JPS5988394A - Manufacturing device for gallium arsenide single crystal - Google Patents

Manufacturing device for gallium arsenide single crystal

Info

Publication number
JPS5988394A
JPS5988394A JP19776082A JP19776082A JPS5988394A JP S5988394 A JPS5988394 A JP S5988394A JP 19776082 A JP19776082 A JP 19776082A JP 19776082 A JP19776082 A JP 19776082A JP S5988394 A JPS5988394 A JP S5988394A
Authority
JP
Japan
Prior art keywords
crucible
melt
arsenic
vessel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19776082A
Other languages
Japanese (ja)
Other versions
JPS606920B2 (en
Inventor
Kazutaka Terajima
一高 寺嶋
Tsuguo Fukuda
承生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19776082A priority Critical patent/JPS606920B2/en
Publication of JPS5988394A publication Critical patent/JPS5988394A/en
Publication of JPS606920B2 publication Critical patent/JPS606920B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt

Abstract

PURPOSE:To provide a titled device which provides a gallium arsenide single crystal having high quality by providing a blind cylinder in the opening part of a high pressure vessel, and providing a means for blowing arsenic into a melt by sliding a supporting bar fixing an arsenic contg. vessel in the blind cylinder. CONSTITUTION:The opening end of a blind cylinder 15 is airtightly connected to the opening 14 in the upper side wall of a high pressure vessel 1. A supporting bar 18 is provided in the cylinder 5 and an arsenic contg. vessel 16 is fixed to the top end thereof. A permanent magnet 20 is provided to the rear end of the bar 18, and a permanent magnet 19 is fixed externally to the cylinder 15. Raw materials such as Ga, As, B2O3 or the like are put in a crucible 3 and are melted, then the current value is measured to detect the compsn. ratio of the raw materials. If As portion is found to be deficient, the annular magnet 19 fitted to the cylinder 15 is dropped to bring an arsenic vessel 16 to near the crucible 3 so that the top end of a pipe 17 is thrusted into the GaAs melt 7. The As in the vessel 16 is heated to form As vapor which is blown into the melt 7. When the compsn. of the melt is adjusted, a seed crystal 9 is rotated and the pulling-up operation is started.

Description

【発明の詳細な説明】 この発明は高品質半絶縁性ガリウム砒素(G(Li2)
単結晶の製造装置に関し、更に詳しくは、原料溶融液中
に砒素(A8)蒸気を吹込む手段を備えたGaAs単結
晶の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention utilizes high quality semi-insulating gallium arsenide (G(Li2)).
The present invention relates to an apparatus for producing a single crystal, and more particularly to an apparatus for producing a GaAs single crystal, which is equipped with means for blowing arsenic (A8) vapor into a raw material melt.

1、V族化合物の中でもG(Li2 、は電子移動匿が
大きく、高速集積回路、光、電子素子用拐料に広く用い
られつつある。このようにGaAsが注目を浴びている
のは高品質のG(Li2の比抵抗が1070・α以上と
高絶縁性であること、結晶内の、欠陥が少く、分布が均
一であるものが得られること、大型ウェハーの製造が容
易であること等が挙げられる。このような要求を洒すG
aAs単結晶の製造方法としては液体封止引き上げ法(
、LEC:法)が挙げられる8この液体封止引き上げ法
は低圧封止引き上げ法と高圧封止引き上げ法とがある。
1. Among the V group compounds, G (Li2) has a large electron transfer property and is being widely used as a material for high-speed integrated circuits, optical, and electronic devices.GaAs is attracting attention because of its high quality. G (Li2) has high insulation properties with a specific resistance of 1070·α or more, has few defects in the crystal and has a uniform distribution, and can easily manufacture large wafers. G who makes such a request
The method for producing aAs single crystals is the liquid confinement pulling method (
, LEC: method) 8 This liquid sealing pulling method includes a low pressure sealing pulling method and a high pressure sealing pulling method.

低圧封止引き上げ法は予じめボート成長法で作成したS
i等の不純物を含むGaps多結晶を原料として単結晶
とするため、半絶縁性とするにはクロムの添加を必要と
し、好ましくない6また原料を直接合成する高圧封止引
き上は法はクロムの添加は不要であるが、原料であるG
aとA8及び封止剤であるB、0.をルツボに入れて高
圧下で加熱、合成する際に蒸気圧の低いんが多く蒸散す
る。従って、所望の組成比のGa、As溶融液を得るだ
めにAsの添加量を多くしているが、条件によってAs
の蒸散する量が異なり、溶融液中のGaAs組成比にば
らつきが生じて、高品質の無添加(アンドープ)  G
aA3単結晶を再現性よく得ることは困難であった。
The low-pressure sealing and pulling method uses S made in advance using the boat growth method.
Because Gaps polycrystals containing impurities such as It is not necessary to add G, which is a raw material.
a, A8 and sealant B, 0. When they are put into a crucible and heated under high pressure for synthesis, much of the gas with low vapor pressure transpires. Therefore, in order to obtain a Ga, As melt with the desired composition ratio, the amount of As added is increased, but depending on the conditions, As
The amount of GaAs that transpires is different, and the composition ratio of GaAs in the melt varies, resulting in high quality undoped G.
It was difficult to obtain aA3 single crystals with good reproducibility.

この発明の目的は高品質の半絶縁性無添加Go、As 
M’結晶を再現性よく製造することのできる単結晶製造
装置を提供する。
The purpose of this invention is to produce high quality semi-insulating additive-free Go, As.
A single crystal manufacturing apparatus capable of manufacturing M' crystal with good reproducibility is provided.

このため、この発明による単結晶製造装置においては、
ルツボ内の結晶原料溶融液にA8蒸気を吹込む手段を備
え、原料合成中KAsO不足を見出すと、原料溶融液に
直接As蒸気の吹込みを行って、所定のGaAs組成比
に調整し、しかる後に結晶成長を行うようにする。従っ
て、常に高品質のGcLAs単結晶が再現性良く得られ
ることになる。
Therefore, in the single crystal manufacturing apparatus according to the present invention,
It is equipped with a means for blowing A8 steam into the crystal raw material melt in the crucible, and when a shortage of KAsO is found during raw material synthesis, As vapor is directly blown into the raw material melt to adjust the GaAs composition ratio to a predetermined value. Crystal growth will be performed later. Therefore, high quality GcLAs single crystals can always be obtained with good reproducibility.

先ず、結晶原料溶融液中のG(LA5組成比の測定方法
について、本発明者らが提案した方法を第1図によシ説
明すると、高圧容器/内にはその外周を炭素材料等の支
持部材グで覆れた石英、9化ボロン等のルツボ3を設け
、とのルツボ3を回転支持軸乙により回転できるように
支持し、ルツボ3の周囲にはヒーター、2を設けて、ル
ツボを所定の、温度に加熱、維持する。ルツボ3の上部
には下端に種結晶Pを取付けた導電性の引き上げ軸夕を
設け、この引き上げ軸は回転すると共に上下動するよう
に構成されている。そして、ルツボの支持部材≠と種結
晶引き上げ軸夕にはリード線10. //をそれぞれ接
続する。
First, the method proposed by the present inventors for measuring the G (LA5 composition ratio) in the crystal raw material melt will be explained with reference to Figure 1. A crucible 3 made of quartz, boron 9ide, etc. covered with a material tag is provided, and the crucible 3 is rotatably supported by a rotary support shaft B. A heater 2 is provided around the crucible 3 to rotate the crucible. The crucible 3 is heated and maintained at a predetermined temperature.A conductive pulling shaft with a seed crystal P attached to the lower end is provided in the upper part of the crucible 3, and the pulling shaft is configured to rotate and move up and down. Then, lead wires 10. // are connected to the support member of the crucible and the seed crystal pulling shaft, respectively.

ルツボ3内には結晶材料としてGa、As及び高圧封止
剤として酸化ボロン(B、Os )を所定量入れ、不活
性ガスで容器内を加圧し、ヒータにて原料の溶融点以上
の温度で加熱し、ルツボ内の原料が溶融したら引き上げ
軸夕を下降させ種結晶2をルツボ3内め原料溶融液7と
接触させる。
A predetermined amount of Ga and As as crystal materials and boron oxide (B, Os) as a high-pressure sealing agent are placed in the crucible 3, the inside of the container is pressurized with an inert gas, and a heater is used to heat the container to a temperature above the melting point of the raw materials. When the raw material in the crucible is heated and melted, the pulling axis is lowered to bring the seed crystal 2 into contact with the raw material melt 7 in the crucible 3.

このような状態で、リード線/θ、l/を介してルツボ
支持体≠と引き上げ軸jに電源lコより交流電圧を印加
すると、GaA3溶融液は抵抗体と見做され、ルツボは
絶縁体のためコンデンサーを構成することにがり、電流
計13には原料溶融液の抵抗値に対応する電流値が表示
されるととになる。
In this state, when an AC voltage is applied from the power supply l to the crucible support ≠ and the pulling shaft j via the lead wires /θ, l/, the GaA3 melt is regarded as a resistor, and the crucible becomes an insulator. Therefore, a capacitor is constructed, and the ammeter 13 displays a current value corresponding to the resistance value of the raw material melt.

上記の電流値はルツボ内に溶融しているGaAsの組成
比によって変る。−例として、ルツボを約1260℃で
加熱した時のG(LASの組成比と電流値の関係は第2
図に示すように、Gaが約51゜5チ。
The above current value changes depending on the composition ratio of GaAs melted in the crucible. - As an example, when the crucible is heated to about 1260°C, the relationship between the composition ratio of LAS and the current value is
As shown in the figure, Ga is approximately 51°5 inches.

A8が4B、7%の組成比の時に最大電流値を示し、そ
れよりんが増加すると電流値は急激に減少する。通常高
品質の単結晶を得るだめの溶融液中のGaと八8の組成
比は50%±0.2  の範囲といわれており、溶融液
のGaAsの組成比を調整して電流値が0.27〜0.
3 mAの範囲(図中の点線で示す範囲)を指示したら
、結晶引き上げ操作を行うことにより高品質のGaks
単結晶が再゛現性よく得られることにガる。
When the composition ratio of A8 to 4B is 7%, the maximum current value is shown, and when the composition ratio increases beyond that, the current value decreases rapidly. Normally, the composition ratio of Ga and 88 in the melt to obtain a high-quality single crystal is said to be in the range of 50% ± 0.2, and the current value can be reduced to 0 by adjusting the composition ratio of GaAs in the melt. .27~0.
After specifying the range of 3 mA (range indicated by the dotted line in the figure), high-quality Gaks can be obtained by performing a crystal pulling operation.
The advantage is that single crystals can be obtained with good reproducibility.

第6図は第1図に示した単結晶製造装置に本発明による
ん供給手段を設けた装部の断面図であって、高圧容器l
の上部側壁に開設した開口部/lI−に盲部/jの開口
端を気密に接続する。盲部/j内には先端が高圧容器l
内に突入する支持棒/fがあシ、支持棒先端には砒素収
納容器/6を固定し、この支持棒の後端には永久磁石−
〇を設ける。盲部/jの外周面には環状の永久磁石/?
會嵌合させ、この永久磁石/9は支持棒後端の磁石20
と盲部の壁部を挾んで互に吸引し、永久磁石/2を盲部
外周に沿って摺動させるとそれに伴って、支持棒7gも
盲部内を前後に移動することになる。
FIG. 6 is a cross-sectional view of the single-crystal manufacturing apparatus shown in FIG.
The open end of the blind part /j is airtightly connected to the opening /lI- made in the upper side wall of the blind part /j. There is a high-pressure container l at the tip inside the blind part/j.
A support rod /f is inserted into the inside, an arsenic storage container /6 is fixed to the tip of the support rod, and a permanent magnet is attached to the rear end of this support rod.
Set 〇. There is an annular permanent magnet on the outer circumferential surface of the blind part/j.
This permanent magnet /9 is connected to the magnet 20 at the rear end of the support rod.
When the permanent magnet 2 is slid along the outer periphery of the blind portion by sandwiching the walls of the blind portion and attracting each other, the support rod 7g also moves back and forth within the blind portion.

この支持棒の保持、摺動力法は他の方法によって行って
も良い。上記容器/乙の支持棒の固定端近傍にはパイプ
17の一端を接続し、屈曲してその先端は容器の前方に
延び、支持棒が盲部内を下降したときにルツボ3内の原
料溶融液7に突込するように構成する。容器の周面には
ヒータユlを設け、容器内を加熱するように構成する。
This holding of the support rod and the sliding force method may be performed by other methods. One end of the pipe 17 is connected to the vicinity of the fixed end of the support rod of the container/B, and the pipe 17 is bent so that its tip extends toward the front of the container, so that when the support rod descends inside the blind part, the raw material melt in the crucible 3 7. A heater unit is provided on the circumferential surface of the container to heat the inside of the container.

上述の容器、支持棒、盲部は石英またはパイロリテツク
窒化ボロンで形成される。
The container, support rod, and blind portion described above are formed of quartz or pyrolithic boron nitride.

とのような構成の単結晶製造装置の使用方法( を説明すると、収納容器/2内には八8を予じめ装填し
、環状磁石/りにより支持棹/gを上端に引き上げて、
容器を開口部lψ内・に待機させる。ルツボ3内にGa
 HAs + Bt(hを入れ、所定の圧ブj及び温度
を維持して、ルツボ内の原料が溶融したら、種結晶?を
下降させ、GaA3溶融液7に接触させて、電流値を測
定する。
How to use a single crystal manufacturing apparatus having the following configuration (To explain this, the storage container /2 is loaded with 88 in advance, the support rod /g is pulled up to the upper end by the annular magnet /2,
The container is kept in the opening lψ. Ga in crucible 3
HAs + Bt (h) is put in, the predetermined pressure and temperature are maintained, and when the raw material in the crucible melts, the seed crystal is lowered and brought into contact with the GaA3 melt 7, and the current value is measured.

測定した電流値よりA8が不足していることが判明した
ら、盲部/!に嵌合している環状磁石/2を下降させる
1、その結果、容器/6はルツボ3に近ずき、パイプ1
7の先端はルツボ3内のG(LA8溶融液7に突入する
ことになる。高圧容器/内はAsの融点以上の温度であ
るため、As蒸気は]くイブ17先端より噴出しており
、GaAs溶融液中に八8が吹き込まれることに力る。
If it turns out that A8 is insufficient based on the measured current value, check the blind area/! The annular magnet /2 fitted in the pipe 1 is lowered, and as a result, the container /6 approaches the crucible 3 and the pipe 1
The tip of 7 will rush into the G (LA8 molten liquid 7) in the crucible 3. Since the temperature inside the high-pressure vessel is higher than the melting point of As, As vapor is ejected from the tip of the crucible 17. 88 is blown into the GaAs melt.

吹き込み量力玉不足している場合はヒータ、2/によシ
容器/6を更に積極的に加熱することによりへ8蒸気の
噴出量は増加する。ルツボ内のGaA3溶融液が所定の
支持棒の引き上げ操作全行い、容器/乙を開口部/gに
待機させ、種結晶りの回転、引き上は操作によシ通常の
単結晶製造を行う。
If the amount of blown steam is insufficient, the amount of steam blown out can be increased by further actively heating the heater 2/vessel/6. The GaA3 melt in the crucible performs all the lifting operations of the predetermined support rod, the container/B is placed on standby at the opening/g, and normal single crystal production is performed by rotating and pulling up the seed crystal.

種結晶をGaAs溶融液に接触させて回転、引き上げ操
作によって、単結晶を製造する場合、原料溶融液のGa
psの組成比は製造する単結晶の品質に大きな影響を与
える。特にAsはGcLに較べて蒸発温度が低く、高圧
下で原料を合成する際に、条件が少しでも変ると、合成
した溶融液のGaA3組成比も微妙に変り、所望の組成
比を有するGaA8溶融液を再現性よく合成することは
困難なことである。しかるに本発明によって、高圧容器
内のGaAs溶融液にAse供給することが可能となシ
、結晶引き上げ操作前に溶融液の組成比の調整を行うの
で、高品質のGaAs単結晶が再現性よく得られること
になる。更に原料合成中、或は結晶引き上げ中にもA8
収納容器に接続したパイプよりA8が高圧容器内に噴射
し、んが多量に含む雰囲気を構成することになるが、こ
の多聞のA、qの存在によって、原料溶融液或は成長中
の単結晶表面よりA8の蒸散を抑制し、単結晶の品質の
向上に寄与する。
When producing a single crystal by rotating and pulling a seed crystal in contact with a GaAs melt, the GaAs in the raw material melt
The composition ratio of ps has a great influence on the quality of the single crystal produced. In particular, As has a lower evaporation temperature than GcL, and when the raw materials are synthesized under high pressure, if the conditions change even slightly, the GaA3 composition ratio of the synthesized melt will change slightly, resulting in a GaA8 melt with the desired composition ratio. It is difficult to synthesize liquids with good reproducibility. However, according to the present invention, it is possible to supply Ase to the GaAs melt in the high-pressure vessel, and since the composition ratio of the melt is adjusted before the crystal pulling operation, high-quality GaAs single crystals can be obtained with good reproducibility. It will be done. Furthermore, during raw material synthesis or crystal pulling, A8
A8 is injected into the high-pressure container from a pipe connected to the storage container, creating an atmosphere containing a large amount of nitric acid. It suppresses evaporation of A8 from the surface and contributes to improving the quality of the single crystal.

なお、明細書に記載のGaAs溶融液の組成比の測定法
は一例であって、他の測定法によって得られた結果に基
いて、本発明の装置により結晶原料溶融液へA8を供給
し、単結晶の製造75;できるととは言うまでもない。
Note that the method for measuring the composition ratio of the GaAs melt described in the specification is just one example, and based on the results obtained by other measurement methods, A8 is supplied to the crystal raw material melt using the apparatus of the present invention, Manufacture of single crystal 75: It goes without saying that it is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶融液中のGαAs組成比の測定手段を備えた
却結晶製造装置の一例を示す断面図、第2図はGa、A
s組成比と電流値の関係の一例を示すグラフ、第6図は
本発明による単結晶製造装置のA8供給手段の拡大断面
図である。 図中、lは高圧容器、コはヒーター、3はルツボ、jは
引き上げ軸、6は種結晶、7はGaAs溶融液、/3は
開口部、/lI−は盲部、/jはAs 1m納容器、/
6はパイプ、/7け支持棒、/ざ、lりは磁石1.20
はヒーターを示す。 −ヌ
Fig. 1 is a cross-sectional view showing an example of an apparatus for producing a crystal of GaAs, which is equipped with a means for measuring the GaAs composition ratio in the melt, and Fig.
A graph showing an example of the relationship between the s composition ratio and the current value, and FIG. 6 is an enlarged sectional view of the A8 supply means of the single crystal manufacturing apparatus according to the present invention. In the figure, l is a high-pressure vessel, c is a heater, 3 is a crucible, j is a pulling axis, 6 is a seed crystal, 7 is a GaAs melt, /3 is an opening, /lI- is a blind part, /j is As 1m storage container, /
6 is a pipe, /7 is a support rod, / is a magnet 1.20
indicates a heater. −nu

Claims (1)

【特許請求の範囲】 高圧容器内にヒータで加熱されて原料を溶融す″る回転
ルツボと、ルツボ上に下端を向け、この下端に種結晶を
取付けた回転且つ上下動可能な引き上げ軸を設け、ルツ
ボ中の原料が溶融したら引き上げ軸を下降し、下端の種
結晶をルツボ内の溶融液に接触させて回転、引き上げる
単結晶製造装置において、 上記高圧容器の上部側壁に開設した開口部に開口端を気
密に接続して盲部を設け、との盲部内には先端が高圧容
器内に突入する支持棒の後端部を間接的に保持し、且つ
盲部沿いに摺動させる手段で取付け、上記支持棒の先端
には砒素収納容器を固定すると共に砒素収納容器には先
端をルツボに向けてパイプを突設したことを特徴とする
ガリウム砒素結晶製造装置。
[Claims] A rotating crucible that is heated by a heater to melt raw materials is provided in a high-pressure container, and a pulling shaft that can rotate and move up and down with its lower end facing above the crucible and a seed crystal attached to the lower end. When the raw material in the crucible melts, the pulling shaft is lowered, and the seed crystal at the lower end is brought into contact with the molten liquid in the crucible to rotate and pull the single crystal manufacturing device. A blind part is provided by connecting the ends airtightly, and the rear end of the support rod whose tip protrudes into the high-pressure vessel is indirectly held within the blind part, and the support rod is attached by sliding along the blind part. An apparatus for producing gallium arsenide crystals, characterized in that an arsenic storage container is fixed to the tip of the support rod, and a pipe is provided protruding from the arsenic storage container with the tip facing the crucible.
JP19776082A 1982-11-12 1982-11-12 Gallium arsenide single crystal production equipment Expired JPS606920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19776082A JPS606920B2 (en) 1982-11-12 1982-11-12 Gallium arsenide single crystal production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19776082A JPS606920B2 (en) 1982-11-12 1982-11-12 Gallium arsenide single crystal production equipment

Publications (2)

Publication Number Publication Date
JPS5988394A true JPS5988394A (en) 1984-05-22
JPS606920B2 JPS606920B2 (en) 1985-02-21

Family

ID=16379889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19776082A Expired JPS606920B2 (en) 1982-11-12 1982-11-12 Gallium arsenide single crystal production equipment

Country Status (1)

Country Link
JP (1) JPS606920B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051697A (en) * 1983-08-29 1985-03-23 Hitachi Cable Ltd Method and apparatus for manufacturing compound semiconductor
JPS6147630A (en) * 1984-08-14 1986-03-08 Agency Of Ind Science & Technol Adjustment of n type carrier concentration distribution in gallium arsenic semiconductor
JPS627695A (en) * 1985-07-04 1987-01-14 Nec Corp Production of compound semiconductor single crystal
WO2001086033A1 (en) * 2000-05-10 2001-11-15 Memc Electronic Materials, Inc. Method and device for feeding arsenic dopant into a silicon crystal growing process
WO2009113441A1 (en) * 2008-03-11 2009-09-17 Sumco Techxiv株式会社 Silicon single crystal pull-up apparatus and process for producing silicon single crystal
WO2010013719A1 (en) * 2008-07-30 2010-02-04 Sumco Techxiv株式会社 Silicon single crystal pull-up apparatus
WO2010013718A1 (en) * 2008-07-30 2010-02-04 Sumco Techxiv株式会社 Silicon single crystal pull-up apparatus
JP2010143795A (en) * 2008-12-19 2010-07-01 Sumco Techxiv株式会社 Silicon single crystal pulling apparatus
JP2010143777A (en) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 Apparatus for pulling silicon single crystal
JP2010163306A (en) * 2009-01-14 2010-07-29 Sumco Techxiv株式会社 Pulling apparatus of silicon single crystal
US8535439B2 (en) 2009-01-14 2013-09-17 Sumco Techxiv Corporation Manufacturing method for silicon single crystal
CN113913920A (en) * 2021-10-18 2022-01-11 北京工业大学 Preparation method and preparation device of AlGaAs single crystal

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335600B2 (en) * 1983-08-29 1988-07-15 Hitachi Cable
JPS6051697A (en) * 1983-08-29 1985-03-23 Hitachi Cable Ltd Method and apparatus for manufacturing compound semiconductor
JPS6147630A (en) * 1984-08-14 1986-03-08 Agency Of Ind Science & Technol Adjustment of n type carrier concentration distribution in gallium arsenic semiconductor
JPS627695A (en) * 1985-07-04 1987-01-14 Nec Corp Production of compound semiconductor single crystal
WO2001086033A1 (en) * 2000-05-10 2001-11-15 Memc Electronic Materials, Inc. Method and device for feeding arsenic dopant into a silicon crystal growing process
US20110017948A1 (en) * 2008-03-11 2011-01-27 Sumco Techxiv Corporation Silicon single crystal pulling apparatus and manufacturing method of silicon single crystal
WO2009113441A1 (en) * 2008-03-11 2009-09-17 Sumco Techxiv株式会社 Silicon single crystal pull-up apparatus and process for producing silicon single crystal
US9758899B2 (en) 2008-03-11 2017-09-12 Sumco Techxiv Corporation Manufacturing method of silicon single crystal having low-resistivity electrical characteristics
US20150107509A1 (en) * 2008-03-11 2015-04-23 Sumco Techxiv Corporation Silicon single crystal pulling apparatus and manufacturing method of silicon single crystal
US20110132257A1 (en) * 2008-07-30 2011-06-09 Sumco Techxiv Corporation Silicon single crystal pull-up apparatus
JP2010030852A (en) * 2008-07-30 2010-02-12 Sumco Techxiv株式会社 Pulling apparatus of silicon single crystal
US20110120367A1 (en) * 2008-07-30 2011-05-26 Sumco Techxiv Corporation Silicon single crystal pull-up apparatus
JP2010030853A (en) * 2008-07-30 2010-02-12 Sumco Techxiv株式会社 Pulling apparatus of silicon single crystal
US8518180B2 (en) 2008-07-30 2013-08-27 Sumco Techxiv Corporation Silicon single crystal pull-up apparatus having a sliding sample tube
US8920561B2 (en) 2008-07-30 2014-12-30 Sumco Techxiv Corporation Silicon single crystal pull-up apparatus that pulls a doped silicon single crystal from a melt
WO2010013718A1 (en) * 2008-07-30 2010-02-04 Sumco Techxiv株式会社 Silicon single crystal pull-up apparatus
WO2010013719A1 (en) * 2008-07-30 2010-02-04 Sumco Techxiv株式会社 Silicon single crystal pull-up apparatus
JP2010143777A (en) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 Apparatus for pulling silicon single crystal
JP2010143795A (en) * 2008-12-19 2010-07-01 Sumco Techxiv株式会社 Silicon single crystal pulling apparatus
JP2010163306A (en) * 2009-01-14 2010-07-29 Sumco Techxiv株式会社 Pulling apparatus of silicon single crystal
US8535439B2 (en) 2009-01-14 2013-09-17 Sumco Techxiv Corporation Manufacturing method for silicon single crystal
CN113913920A (en) * 2021-10-18 2022-01-11 北京工业大学 Preparation method and preparation device of AlGaAs single crystal

Also Published As

Publication number Publication date
JPS606920B2 (en) 1985-02-21

Similar Documents

Publication Publication Date Title
Chani et al. Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique
JPS5988394A (en) Manufacturing device for gallium arsenide single crystal
US6402834B1 (en) Apparatus and method for manufacturing monocrystals
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
JPS6046998A (en) Pulling up of single crystal and its device
JP3086850B2 (en) Method and apparatus for growing single crystal
US4303465A (en) Method of growing monocrystals of corundum from a melt
JP2688137B2 (en) Method of pulling silicon single crystal
TWI812512B (en) Single crystal silicon crystal pulling control method and device, single crystal silicon crystal pulling furnace
TWI301858B (en)
US5474019A (en) Process for producing silicon single crystals
JPH10287488A (en) Pulling up of single crystal
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JPS606919B2 (en) Method for producing Group 3-5 compound single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6395196A (en) Method for growing single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP3551607B2 (en) Method for producing GaAs single crystal
US4234376A (en) Growth of single crystal beryllium oxide
JPH0615439B2 (en) <III>-<V> Group compound semiconductor single crystal manufacturing method
JP2005112685A (en) Compound semiconductor crystal production method, compound semiconductor single crystal, and production apparatus therefor
JP2001080989A (en) Device for producing compound semiconductor single crystal and production process using the same
JPS6033297A (en) Pulling device for single crystal semiconductor
JP2000239097A (en) Method for pulling up silicon single crystal for semiconductor
JPS59121192A (en) Preparation of single crystal of iii-v group compound semiconductor