JPH0766800B2 - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0766800B2
JPH0766800B2 JP61015324A JP1532486A JPH0766800B2 JP H0766800 B2 JPH0766800 B2 JP H0766800B2 JP 61015324 A JP61015324 A JP 61015324A JP 1532486 A JP1532486 A JP 1532486A JP H0766800 B2 JPH0766800 B2 JP H0766800B2
Authority
JP
Japan
Prior art keywords
battery
electrode
conductive polymer
porous substrate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61015324A
Other languages
Japanese (ja)
Other versions
JPS62176046A (en
Inventor
修弘 古川
晃治 西尾
正久 藤本
哲身 鈴木
和美 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Sanyo Electric Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Sanyo Electric Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP61015324A priority Critical patent/JPH0766800B2/en
Publication of JPS62176046A publication Critical patent/JPS62176046A/en
Publication of JPH0766800B2 publication Critical patent/JPH0766800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、導電性ポリマーを電極材料として用いてな
る二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a secondary battery using a conductive polymer as an electrode material.

〈従来の技術〉 近年、導電性ポリマーを電極材料とした二次電池が提案
されている。
<Prior Art> In recent years, a secondary battery using a conductive polymer as an electrode material has been proposed.

この種の二次電池の電極材料となる導電性ポリマーは、
各種アニオンやカチオンなどをドーパントとしたドーピ
ング並びにアンドーピング処理が可能であり、アニオン
がドーピングされる導電性ポリマーを正極材料として、
及び/またはカチオンがドーピングされる導電性ポリマ
ーを負極材料として使用すると共に、上記ドーパントを
含有する溶液を電解液として用い、ドーピング及びアン
ドーピングを電気化学的に可逆的に行なうことにより充
放電可能な電池が構成される訳である。
The conductive polymer used as the electrode material of this type of secondary battery is
Doping with various anions and cations as dopants as well as undoping treatment are possible, and a conductive polymer doped with anions is used as a positive electrode material.
And / or a cation-doped conductive polymer is used as a negative electrode material, and a solution containing the above-mentioned dopant is used as an electrolytic solution, and doping and undoping are performed electrochemically and reversibly to enable charge / discharge. That is, the battery is configured.

このような導電性ポリマーとしては従来よりポリアセチ
レン,ポリチオフェン,ポリピロールなどが知られてお
り、ポリアセチレンを例に採れば、ポリアセチレンを正
極または負極の電極材料として用い、BF4 -、ClO4 -、SbF
6 -、PF6 -等のアニオン、またはLi+、Na+、R4-N+(Rは
アルキル基を表わす)等のカチオンを電気化学的に可逆
的にドーピング,アンドーピングするという構成が採ら
れる。
Such conductive polymers as polyacetylene conventionally, polythiophene, polypyrrole are known, taking a polyacetylene as an example, using a polyacetylene as an electrode material for the positive electrode or negative electrode, BF 4 -, ClO 4 - , SbF
6 -, PF 6 -, etc. anions or Li +,, Na +, R 4 -N + to reversibly (R represents an alkyl group) electrochemical cations such as doping, adopted a configuration that undoping To be

このような導電性ポリマーを用いてなる二次電池は、従
来の二次電池に較べ、軽量、高エネルギー密度で無公害
である等といった多くの特長をもつものの、現状では自
己放電率が大きい、電池容量が少ない、といった種々の
解決すべき技術的課題があり、これらの課題を解決する
ためにいろいろな研究開発がなされている。
A secondary battery using such a conductive polymer has many features such as light weight, high energy density and no pollution as compared with conventional secondary batteries, but at present, the self-discharge rate is large, There are various technical problems to be solved, such as low battery capacity, and various researches and developments have been made to solve these problems.

ところで、ポリアセチレン,ポリチオフェンやポリピロ
ールなどは化学的方法でも電気化学的方法(電解酸化重
合法)でも生成が可能であり、また電気化学的方法で作
製したポリチオフェン,ポリピロールなどを二次電池用
電極材料として用いた場合には化学的に作製したものの
場合に較べて自己放電率も小さく、サイクル特性並びに
電池容量も良好であることから、例えば特開昭60-21647
1号公報に開示されているように、電解酸化重合によっ
て電解電極上に導電性ポリマーを形成させたものを電池
電極とすることでこの種の二次電池の特性向上を図るこ
とが提案されている。
By the way, polyacetylene, polythiophene, polypyrrole, etc. can be produced by either a chemical method or an electrochemical method (electrolytic oxidation polymerization method), and polythiophene, polypyrrole, etc. produced by the electrochemical method are used as an electrode material for a secondary battery. When it is used, the self-discharge rate is smaller than that of the chemically produced one, and the cycle characteristics and the battery capacity are good.
As disclosed in Japanese Patent Publication No. 1, it has been proposed to improve the characteristics of a secondary battery of this kind by using a battery electrode having a conductive polymer formed on an electrolytic electrode by electrolytic oxidation polymerization. There is.

また、特開昭59-18578号公報には、多孔性金属中に気相
重合で導電性ポリマーを形成する方法が開示されてい
る。また、特開昭60-216470号公報には、電解重合の際
の陽極基材として白金板などの導電性基材を用いること
が記載されている。更に、特開昭60-127663号公報に
は、蓄電池の正電極として板状、網状、メッキ膜状、蒸
着膜状のものを用いることが記載されている。
Further, JP-A-59-18578 discloses a method of forming a conductive polymer in a porous metal by vapor phase polymerization. Further, JP-A-60-216470 describes that a conductive base material such as a platinum plate is used as an anode base material in electrolytic polymerization. Further, JP-A-60-127663 discloses that a plate-shaped, net-shaped, plated film-shaped, or vapor-deposited film-shaped electrode is used as a positive electrode of a storage battery.

〈発明が解決しようとする問題点〉 しかしながら、上記のように電気化学的方法によって作
製した導電性ポリマーは電解電極上面に生成したもので
あるため、それを電池電極として用いる場合、電池機種
に応じた形状や寸法に加工成形して用いることが難しい
という問題がある。それ故、導電性ポリマーを表面に生
成させた電解電極を製造後に洗浄しそのまま大型電池の
電池電極として用いる場合はともかく、民生用の円筒系
電池、特に電極形状や体積などに制約や規格のあるボタ
ン型電池の電池電極として導電性ポリマーの付着した電
解電極をそのままあるいは加工成形して用いることは実
質的に不可能である。尚、導電性ポリマーを電解電極か
ら削り取って粉末化し、結着剤を添加して所望形状に加
工成形する方法もあるが、この方法では導電性ポリマー
の削り取りや粉末化などの工程が加わるのでその分製造
工程の煩雑化を招く他、結着剤の混入によって電池特性
が劣化する等といった不都合があるので好ましくなく、
実用上適用し難い。
<Problems to be Solved by the Invention> However, since the conductive polymer produced by the electrochemical method as described above is produced on the upper surface of the electrolytic electrode, when it is used as a battery electrode, it depends on the battery model. There is a problem that it is difficult to process and use it in different shapes and dimensions. Therefore, regardless of the case where the electrolytic electrode having a conductive polymer formed on the surface is washed after manufacturing and used as it is as a battery electrode of a large-sized battery, there are restrictions and standards in consumer-use cylindrical batteries, particularly the electrode shape and volume. It is practically impossible to use an electrolytic electrode having a conductive polymer attached thereto as it is or after being processed and used as a battery electrode of a button type battery. There is also a method in which a conductive polymer is scraped off from the electrolytic electrode to be powdered, and a binder is added to form a desired shape, but in this method, steps such as scraping and powdering of the conductive polymer are added, so that In addition to complicating the manufacturing process, it is not preferable because there are disadvantages such as deterioration of battery characteristics due to the inclusion of a binder.
It is practically difficult to apply.

また、電解酸化重合の如き電気化学的手法を用いた場
合、導電性ポリマーは電解電極上に膜状に生成してい
く。このため、大量に電極上に生成させると電極表面の
導電性ポリマーと最外層の導電性ポリマーとの間の機械
的な密着強度が弱くなり、少しのショックが加わっただ
けで導電性ポリマーが剥がれ落ちるので電池サイクル特
性劣化を招く等の恐れがある。のみならず、最外層付近
の導電性ポマーは電解電極として用いた導電体に直接接
触していないことから電池電極の集電性がが悪くなると
いう問題がある。更に、電解電極上に大量に導電性ポリ
マーを生成させて膜厚の厚いものを作った場合、電極各
部の厚みが異なるので均一な膜が得られず、これを電池
電極として用いた時には電池反応が一部に集中して生
じ、電池性能を劣化させる原因となるといった問題もあ
る。
Further, when an electrochemical method such as electrolytic oxidative polymerization is used, the conductive polymer is produced in the form of a film on the electrolytic electrode. Therefore, if a large amount is generated on the electrode, the mechanical adhesion strength between the conductive polymer on the electrode surface and the conductive polymer in the outermost layer will be weakened, and the conductive polymer will peel off with a slight shock. Since it falls, there is a risk of causing deterioration of battery cycle characteristics. In addition, since the conductive pomer near the outermost layer does not directly contact the conductor used as the electrolytic electrode, there is a problem that the current collecting property of the battery electrode deteriorates. Furthermore, when a large amount of conductive polymer is produced on the electrolytic electrode to make a thick film, the thickness of each part of the electrode is different, so a uniform film cannot be obtained. However, there is also a problem in that the battery concentration is partially concentrated, which causes deterioration of battery performance.

更に、特開昭59-18578号公報で開示された方法では、以
下の3つの欠点を有している。まず第1に、気相重合で
は導電性ポリマーが密に形成されるために充填率が極度
に高く、電極への含液が悪く、電池特性を十分に引き出
すことはできない点がある。これを確保するため、海綿
状炭素集電体を用いた電池と網目状集電体を用いた電池
について充放電サイクル性能試験および保存性能試験を
実施したところ、充放電サイクル性能に関しては、第5
図に示すように、海綿状炭素集電体を用いた電池では10
0サイクル目でも充放電効率が低下していないのに対し
て、網目状集電体を用いた電池では100サイクル目で充
放電効率がほぼ半減し、また保存性能については、第6
図に示すように、海綿状炭素集電体を用いた電池では10
日目でも保存効率が90%を越えているのに対して、網目
状集電体を用いた電池では10日目で保存効率が75%にま
で低減しており、上述の第1の欠点が事実であることを
裏付けるデータが得られた。第2に、気相重合は触媒と
モノマー基体の反応であるため、基体はその反応の場を
提供するだけであって、反応には関与しないので生成し
た導電性ポリマーと基体は機械的摩擦力、即ち接触によ
ってにのみ結びついているだけで密着性がある。第3
に、金属を用いているために正極として用いれば金属イ
オンの溶解が生じる恐れがある。
Furthermore, the method disclosed in JP-A-59-18578 has the following three drawbacks. First of all, in the gas phase polymerization, since the conductive polymer is densely formed, the filling rate is extremely high, the liquid content in the electrode is poor, and the battery characteristics cannot be sufficiently brought out. In order to ensure this, a charge / discharge cycle performance test and a storage performance test were carried out on a battery using a spongy carbon current collector and a battery using a mesh current collector.
As shown in the figure, in the case of a battery using a spongy carbon current collector, 10
The charge / discharge efficiency did not decrease even at the 0th cycle, whereas the charge / discharge efficiency was almost halved at the 100th cycle in the battery using the mesh current collector.
As shown in the figure, in the case of a battery using a spongy carbon current collector, 10
While the storage efficiency exceeded 90% on the day, the storage efficiency of the battery using the mesh current collector decreased to 75% on the 10th day. Data were obtained to support the facts. Second, since the gas phase polymerization is a reaction between the catalyst and the monomer substrate, the substrate only provides a field for the reaction and does not participate in the reaction, so that the generated conductive polymer and the substrate are mechanically frictional. That is, there is adhesion only by being connected by contact. Third
In addition, since a metal is used, if used as a positive electrode, dissolution of metal ions may occur.

また、特開昭60-216470号公報に記載されたような平板
では、電池とした後の充放電サイクルによって導電性ポ
リマーが基材から剥離しやすく、サイクル特性に優れた
ものが得られないばかりか、二次元方向にのみ孔が形成
されたものでは含液されにくいなど導電性ポリマーと電
解液の湿潤性に問題があり、電池容量が減少するという
欠点がある。
Further, in the flat plate as described in JP-A-60-216470, the conductive polymer is easily peeled from the base material by the charge / discharge cycle after the battery is formed, and it is not possible to obtain an excellent cycle characteristic. On the other hand, if the holes are formed only in the two-dimensional direction, there is a problem in wettability between the conductive polymer and the electrolytic solution because it is difficult to contain the liquid, and the battery capacity decreases.

更に、特開昭60-127663号公報における板状、網状、メ
ッキ膜状、蒸着膜状の正電極を用いた場合には、孔があ
っても二次元方向にしか孔がないものであるため、活物
質の電解液との湿潤性が厚み方向において不足して電池
特性が十分に引き出せないという不都合がある。
Furthermore, when the plate-shaped, net-shaped, plated film-shaped, or vapor-deposited film-shaped positive electrode in JP-A-60-127663 is used, even if there are holes, they are only two-dimensional. However, there is an inconvenience that the wettability of the active material with the electrolytic solution is insufficient in the thickness direction and the battery characteristics cannot be sufficiently obtained.

〈問題点を解決するための手段〉 本発明者は以上の問題点を解決すべく研究した所、導電
性ポリマーを電気化学的に作製する際に電極として多孔
質基体を用い、この多孔質基体中の孔内において導電性
ポリマーを生成させ且つ保持させてなるものを電池電極
とすることにより所期の目的を達成できることを知得し
てこの発明を完成した。
<Means for Solving Problems> The present inventor has conducted research to solve the above problems and found that a porous substrate was used as an electrode when electrochemically producing a conductive polymer. The present invention has been completed by knowing that the intended purpose can be achieved by using a battery electrode in which a conductive polymer is generated and held in the inside pores.

即ち、この発明は、導電性ポリマーと多孔質基体との一
体物を、正極または負極の少なくとも一方の電池電極と
する二次電池において、前記多孔質基体は基材料部から
構成され、多数個の孔を有しており、前記孔は三次元方
向に互いに連通する形で形成されており、前記多孔質基
体を電解電極とする電解酸化重合法によって前記導電性
ポリマーを前記孔内に生成させて前記基材料部の表面を
被覆し、前記一体物として用いたことを要旨とする。
That is, the present invention is a secondary battery in which a conductive polymer and a porous substrate are integrally formed as a battery electrode of at least one of a positive electrode and a negative electrode, the porous substrate is composed of a base material portion, and The hole is formed, the holes are formed in such a manner that they communicate with each other in the three-dimensional direction, and the conductive polymer is generated in the hole by an electrolytic oxidation polymerization method using the porous substrate as an electrolytic electrode. The gist is that the surface of the base material portion is coated and used as the integrated body.

また、前記多孔質基体が炭素の多孔質体であることを要
旨とする。
The gist is that the porous substrate is a porous body of carbon.

尚、上記多数個の孔の大きさは、略1〜100ミクロン程
度のものであり、多孔質基体に形成される導電性ポリマ
ーの厚みは略1〜100ミクロン程度である。従って、多
孔質基体の多数個の孔は、マクロ的には形成された導電
性ポリマーで埋められた状態となっているが、ミクロ的
には電解液が内部まで浸透することができるようになっ
ており、形成された導電性ポリマーと電解液との反応、
即ち電極反応を行うことができる。
The size of the large number of holes is about 1 to 100 μm, and the thickness of the conductive polymer formed on the porous substrate is about 1 to 100 μm. Therefore, a large number of pores of the porous substrate are macroscopically filled with the formed conductive polymer, but microscopically, the electrolytic solution can penetrate to the inside. And the reaction between the formed conductive polymer and the electrolytic solution,
That is, an electrode reaction can be performed.

上記のような多孔質基体としては、導電性のある多孔質
基体であり、電解重合中に溶出しないものであれば特に
制限なく使用でき、例えば実施例で示した炭素多孔質の
他に海綿状金属が挙げられ、材質としてはNi,Ni-Cr,Ni-
Cu,Ni-Fe-Cr,Fe-Cr,Cu,Fe,Cu-Ni,Pb,Cd,Au,Agが使用で
きるが、特にNi-Fe-CrやAuが電解重合中に基体の溶出が
起こりにくく適している。このような多孔質基体を陽極
に用いポリチオフェン,ポリピロール等の導電性ポリマ
ーの電解重合を行なうと多孔質基体の孔内で重合反応が
生じ、生成されたポリマーはそのまま孔内に保持され
る。
As the above-mentioned porous substrate, a conductive porous substrate can be used without particular limitation as long as it does not elute during electrolytic polymerization. For example, in addition to the carbon porous material shown in the examples, a sponge-like material can be used. Metals are mentioned, and the material is Ni, Ni-Cr, Ni-
Cu, Ni-Fe-Cr, Fe-Cr, Cu, Fe, Cu-Ni, Pb, Cd, Au, Ag can be used.Especially Ni-Fe-Cr and Au elute the substrate during electropolymerization. Difficult and suitable. When such a porous substrate is used as an anode and electropolymerization of a conductive polymer such as polythiophene or polypyrrole is performed, a polymerization reaction occurs in the pores of the porous substrate, and the produced polymer is retained in the pores as it is.

〈作用〉 上記した構成により、この発明では、多孔質基体中に導
電性ポリマーが均一に生成するため、この一体物を電池
機種に応じた形状や寸法に加工成形するのみで、電極厚
みや面積などの規格が要求される民生用のボタン型電池
などの電極材料としても電気化学的に生成した導電性ポ
リマーを適用することが容易となる。
<Operation> With the above-described configuration, in the present invention, since the conductive polymer is uniformly generated in the porous substrate, the electrode thickness and the area can be simply formed by processing and molding this integrated product into a shape and a dimension according to the battery model. It becomes easy to apply the electrochemically generated conductive polymer as an electrode material for consumer-use button-type batteries and the like for which standards such as the above are required.

また、電池電極としての容量増大を狙って多孔質基体中
に導電性ポリマーを多量に生成させた場合でも、多孔質
基体中で互いに連通した多数個の孔内に導電性ポリマー
が均一に生成するため、両者(多孔質基体と導電性ポリ
マー)間の機械的結合力は楔効果によって大きくなり、
サイクル中などに導電性ポリマーが多孔質基体から脱落
することが起こりにくくなるばかりか、生成した導電性
ポリマーの殆どが集電体を兼ねる多孔質基体と密着して
いるために集電性が良好で、更に、均一な厚みの多孔質
基体に導電性ポリマーを生成させることにより、導電性
ポリマーと多孔質基体との一体物の厚みを均一化できる
ので、電池電極各部における反応をスムーズに行なわせ
ることが可能となる結果、電池サイクル特性が向上す
る。
Further, even when a large amount of conductive polymer is generated in the porous substrate in order to increase the capacity as the battery electrode, the conductive polymer is uniformly generated in the large number of holes communicating with each other in the porous substrate. Therefore, the mechanical coupling force between them (the porous substrate and the conductive polymer) increases due to the wedge effect,
Not only is it less likely that the conductive polymer will fall out of the porous substrate during cycling, but also most of the generated conductive polymer is in close contact with the porous substrate that also serves as the current collector, so good current collection performance In addition, since the conductive polymer and the porous substrate can be made uniform in thickness by generating the conductive polymer on the porous substrate having a uniform thickness, the reaction in each part of the battery electrode can be smoothly performed. As a result, the battery cycle characteristics are improved.

更に、使用する多孔質基体がポーラスでそれ自体の含液
性(含電解液性)が高いことから、電池電極としての含
液率が向上し、基体中にある導電性ポリマーの殆んどが
電池反応に関与し、結果として、充放電効率が向上し、
電池容量も増加する。
Furthermore, since the porous substrate used is porous and has a high liquid content (electrolyte solution property) of itself, the liquid content as a battery electrode is improved, and most of the conductive polymer in the substrate is Involved in the battery reaction, as a result, the charge and discharge efficiency is improved,
Battery capacity also increases.

〈実施例〉 ピロールを0.2M、過塩素酸リチウムLiClO4を0.2M溶解さ
せたプロピレンカーボネート溶液を用い、また電解電極
として陽極に1〜100ミクロンの多数個の孔が三次元方
向に互いに連通する形で形成された炭素の多孔質体(空
隙率88%)をまた陰極にはリチウム箔を夫々使用して、
7mA/cm2の電流密度で4時間(28mAH/cm2まで)定電流電
解を行ない、電解酸化重合によって上記多孔質体の孔内
にポリピロールを生成させ保持させた。以上の処理を行
なった厚さ1.2mmの板状の多孔質体を円盤状に打ち抜い
て得たものを正極とし、また負極にはLi金属を、電解液
には過塩素酸リチウムLiClO4を2M溶解させたプロピレン
カーボネート溶液を用いて、第1図に示した如き本発明
に係る電池(本発明電池A)を作製した。図中、1は正
極、2は負極、3はセパレータ、4は正極缶、5は負極
缶、6は絶縁パッキング、7は負極集電体である。
<Example> A propylene carbonate solution prepared by dissolving 0.2 M of pyrrole and 0.2 M of lithium perchlorate LiClO 4 is used, and a large number of holes of 1 to 100 μm communicate with each other in the three-dimensional direction in the anode as an electrolytic electrode. Shaped carbon porous material (porosity 88%) and cathode using lithium foil,
Constant-current electrolysis was performed for 4 hours (up to 28 mAH / cm 2 ) at a current density of 7 mA / cm 2 , and polypyrrole was generated and held in the pores of the porous body by electrolytic oxidation polymerization. The positive electrode was obtained by punching a 1.2 mm-thick plate-shaped porous body that had been subjected to the above treatment into a disk, and the negative electrode was Li metal, and the electrolyte was lithium perchlorate LiClO 4 2M. Using the dissolved propylene carbonate solution, a battery according to the present invention (invention battery A) as shown in FIG. 1 was produced. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode can, 5 is a negative electrode can, 6 is an insulating packing, and 7 is a negative electrode current collector.

一方、塩化鉄触媒を用いてピロールを化学的に重合して
作製したポリピロール粉末を円盤状に加圧成形したもの
を正極として他は本発明電池Aと同じ構成の電池(比較
電池B)を、また電解酸化重合時の陽極として白金板を
用いた他は本発明電池Aの場合と同様にして電解酸化重
合法によって白金板上に生成させたポリピロールを粉末
化して円盤状に成形したものを正極とした以外は本発明
電池Aと同じ構成の電池(比較電池C)を、更に上記電
解酸化重合法で生成ポリピロールが付着した陽極の白金
板を本発明電池Aの正極と同じ寸法に打ち抜いたものを
正極とした以外は本発明電池Aと同様な構成の電池(比
較電池D)を夫々作製した。但し、比較電池Dは、第1
図に示すようなボタン型電池には組めないため、第2図
に示すように、正極端子8、負極端子9を正極1、負極
2に夫々当接させ、締め込み式の外装缶10,11をもった
密閉型の電池として作製した。
On the other hand, a battery (comparative battery B) having the same configuration as the battery A of the present invention except that the positive electrode was formed by pressure-molding a polypyrrole powder prepared by chemically polymerizing pyrrole using an iron chloride catalyst, Further, a positive electrode is obtained by powderizing polypyrrole produced on a platinum plate by an electrolytic oxidation polymerization method in the same manner as in the case of the battery A of the present invention except that a platinum plate is used as an anode at the time of electrolytic oxidation polymerization to form a disk shape. A battery (comparative battery C) having the same configuration as the battery A of the present invention except that the platinum plate of the anode to which polypyrrole produced by the electrolytic oxidation polymerization method was attached was punched out to the same size as the positive electrode of the battery A of the present invention. A battery (comparative battery D) having the same structure as the battery A of the present invention except that the above was used as a positive electrode was prepared. However, the comparison battery D is the first
Since it cannot be assembled in the button type battery as shown in the figure, as shown in FIG. 2, the positive electrode terminal 8 and the negative electrode terminal 9 are brought into contact with the positive electrode 1 and the negative electrode 2, respectively, and the tightenable outer cans 10 and 11 are connected. Was prepared as a sealed battery having

以上の4つの電池について、1mAの電流で2時間充電し
た後、1mAの電流で電池電圧が2.0Vになるまで放電する
という一連の充放電サイクルを繰り返した時の充放電効
率(%)のサイクル変化を第3図に示した。同図より、
本発明電池Aは、他の3つの電池に較べて、充放電効率
及びサイクル特性が格段に優れていることがわかり、初
期の充放電効率がほぼ100%で、しかも100サイクル目で
も充放電効率に殆んど変化がみられないことがわかる。
A cycle of charge / discharge efficiency (%) when repeating a series of charge / discharge cycles of charging the above 4 batteries at 1mA current for 2 hours and then discharging at 1mA current until the battery voltage becomes 2.0V. The changes are shown in FIG. From the figure,
It was found that the battery A of the present invention had much better charge / discharge efficiency and cycle characteristics than the other three batteries, and the initial charge / discharge efficiency was almost 100%, and the charge / discharge efficiency at the 100th cycle was also high. It can be seen that there is almost no change.

本発明電池Aの充放電効率がこのように良好であるの
は、本発明電池Aで正極として用いた多孔質体の含液率
(含電解液率)が高く、その分電池反応におけるポリピ
ロールの利用率が高まるためと思われる。また、本発明
電池Aのサイクル特性が良好であるのは、正極各部が均
一厚なために正極全面で電池反応が均一且つスムーズに
起こること、正極において集電体を兼ねている多孔質体
と活物質であるポリピロールとの密着性がよいので集電
性が良好であること、正極の機械的強度が大きいのでポ
リピロールがサイクル中に多孔質体から脱落する度合が
僅かであること等によるものと思われる。
The reason why the charging / discharging efficiency of the battery A of the present invention is so good is that the porous body used as the positive electrode in the battery A of the present invention has a high liquid content (electrolyte content), and the polypyrrole of This is probably because the usage rate increases. In addition, the cycle characteristics of the battery A of the present invention are good because the battery reaction occurs uniformly and smoothly on the entire surface of the positive electrode because each part of the positive electrode has a uniform thickness, and the porous body also functions as a current collector in the positive electrode. Due to the good adhesion to the active material polypyrrole, good current collection, and the fact that the mechanical strength of the positive electrode is large and the degree of polypyrrole falling off from the porous body during the cycle is small. Seem.

次に、以上の4つの電池について、満充電後の保存中に
おける放電容量の経時変化を調べた結果を第4図に示
す。同図において、保存効率(%)は、(保存初度の放
電容量/保存後の放電容量)×100を指す。第4図よ
り、本発明電池Aの保存効率は他の3つの電池より良好
で、保存日数10日目でも93%以上の高率を示し、保存中
の自己放電が少なく、保存特性も良いことがわかる。
Next, FIG. 4 shows the results of examining the change with time in the discharge capacity of the above four batteries during storage after full charge. In the figure, the storage efficiency (%) indicates (discharge capacity at the beginning of storage / discharge capacity after storage) × 100. As shown in FIG. 4, the storage efficiency of the battery A of the present invention is better than that of the other three batteries, showing a high rate of 93% or more even after 10 days of storage, less self-discharge during storage, and good storage characteristics. I understand.

尚、以上は正極にのみ本発明に係る電池電極を用いたも
のについて説明したが、負極、あるいは正負極に本発明
を適用した電池電極を用いた場合も同様の効果が得られ
ることは明らかである。
Although the above description has been made using the battery electrode according to the present invention only for the positive electrode, it is clear that the same effect can be obtained when the battery electrode according to the present invention is used for the negative electrode or the positive and negative electrodes. is there.

〈発明の効果〉 以上のように、この発明の二次電池によれば、電気化学
的に生成された導電性ポリマーを民生用のボタン型電池
などの電極材料として容易に使用することができること
は勿論、サイクル中における導電性ポリマーの脱落が少
なく、電池電極の集電性がよく、且つ電池電極各部にお
ける電池反応がスムーズに行なわれる結果、電池サイク
ル特性向上が図れる。また、電池電極の基体である多孔
質基体そのものの含液性がよいために、電極中のポリピ
ロールの利用率が高まって充放電効率が著しく向上す
る。更に、保存特性が良好で保存中の自己放電が少ない
といった数々の優れた効果を奏する。
<Effects of the Invention> As described above, according to the secondary battery of the present invention, it is possible to easily use an electrochemically generated conductive polymer as an electrode material for a consumer button-type battery or the like. Needless to say, the conductive polymer does not drop off during the cycle, the current collecting ability of the battery electrode is good, and the battery reaction in each part of the battery electrode is smoothly performed, so that the battery cycle characteristics can be improved. In addition, since the porous substrate itself, which is the substrate of the battery electrode, has a good liquid content, the utilization rate of polypyrrole in the electrode is increased, and the charge / discharge efficiency is significantly improved. Furthermore, it has various excellent effects such as good storage characteristics and less self-discharge during storage.

なお、本発明では電解重合を用いているために、必ず、
電解液が基体と導電性ポリマー間に保存した状態で生成
され、これを電池電極として用いた場合、導電性ポリマ
ーの性能を引き出す上で最も最良の電解液含液率が得ら
れる。また、電解重合は必ず基体とモノマーの間に電子
の授受が生じるために生成した導電性ポリマーは基体と
非常に強い結合をしているために非常に密着性が向上す
る。さらに、基体に金属でなく炭素を用いることで金属
イオンの溶解が生じる恐れがないという長所を有してい
る。
In the present invention, because electrolytic polymerization is used,
The electrolytic solution is produced in a state of being stored between the substrate and the conductive polymer, and when this is used as a battery electrode, the best electrolytic solution content is obtained in order to bring out the performance of the conductive polymer. Further, in the electropolymerization, electrons are transferred between the substrate and the monomer without fail, so that the conductive polymer formed has a very strong bond with the substrate, so that the adhesion is greatly improved. In addition, the use of carbon instead of metal for the substrate has the advantage that there is no risk of dissolution of metal ions.

また、本発明においては多孔質基体が三次元方向に孔を
有するので、活物質の電解液との湿潤性が厚み方向にお
いても確保されることから、電池特性を十分に引き出す
ことが可能となり、電池容量の増大とサイクル特性の向
上を図ることが出来る。
Further, in the present invention, since the porous substrate has pores in the three-dimensional direction, the wettability of the active material with the electrolytic solution is ensured also in the thickness direction, so that the battery characteristics can be sufficiently brought out. It is possible to increase the battery capacity and the cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の電池構造を示した断面図、第
2図は比較例の電池構造を示した断面図、第3図は本発
明電池などのサイクル特性を示したグラフ、第4図は同
じく保存特性を示したグラフ、第5図は二次電池のサイ
クル特性を示したグラフ、第6図は二次電池の保存特性
を示したグラフである。 1……正極、2……負極、3……セパレータ、4……正
極缶、5……負極缶。
FIG. 1 is a sectional view showing a battery structure of an example of the present invention, FIG. 2 is a sectional view showing a battery structure of a comparative example, and FIG. 3 is a graph showing cycle characteristics of a battery of the present invention, FIG. 4 is a graph showing the storage characteristics of the same, FIG. 5 is a graph showing the cycle characteristics of the secondary battery, and FIG. 6 is a graph showing the storage characteristics of the secondary battery. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Positive electrode can, 5 ... Negative electrode can.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 鈴木 哲身 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成工業株式会社総合研究所内 (72)発明者 長谷川 和美 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成工業株式会社総合研究所内 (56)参考文献 特開 昭59−18578(JP,A) 特開 昭60−216470(JP,A) 特開 昭60−127663(JP,A) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Masahisa Fujimoto 2-18 Kyosaka Hondori, Moriguchi City, Osaka Sanyo Denki Incorporated (72) Inventor Tetsumi Suzuki, 1000 Kamoshida-cho, Midori-ku, Yokohama, Kanagawa Sanryo Kasei Co., Ltd.Institute of Research (72) Inventor Kazumi Hasegawa 1000, Kamoshida-cho, Midori-ku, Yokohama, Kanagawa Sanryo Kasei (56) References JP-A-59-18578 (JP, A) JP-A-60-216470 (JP, A) JP-A-60-127663 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導電性ポリマーと多孔質基体との一体物
を、正極または負極の少なくとも一方の電池電極とする
二次電池において、 前記多孔質基体は基材料部から構成され、多数個の孔を
有しており、前記孔は三次元方向に互いに連通する形で
形成されており、 前記多孔質基体を電解電極とする電解酸化重合法によっ
て前記導電性ポリマーを前記孔内に生成させて前記基材
料部の表面を被覆し、前記一体物として用いたことを特
徴とする二次電池。
1. A secondary battery in which an electroconductive polymer and a porous substrate are integrally formed as a battery electrode of at least one of a positive electrode and a negative electrode, wherein the porous substrate is composed of a base material portion and has a plurality of holes. And the holes are formed so as to communicate with each other in a three-dimensional direction, and the conductive polymer is generated in the holes by an electrolytic oxidation polymerization method using the porous substrate as an electrolytic electrode, A secondary battery characterized in that the surface of a base material portion is coated and used as the integrated body.
【請求項2】前記多孔質基体が、炭素の多孔質体である
ことを特徴とする特許請求の範囲第1項記載の二次電
池。
2. The secondary battery according to claim 1, wherein the porous substrate is a carbon porous body.
JP61015324A 1986-01-27 1986-01-27 Secondary battery Expired - Fee Related JPH0766800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015324A JPH0766800B2 (en) 1986-01-27 1986-01-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015324A JPH0766800B2 (en) 1986-01-27 1986-01-27 Secondary battery

Publications (2)

Publication Number Publication Date
JPS62176046A JPS62176046A (en) 1987-08-01
JPH0766800B2 true JPH0766800B2 (en) 1995-07-19

Family

ID=11885593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015324A Expired - Fee Related JPH0766800B2 (en) 1986-01-27 1986-01-27 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0766800B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402554B1 (en) * 1989-06-12 1993-11-18 Honda Giken Kogyo Kabushiki Kaisha Method of conditioning of organic polymeric electrodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS60127663A (en) * 1983-12-12 1985-07-08 Toyota Central Res & Dev Lab Inc Storage battery and manufacturing of its positive electrode polymer
JPS60216470A (en) * 1984-04-09 1985-10-29 Toyota Motor Corp Cell and its production method

Also Published As

Publication number Publication date
JPS62176046A (en) 1987-08-01

Similar Documents

Publication Publication Date Title
CA2161076C (en) An anode with an anode active material retaining body having a number ofpores distributed therein for rechargeable battery, rechargeable batteryprovided with said anode, and process for the production of said anode
US6165642A (en) Rechargeable lithium battery having an improved cathode and process for the production thereof
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
WO1998033227A1 (en) Organic electrolytic battery
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
WO1984004001A1 (en) Process for manufacturing re-chargeable electrochemical device
EP0797846A1 (en) Electrolytic cell and electrolytic process
EP0199175B1 (en) Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material
KR20020020691A (en) Pasty materials with nanocrystalline materials for electrochemical components and layers and electrochemical components produced with said materials
JP3182195B2 (en) Electrode for non-aqueous electrolyte secondary battery and battery using the same
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JP5196392B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP3565272B2 (en) Negative electrode material for Li secondary battery, negative electrode using the same
JPH0766800B2 (en) Secondary battery
JP3403856B2 (en) Organic electrolyte battery
JP3403858B2 (en) Organic electrolyte battery
JPS63102162A (en) Secondary battery
JPH0536401A (en) Lithium secondary battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH04179049A (en) Negative electrode for battery
JPS60127663A (en) Storage battery and manufacturing of its positive electrode polymer
JP2999813B2 (en) Rechargeable battery
JPH0773061B2 (en) Secondary battery manufacturing method
JP2644765B2 (en) Positive electrode for storage battery
WO2021087327A1 (en) Mitigating the zincate effect in energy dense manganese dioxide electrodes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees