysis results of residual boron by secondary ion mass spectrometry.
FIG. 3 is a diagram showing an in-plane distribution of deviations from the wafer. DESCRIPTION OF SYMBOLS 1... Airtight container, 2... GaAs melt, 3... Crucible, 5... Carbon heater, 6... Carbon insulation material, 8... Lower weight sensor, 9... Pulling rond ,
10... Lower weight sensor, 11... Arsenic injection device, 1
2... Arsenic heater, 13... Computer,
14...Observation window. Figure 1 Figure 2 Figure 2 Arashi (K)

Claims (1)

【特許請求の範囲】 1、揮発性元素をV族に有するIII−V族化合物半導体
単結晶をチョクラルスキー法で成長するに際し、融液中
の前記V族の揮発性元素の飛散量を重量センサで検出し
、この飛散量に相当する量を融液中に注入補正して化学
量論組成を満たしながら単結晶成長を行うことを特徴と
する化合物半導体単結晶の製造方法。 2、GaとAsの融液を用いてGaAs単結晶を成長す
るに際し、Asを融液中に補正注入してなる特許請求の
範囲第1項記載の化合物半導体単結晶の製造方法。
[Claims] 1. When growing a III-V group compound semiconductor single crystal having a volatile element in group V by the Czochralski method, the amount of the group V volatile element scattered in the melt is calculated by weight. 1. A method for manufacturing a compound semiconductor single crystal, which comprises detecting the amount of scattering with a sensor, injecting and correcting an amount corresponding to the amount of scattering into the melt, and growing the single crystal while satisfying the stoichiometric composition. 2. A method for manufacturing a compound semiconductor single crystal according to claim 1, which comprises corrective injection of As into the melt when growing a GaAs single crystal using a melt of Ga and As.
JP60147837A 1985-07-04 1985-07-04 Method for producing compound semiconductor single crystal Expired - Lifetime JPH0639355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60147837A JPH0639355B2 (en) 1985-07-04 1985-07-04 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60147837A JPH0639355B2 (en) 1985-07-04 1985-07-04 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS627695A true JPS627695A (en) 1987-01-14
JPH0639355B2 JPH0639355B2 (en) 1994-05-25

Family

ID=15439368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60147837A Expired - Lifetime JPH0639355B2 (en) 1985-07-04 1985-07-04 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH0639355B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255288A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JPH0255289A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
EP0355746A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
EP0355747A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
US5786277A (en) * 1995-09-29 1998-07-28 Nec Corporation Method of manufacturing a semiconductor device having an oxide film of a high quality on a semiconductor substrate
JP2017119597A (en) * 2015-12-28 2017-07-06 株式会社福田結晶技術研究所 PRODUCTION METHOD OF ScAlMgO4 SINGLE CRYSTAL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988394A (en) * 1982-11-12 1984-05-22 Agency Of Ind Science & Technol Manufacturing device for gallium arsenide single crystal
JPS6065788A (en) * 1983-09-21 1985-04-15 Sumitomo Metal Mining Co Ltd Production of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988394A (en) * 1982-11-12 1984-05-22 Agency Of Ind Science & Technol Manufacturing device for gallium arsenide single crystal
JPS6065788A (en) * 1983-09-21 1985-04-15 Sumitomo Metal Mining Co Ltd Production of single crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255288A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JPH0255289A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
EP0355746A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
EP0355747A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
US5074953A (en) * 1988-08-19 1991-12-24 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
US5091043A (en) * 1988-08-19 1992-02-25 Mitsubishi Materials Corporation Method for monocrystaline growth of dissociative compound semiconductors
US5786277A (en) * 1995-09-29 1998-07-28 Nec Corporation Method of manufacturing a semiconductor device having an oxide film of a high quality on a semiconductor substrate
JP2017119597A (en) * 2015-12-28 2017-07-06 株式会社福田結晶技術研究所 PRODUCTION METHOD OF ScAlMgO4 SINGLE CRYSTAL
WO2017115852A1 (en) * 2015-12-28 2017-07-06 株式会社福田結晶技術研究所 Method for producing scalmgo4 single crystal

Also Published As

Publication number Publication date
JPH0639355B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
Kainosho et al. Undoped semi‐insulating InP by high‐pressure annealing
US6254677B1 (en) Semiconductor crystal, and method and apparatus of production thereof
US5041186A (en) Method for manufacturing compound semiconductor single crystals using a hydrogen monitor gas
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
Shinoyama et al. Growth of dislocation-free undoped InP crystals
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
JPS627695A (en) Production of compound semiconductor single crystal
US4637854A (en) Method for producing GaAs single crystal
US6485563B2 (en) Method of preparing a compound semiconductor crystal
Bünger et al. Development of a vertical gradient freeze process for low EPD GaAs substrates
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
US20120128915A1 (en) GaAs Wafer And Method For Manufacturing The GaAs Wafer
JPH0557240B2 (en)
Fan et al. Heterogeneous Growth of ZnO Crystal on GaN/Al2O3 Substrate
Holmes et al. Dislocation reduction in large-diameter LEC GaAs growth: I. Low gradient growth and indium doping
Kremer et al. Low dislocation density GaAs grown by the vertical Bridgman technique
JPS63107886A (en) Production of crystal by control of gaseous atmosphere
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
Lin et al. Improvement of stoichiometry in semi-insulating gallium arsenide grown under microgravity
Maeda et al. Oxygen concentration in Czochralski silicon crystals depending on silicon monoxide evaporation from boron doped silicon melts
Ware et al. Growth and properties of very large crystals of semi-insulating gallium arsenide
JP2000313699A (en) PRODUCTION OF SEMIINSULATING InP SINGLE CRYSTAL
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JPH07165488A (en) Apparatus for producing single crystal and method therefor