JPS62176046A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS62176046A
JPS62176046A JP61015324A JP1532486A JPS62176046A JP S62176046 A JPS62176046 A JP S62176046A JP 61015324 A JP61015324 A JP 61015324A JP 1532486 A JP1532486 A JP 1532486A JP S62176046 A JPS62176046 A JP S62176046A
Authority
JP
Japan
Prior art keywords
electrode
battery
conductive polymer
electrolytic
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015324A
Other languages
Japanese (ja)
Other versions
JPH0766800B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Koji Nishio
晃治 西尾
Masahisa Fujimoto
正久 藤本
Tetsuyoshi Suzuki
鈴木 哲身
Kazumi Hasegawa
和美 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Sanyo Electric Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP61015324A priority Critical patent/JPH0766800B2/en
Publication of JPS62176046A publication Critical patent/JPS62176046A/en
Publication of JPH0766800B2 publication Critical patent/JPH0766800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To ease the forming of an electrode according to the type of a battery and to increase the charge-discharge efficiency and the capacity of the battery by using a united body of a conductive polymer and a porous substrate as an electrode. CONSTITUTION:As electrolytic electrodes, a porous carbon body is used as a positive electrode and a lithium foil as a negative electrode. They are electro lyzed in a propylene carbonate solution at a constant current and polypyrrole is produced and retained in pores of the porous body by electrolytic oxidation- polymerization. The porous body is punched in a disk and used as a positive electrode 1. Lithium metal is used in a negative electrode 2 and propylene carbonate is used as an electrolyte. Thereby, the forming of an electrode is made easy, coming off of conductive polymer from the substrate is eliminated, conductivity and cycle performance are improved to increase charge-discharge efficiency, and the capacity is also increased.

Description

【発明の詳細な説明】 (産業上の利用分野〉 この発明は゛、導電性ポリマーを電極材料として用いて
なる二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention relates to a secondary battery using a conductive polymer as an electrode material.

〈従来の技術〉 近年、導電性ポリマーを電極材料とした二次電池が提案
されている。
<Prior Art> In recent years, secondary batteries using conductive polymers as electrode materials have been proposed.

この種の二次電池の電極材料となる導電性ポリマーは、
各種アニオンやカチオンなどをドーパントとしたドーピ
ング並びにアンド−ピンク処理が可能であり、アニオン
がドーピングされる導電性ポリマーを正極材料として、
及び/またはカチオンがドーピングされる導電性ポリマ
ーを負極材料として使用すると共に、上記ドーパントを
含有する溶液を電解液として用い、ドーピング及びアン
ド−ピングを電気化学的に可逆的に行なうことにより充
放電可能な電池が4M成される訳である。
The conductive polymer that serves as the electrode material for this type of secondary battery is
Doping with various anions, cations, etc. as dopants and and-pink treatment are possible, and a conductive polymer doped with anions is used as a positive electrode material.
Charging and discharging is possible by using a conductive polymer doped with and/or cations as a negative electrode material and a solution containing the above dopant as an electrolyte, and performing doping and undoping electrochemically and reversibly. This means that 4M batteries will be produced.

このような導電性ポリマーとしては従来よりポリアセチ
レン、ポリチオフェン、ポリピロールなどが知られてお
り、ポリアセチレンを例に採れば、ポリアセチレンを正
極または負、恒の電極材料として用い、8「4−1Cβ
04−1SbF  −1pr6−等のアニオン、または
L i” 、Na+、R4−N”  (Rはアルキル基
を表わす)等のカチオンを電気化学的に可逆的にドーピ
ング、アンド−ピングするという備成か採られる。
Such conductive polymers include polyacetylene, polythiophene, polypyrrole, etc.
04-1SbF -1pr6-, or cations such as Li'', Na+, R4-N'' (R represents an alkyl group), electrochemically and reversibly doped or doped. taken.

このような導電性ポリマーを用いてなる二次電池は、従
来の二次電池に較べ、軽づ、高エネルギー密度で無公害
である等といった多くの特長をもつものの、現状では自
己放電率が大きい、電池容量が少ない、といった種々の
解決すべき技術的課題があり、これらの課題を解決する
ためにいろいろな研究開発がなされている。
Although secondary batteries made using such conductive polymers have many features compared to conventional secondary batteries, such as being lighter, higher energy density, and non-polluting, they currently have a high self-discharge rate. There are various technical problems to be solved, such as low battery capacity, and various research and developments are being carried out to solve these problems.

ところで、ポリアセチレン、ポリチオフェンやポリピロ
ールなどは化学的方法でも電気化学的方法(電解酸化重
合法)でも生成が可能であり、また電気化学的方法で作
製したポリチオフェン、ポリピロールなどを二次電池用
電極材料として用いた場合には化学的に作製したものの
場合に較べて自己放電率も小さく、サイクル特11並び
に電池容量も良好でおること°から、例えば特開昭60
−216471 号公報に開示されているように、電解
酸化重合によって電解電極上に導電性ポリマーを形成さ
せたものを電池電極とすることでこの種の二次電池の特
性向上を図ることが提案されている。
By the way, polyacetylene, polythiophene, polypyrrole, etc. can be produced by chemical methods or electrochemical methods (electrolytic oxidation polymerization method), and polythiophene, polypyrrole, etc. produced by electrochemical methods can be used as electrode materials for secondary batteries. When used, the self-discharge rate is lower than in the case of chemically prepared ones, and the cycle characteristic 11 and battery capacity are also good.
As disclosed in Publication No. 216471, it has been proposed to improve the characteristics of this type of secondary battery by forming a conductive polymer on an electrolytic electrode by electrolytic oxidation polymerization and using it as a battery electrode. ing.

〈発明が解決しようとする問題点〉 しかしながら、上記のように電気化学的方法によって作
製した導電[1ポリマーは電解電極上面に生成したもの
であるため、それを電池用1へとして用いる場合、電池
機種に応じた形状や寸法に加工成形して用いることが難
しいという問題がおる。それ故、導電性ポリマーを表面
に生成させた電解電極を製造後に洗浄しそのまま大型電
池の電池電極として用いる場合はともかく、民生用の円
筒系電池、特に電極形状や体積などに制約や規格のある
ボタン型電池の電池電極として導電性ポリマーの付着し
た電解電極をそのままあるいは加工成形して用いること
は実質的に不可能である。尚、導電性ポリマーを電解電
極から削り取って粉末化し、結着剤を添加して所望形状
に加工成形する方法もあるが、この方法では導電性ポリ
マーの削り取りや粉末化などの工程が加わるのでその弁
製造工程の煩雑化を招く他、結着剤の混入によって電池
特性が劣化りる等といった不都合があるので好ましくな
く、実用上適用し矧い。
<Problems to be Solved by the Invention> However, as described above, since the conductive polymer produced by the electrochemical method is produced on the top surface of the electrolytic electrode, when it is used for battery 1, There is a problem in that it is difficult to process and mold the product into a shape and size suitable for each model. Therefore, although electrolytic electrodes with conductive polymer formed on their surfaces may be washed after manufacture and used as battery electrodes for large batteries, there are restrictions and standards for consumer cylindrical batteries, especially regarding electrode shape and volume. It is virtually impossible to use an electrolytic electrode to which a conductive polymer is attached as it is or after processing it as a battery electrode for a button-type battery. There is also a method of scraping the conductive polymer from the electrolytic electrode, pulverizing it, adding a binder, and processing and molding it into the desired shape, but this method requires additional steps such as scraping the conductive polymer and pulverizing it. In addition to complicating the valve manufacturing process, this method is undesirable because it causes problems such as deterioration of battery characteristics due to the contamination of the binder, and its practical application is difficult.

また、電解酸化重合の如き電気化学的手法を用いた場合
、導電性ポリマーは電解電極上に膜状に生成していく。
Furthermore, when an electrochemical method such as electrolytic oxidative polymerization is used, a conductive polymer is formed in the form of a film on the electrolytic electrode.

このため、大量に電極上に生成させると電極表面の導電
性ポリマーと最外層の導電性ポリマーとの間の機械的な
密着強度が弱くなり、少しのショックが加わっただけで
う9電性ポリマーが剥がれ落ちるので電池サイクル特性
劣化をJR<等の恐れがある。のみならず、最外層付近
の導電性ポリマーは電解電極として用いた導電体に直接
接触していないことから電池電極の導電性が悪くなると
いう問題がある。
For this reason, if a large amount is generated on the electrode, the mechanical adhesion strength between the conductive polymer on the electrode surface and the conductive polymer in the outermost layer becomes weak, and even if a slight shock is applied, the electroconductive polymer will Since it may peel off, there is a risk of deterioration of battery cycle characteristics. In addition, since the conductive polymer near the outermost layer is not in direct contact with the conductor used as the electrolytic electrode, there is a problem that the conductivity of the battery electrode deteriorates.

更に、電解電極上に大量に導電性ポリマーを生成させて
膜厚の厚いものを作った場合、電極各部の厚みが異なる
ので均一な膜が得られず、これを電池電極として用いた
時には電池反応が一部に集中して生じ、電池性能を劣化
させる原因となるといった問題もある。
Furthermore, if a large amount of conductive polymer is produced on an electrolytic electrode to create a thick film, the thickness of each part of the electrode will be different, making it impossible to obtain a uniform film, and when this is used as a battery electrode, the battery reaction will be affected. There is also the problem that this occurs in a concentrated manner in some areas, causing deterioration of battery performance.

〈問題点を解決するための手段〉 本発明ちは以上の問題点を解決タベく研究した所、導電
性ポリマーを電気化学的に作製する際に電極として多孔
質基体を用い、この多孔質基体中の孔内において導電性
ポリマーを生成させ且つ保持させてなるものを電池電極
とすることにより所期の目的を達成できることを知得し
てこの発明を完成した。
<Means for Solving the Problems> The present invention solves the above problems.As a result of extensive research, a porous substrate is used as an electrode when electrochemically producing a conductive polymer. This invention was completed based on the knowledge that the intended purpose could be achieved by using a battery electrode made by producing and retaining a conductive polymer within the pores.

即ち、この発明の二次電池は、多孔質基体を電解電極と
して電解酸化重合法によって多孔質基体中の孔内に導電
性ポリマーを生成ざゼ保持させてなる導電性ポリマーと
多孔質基体の一体物を正極または負極の少なくとも一方
の電池電極として用いたことを要旨とする。
That is, the secondary battery of the present invention is an integrated structure of a conductive polymer and a porous substrate, in which a conductive polymer is generated and retained in the pores of the porous substrate by an electrolytic oxidation polymerization method using the porous substrate as an electrolytic electrode. The gist is that the material was used as at least one of the positive and negative battery electrodes.

上記のような多孔質基体としては、導電性のめる多孔質
基体であり、電解重合中に溶出しないものであれば特に
制限なく使用でき、例えば実施例で示した炭素多孔質の
他に海綿状金属か挙げられ、材質としてはNi、Ni−
Cr。
The above-mentioned porous substrate can be used without any particular restriction as long as it is a conductive porous substrate that does not dissolve during electrolytic polymerization. For example, in addition to the carbon porous material shown in the examples, spongy metal The materials include Ni, Ni-
Cr.

N 1−Cu、N 1−Fe−Cr、Fe−Cr。N1-Cu, N1-Fe-Cr, Fe-Cr.

Cu、Fe、Cu−N i 、Pb、Cd、Au。Cu, Fe, Cu-Ni, Pb, Cd, Au.

A Qが使用できるが、将にNi−Fe−Crヤ△Uが
電解手合中に基体の溶出か起こりにくく適している。こ
のような多孔質基体を陽、唖に用いポリヂオフエン、ポ
リピロール等の導電性ポリマーの電解重合を行なうと多
孔質基体の孔内で重合反応が生じ、生成されたポリマー
はそのまま孔内に保持される。
Although A and Q can be used, Ni-Fe-Cr and ΔU are more suitable because they are less likely to cause elution of the substrate during the electrolytic procedure. When electrolytically polymerizing conductive polymers such as polydiophene and polypyrrole using such a porous substrate, a polymerization reaction occurs within the pores of the porous substrate, and the produced polymer is retained within the pores. .

く作 用〉 上記のように、多孔質基体の孔内に導電性ポリマーを保
持させた構成としたので、孔内に導電[生ポリマーを保
持させた俊の多孔質基体を直接電池機種に応じた形状や
寸法に加工成形するのみで、電極厚みや面積などの規格
が要求される民生用のボタン型電池などの電極材料とし
ても電気化学的に生成された導電性ポリマーを容易に適
用することができる。
As described above, since the structure is such that the conductive polymer is held in the pores of the porous substrate, the porous substrate holding the raw polymer can be directly connected to the pores depending on the battery model. Electrochemically produced conductive polymers can be easily applied as electrode materials for consumer button-type batteries, etc., which require specifications such as electrode thickness and area, by simply processing and forming them into desired shapes and dimensions. I can do it.

また、電池電極として容量をもたせるために基体上に導
電性ポリマーを多足に生成させた場合でも、ポリマーは
基体孔内に保持されるので、両者間の機械的強度は大き
く、サイクル中などに導電性ポリマーが基体から脱落す
ることが起こりにくくなる他、生成した導電性ポリマー
の殆んどが集電体を兼ねる多孔質基体と密着しているた
めに集電V1かよく、加えて導電性ポリマー生成前後の
多孔質基体自体の厚みは変わらないので多孔質基体自体
の厚みを均一とするのみで容易に膜厚が均一化して電池
電極各部の電池反応をスムーズに行なわせることができ
る結果、電池サイクル特性の向上を図ることができる。
In addition, even when many conductive polymers are formed on a substrate to provide capacity as a battery electrode, the polymers are retained within the pores of the substrate, so the mechanical strength between them is large, and even during cycling, etc. In addition to making it difficult for the conductive polymer to fall off from the substrate, most of the generated conductive polymer is in close contact with the porous substrate that also serves as a current collector, so current collection V1 is good, and in addition, conductive Since the thickness of the porous substrate itself does not change before and after polymer formation, simply by making the thickness of the porous substrate itself uniform, the film thickness can be easily made uniform and the battery reaction at each part of the battery electrode can be carried out smoothly. It is possible to improve battery cycle characteristics.

更に、使用する多孔質基体がポーラスでそれ自体の含液
性(含電解液性)が高いことから、電池電極としての含
液率が向上し、基体中に必る導電性ポリマーの殆んどが
電池反応に関与し、結果として、充放電効率が向上し、
電池容量も増加する。
Furthermore, since the porous substrate used is porous and has a high liquid-containing property (electrolytic liquid-containing property), the liquid content as a battery electrode is improved, and most of the conductive polymer required in the substrate is participates in the battery reaction, resulting in improved charging and discharging efficiency,
Battery capacity will also increase.

〈実施例〉 ピロールを0.2M、過塩素酸リチウムLiCj04を
0.2M溶解させたプロピレンカーボネート溶液を用い
、また電解電極として陽極に炭素の多孔質体をまた陰極
にはリチウム箔を夫々使用して、7mA/c12の電流
密度で28mAt1/cIl12まで定電流電解を行な
い、電解酸化重合によって上記多孔体の孔内にポリピロ
ールを生゛成させ保持させた。以上の処理を行なった多
孔質体を円盤状に打ち(友いて得たものを正極とし、ま
た負極にはli金金属、電解液には過塩素酸リチウムL
 i CI O4を2M溶解させたプロピレンカーボネ
ート溶液を用いて、第1図に示した如き本発明に係る電
池(本発明電池A)を作製した。図中、1は正極、2は
負極、3はセパレータ、4は正極缶、5は負極缶、6は
絶縁パッキング、7は負極集電体である。
<Example> A propylene carbonate solution in which 0.2M of pyrrole and 0.2M of lithium perchlorate LiCj04 were dissolved was used, and a porous carbon material was used as the anode and lithium foil was used as the cathode and electrolysis electrode. Then, constant current electrolysis was carried out at a current density of 7 mA/c12 to 28 mAt1/cI12, and polypyrrole was generated and retained in the pores of the porous body by electrolytic oxidative polymerization. The porous body subjected to the above treatment was pounded into a disk shape (the obtained material was used as the positive electrode, Li gold metal was used as the negative electrode, and lithium perchlorate L was used as the electrolyte).
A battery according to the present invention (present invention battery A) as shown in FIG. 1 was prepared using a propylene carbonate solution in which 2M of i Cl O4 was dissolved. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode can, 5 is a negative electrode can, 6 is an insulating packing, and 7 is a negative electrode current collector.

一方、塩化鉄触媒を用いてピロールを化学的に重合して
作製したポリピロール粉末を円盤状に加圧成形したもの
を正極として他は、本発明電池へと同じ構成の電池(比
較電池B)を、また電解酸化重合時の陽極として白金板
を用いた他は本発明電池Aの場合と同様にして電解酸化
重合法によって白金板上に生成させたポリピロールを粉
末化して円盤状に成形したものを正極とした以外は本発
明電池Aと同じ構成の電池(比較電池C)を、更に上記
電解酸化重合法で生成ポリピロールが付着した陽極の白
金板を本発明電池Aの正極と同じ寸法に打ち扱いたもの
を正極とした以外は本発明電池Aと同様な構成の電池(
比較電池D)を夫々作製した。但し、比較電池りは、第
1図に示すようなボタン型電池には組めないため、第2
図に示すように、正極端子8、負極端子9を正極1、負
極2に夫々当接させ、締め込み式の外装缶10.11を
もった密閉型の電池としそ作製した。
On the other hand, a battery (comparative battery B) with the same configuration as the battery of the present invention was used, except that a positive electrode was a polypyrrole powder prepared by chemically polymerizing pyrrole using an iron chloride catalyst and pressure-molded into a disk shape. In addition, polypyrrole was produced on a platinum plate by electrolytic oxidative polymerization in the same manner as in the case of battery A of the present invention except that a platinum plate was used as an anode during electrolytic oxidative polymerization, and the polypyrrole was powdered and molded into a disk shape. A battery (comparative battery C) having the same configuration as battery A of the present invention except for the positive electrode was used, and a platinum plate of the positive electrode to which polypyrrole produced by the above electrolytic oxidation polymerization method was attached was treated to have the same dimensions as the positive electrode of battery A of the present invention. A battery (
Comparative batteries D) were prepared. However, since the comparative battery cannot be assembled into a button type battery as shown in Figure 1, the second
As shown in the figure, a positive electrode terminal 8 and a negative electrode terminal 9 were brought into contact with the positive electrode 1 and the negative electrode 2, respectively, to produce a sealed battery having a tightenable outer can 10 and 11.

以上の4つの電池について、1mAの電流で2時間充電
した後、1mAの電流で電池電圧が2.OVになるまで
放電するという一連の充放電サイクルを繰り返した時の
充放電効率(%)のサイクル変化を第3図に示した。同
図より、本発明電池Aは、他の3つの電池に較べて、充
放電効率及びサイクル特性が格段に湊れていることかわ
かり、初期の充放電効率がほぼ100%で、しかも10
0勺イクル目でも充放電効率に殆んど変化がみられない
ことがわかる。
After charging the above four batteries with a current of 1 mA for 2 hours, the battery voltage decreased to 2.0 mA with a current of 1 mA. FIG. 3 shows the cycle change in charging/discharging efficiency (%) when a series of charging/discharging cycles of discharging until OV was repeated. From the figure, it can be seen that the battery A of the present invention has significantly better charge/discharge efficiency and cycle characteristics than the other three batteries, with an initial charge/discharge efficiency of almost 100% and a
It can be seen that there is almost no change in the charge/discharge efficiency even after the 0th cycle.

本発明電池Aの充放電効率がこのように良好であるのは
、本発明電池△で正極として用いた多孔質体の含液率(
金電解液率)が高く、その分電池反応におけるポリピロ
ールの利用率が高まるためと思われる。また、本発明電
池Aのサイクル特性が良好であるのは、正極各部が均一
厚なだめに正極全面で電池反応が均−且つスムーズに起
こること、正極において集電体を兼ねている多孔質体と
活物質であるポリピロールとの密着性がよいので集電性
が良好でおること、正極の機械的強度が大きいのでポリ
ピロールがサイクル中に多孔質体から脱落する度合が僅
かであること等によるものと思われる。
The reason why the charging and discharging efficiency of the battery A of the present invention is so good is that the liquid content (
This seems to be because the gold electrolyte ratio) is high, which increases the utilization rate of polypyrrole in the battery reaction. In addition, the cycle characteristics of the battery A of the present invention are good because each part of the positive electrode has a uniform thickness so that the battery reaction occurs uniformly and smoothly over the entire surface of the positive electrode, and because the positive electrode has a porous material that also serves as a current collector. This is due to the fact that the current collection property is good due to the good adhesion to the active material polypyrrole, and the high mechanical strength of the positive electrode means that the degree to which the polypyrrole falls off from the porous body during the cycle is small. Seem.

次に、以上の4つの電池について、満充電後の保存中に
おける放電容量の経時変化を調べた結果を第4図に示す
。同図において、保存効率(%)は、(保存初度の敢電
容i/保存後の放電容量)xlOOを指す。第4図より
、本発明電池△の保存効率は伯の3つの電池より良好で
、保存日数10日1でも93%以上の高率を示し、保存
中の自己放電が少なく、保存特性も良いことがわかる。
Next, FIG. 4 shows the results of examining the temporal changes in discharge capacity of the four batteries described above during storage after full charge. In the figure, storage efficiency (%) refers to (capacity i at the beginning of storage/discharge capacity after storage) xlOO. From Figure 4, the storage efficiency of the battery △ of the present invention is better than the three batteries, showing a high rate of 93% or more even after 10 days of storage, with little self-discharge during storage, and good storage characteristics. I understand.

尚、以上は正1性にのみ本発明に係る電池電極を用いた
ものについて説明したが、負極、おるいは正負極に本発
明を適用した電池電極を用いた場合も同様の効果が得ら
れることは明らかである。
Although the above description uses the battery electrode according to the present invention only for the positive polarity, the same effect can be obtained when the battery electrode to which the present invention is applied to the negative electrode, or the positive and negative electrodes is used. That is clear.

〈発明の効果〉 以上のように、この発明の二次電池によれば、電気化学
的に生成された導電性ポリマーを民生用のボタン型電池
などの電極材料として容易に使用することができること
は勿論、サイクル中における導電性ポリマーの脱落が少
なく、電池電極の集電性がよく、且つ電池電極各部にお
ける電池反応がスムーズに行なわれる結果、電池り゛イ
クル特性向上が図れる。また、電池電極の基体である多
孔質基体そのものの含液性がよいために、電極中のポリ
ピロールの利用率が高まって充放電効率が茗しく向上す
る。更に、保存特性が良好で保存中の自己放電が少ない
といった数々の優れた効果を奏する。
<Effects of the Invention> As described above, according to the secondary battery of the present invention, an electrochemically generated conductive polymer can be easily used as an electrode material for consumer button batteries, etc. Of course, the conductive polymer is less likely to fall off during the cycle, the battery electrode has good current collection properties, and the battery reaction at each part of the battery electrode is carried out smoothly, resulting in improved battery cycle characteristics. Furthermore, since the porous substrate itself, which is the base of the battery electrode, has good liquid-retaining properties, the utilization rate of polypyrrole in the electrode increases, and the charge/discharge efficiency improves considerably. Furthermore, it has many excellent effects such as good storage characteristics and little self-discharge during storage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の電池構造を示した断面図、第
2図は比較例の電池構造を示した断面図、第3図は本発
明電池などのサイクル特性を示したグラフ、第4図は同
じく保存特性を示したグラフである。 1・・・正極、2・・・負極、3・・・セパレータ、4
・・・正極缶、5・・・負極缶。 特許出願人   三菱化成工業株式会社同    三洋
電機株式会社
FIG. 1 is a cross-sectional view showing the battery structure of an example of the present invention, FIG. 2 is a cross-sectional view showing the battery structure of a comparative example, and FIG. 3 is a graph showing the cycle characteristics of the battery of the present invention. Figure 4 is a graph similarly showing the storage characteristics. 1...Positive electrode, 2...Negative electrode, 3...Separator, 4
...Positive electrode can, 5...Negative electrode can. Patent applicant Mitsubishi Chemical Industries, Ltd. Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、多孔質基体を電解電極として電解酸化重合法によつ
て多孔質基体中の孔内に導電性ポリマーを生成させ保持
させてなる導電性ポリマーと多孔質基体の一体物を正極
または負極の少なくとも一方の電池電極として用いたこ
とを特徴とする二次電池。
1. Using the porous substrate as an electrolytic electrode, a conductive polymer is produced and retained in the pores of the porous substrate by an electrolytic oxidation polymerization method, and the integrated body of the conductive polymer and the porous substrate is used as at least the positive electrode or the negative electrode. A secondary battery characterized in that it is used as one battery electrode.
JP61015324A 1986-01-27 1986-01-27 Secondary battery Expired - Fee Related JPH0766800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015324A JPH0766800B2 (en) 1986-01-27 1986-01-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015324A JPH0766800B2 (en) 1986-01-27 1986-01-27 Secondary battery

Publications (2)

Publication Number Publication Date
JPS62176046A true JPS62176046A (en) 1987-08-01
JPH0766800B2 JPH0766800B2 (en) 1995-07-19

Family

ID=11885593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015324A Expired - Fee Related JPH0766800B2 (en) 1986-01-27 1986-01-27 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0766800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151162A (en) * 1989-06-12 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS60127663A (en) * 1983-12-12 1985-07-08 Toyota Central Res & Dev Lab Inc Storage battery and manufacturing of its positive electrode polymer
JPS60216470A (en) * 1984-04-09 1985-10-29 Toyota Motor Corp Cell and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS60127663A (en) * 1983-12-12 1985-07-08 Toyota Central Res & Dev Lab Inc Storage battery and manufacturing of its positive electrode polymer
JPS60216470A (en) * 1984-04-09 1985-10-29 Toyota Motor Corp Cell and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151162A (en) * 1989-06-12 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte

Also Published As

Publication number Publication date
JPH0766800B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
KR20020020691A (en) Pasty materials with nanocrystalline materials for electrochemical components and layers and electrochemical components produced with said materials
CN111403739A (en) Nickel-cobalt-manganese acid lithium battery cell positive electrode active material, aluminum shell battery cell and manufacturing method thereof
JPH03129679A (en) Polyaniline battery and manufacture of polyaniline powder using in this battery
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JPH1126013A (en) Sealed metal oxide-zinc storage battery and its manufacture
JPS62176046A (en) Secondary battery
CN114824211A (en) Method for coating anode material precursor with tin base and anode material precursor
JP2000173598A (en) Manufacture of electrode and battery
KR101749898B1 (en) Manufacturing method of electrode using of third dimension electrode base material for electro-chemical applied product
US3161545A (en) Rechargeable cell and electrode therefor
JPS60127663A (en) Storage battery and manufacturing of its positive electrode polymer
JP2003142087A (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3737534B2 (en) Manufacturing method of alkaline secondary battery
JPS60170172A (en) Rechargeable electrochemical device
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
JPS60150563A (en) Manufacture of polymer compound storage battery
JPH02239572A (en) Polyaniline battery
CN106450511A (en) Electrolyte and battery
JPS6144380B2 (en)
JP2762730B2 (en) Nickel-cadmium storage battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JP2698180B2 (en) Non-aqueous secondary battery
CN115347173A (en) Three-dimensional bridged double-carbon-limited-domain tin oxide-based negative electrode material and preparation method and application thereof
JP3205397B2 (en) Solid electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees