JPS62175539A - Thermocouple type air conditioner - Google Patents

Thermocouple type air conditioner

Info

Publication number
JPS62175539A
JPS62175539A JP61015490A JP1549086A JPS62175539A JP S62175539 A JPS62175539 A JP S62175539A JP 61015490 A JP61015490 A JP 61015490A JP 1549086 A JP1549086 A JP 1549086A JP S62175539 A JPS62175539 A JP S62175539A
Authority
JP
Japan
Prior art keywords
heat
thermocouple
heating
cooling
thermoelectromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61015490A
Other languages
Japanese (ja)
Inventor
Keizo Oota
太田 恵三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61015490A priority Critical patent/JPS62175539A/en
Publication of JPS62175539A publication Critical patent/JPS62175539A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To save electricity by connecting to a thermocouple made by combined different kinds of thermoelectric elements the cooling heat by evaporation and the heating heat by condensation of an evaporator and condenser in a heat pump cycle and supplying thermal electromotive force generated by temperature difference to an electricty requiring demand side. CONSTITUTION:A condenser 4 and an evaporator 6 are both installed in a room, and between them a thermocouple 1 of a thermoelectricity generator for recovering the heating heat by condensation and the cooling heat by evaporation is provided. During room air cooling a coolant compressed by a compressor 3 is condensed and liquefied to release heat and heats a heat exchanger 9 and exchanges heat with it. This heating heat by condensation is transmitted to the high temperature junction (a) of a thermocouple 1 through a heat transfer connector 10 to develop a temperature difference with respect to the low temperature junction (b) and a thermal electromotive force is generated by the Seebeck effect. During room heating electromotive force is also generated by a temperature difference due to cooling effect by evaporation. This electric power is supplied to the side of electric power requiring demand side.

Description

【発明の詳細な説明】 (A)産業上の利用分野 本発明はヒートポンプサイクルと熱電対とを利用した熱
電対式空調機に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a thermocouple air conditioner that utilizes a heat pump cycle and a thermocouple.

(B)従来の技術 従来の空調機において、主力の空冷式セパレート型冷暖
房空調機の場合、冷暖房放熱器、冷暖房用ファンの部分
の室内ユニット、電動圧縮機、放熱器、送風ファンの部
分の室外ユニットのうち室外ユニットは屋外に設置し送
風ファンによる強制送風でその放熱器からの発生熱の冷
房時の凝縮加熱熱又は暖房時の蒸発冷却熱を廃熱として
大気中に放散して捨てている。但し暖房の場合は大気中
の熱を利用して冷媒で温度を高めて使用していることに
なる。水冷式の場合、屋外にクーリングタワー、ポンプ
、水配管を設けて発生熱を冷却している。中央方式、パ
ッケージ型、冷房・暖房専用の空調機においてもほぼ同
様である。
(B) Conventional technology In the case of conventional air conditioners, which are the main type of air-cooled separate type air-conditioning air conditioners, there is an air-conditioning radiator, an indoor unit for the air-conditioning fan, an electric compressor, a radiator, and an outdoor unit for the blower fan. Among the units, outdoor units are installed outdoors, and the heat generated from the radiator is condensed during cooling or the evaporative cooling heat during heating is dissipated into the atmosphere as waste heat by forced air blowing by a blower fan. . However, in the case of heating, the heat in the atmosphere is used to raise the temperature with a refrigerant. In the case of a water-cooled type, a cooling tower, pump, and water piping are installed outdoors to cool the generated heat. The same applies to central type, packaged type, and dedicated air conditioners for cooling and heating.

(Q発明が解決しようとする問題点 前記の如く主力の空冷式セパレート型冷暖房空調機の場
合、室内の冷暖房は比較的高い位置に取付けである室内
ユニットの冷暖房放熱器からの発生熱を冷暖房用ファン
によって冷風又は温風を吹き出させて行なっているが室
内の冷暖房を同じ1台の冷暖房放熱器から行なっている
ため特に暖房時には温風の吹き出しの向きを変えて下向
きにしているにもかかわらず室内温度分布が一様になり
難く、いわゆる頭寒足熱的な温度分布は望めそうにない
。−刃室外ユニットの屋外設置のため室内・外ユニット
の接続用冷媒配管のために建物に孔を明けなければなら
ず、又屋外設置のため風雨や直射日光にさらされ、その
ための腐食や傷み、外部からの損傷などを受けやすく、
特に冬季、北陸などの裏日本や東北・北海道等の寒冷地
の雪、氷、寒気等による機能障害送風ファンの設置とそ
の運転電力のむだな消費を必要とし、そして廃熱の大気
中への放散により室外ユニット近隣の物品、人などに悪
い影響を与えている。又大気中の空気で放熱器を冷却又
は加温するため外気温度の影響を直接受は冷暖房能力の
変動を受けやすい欠点をも持っている。
(Q Problems that the invention aims to solve) As mentioned above, in the case of the main air-cooled separate type air-conditioning air conditioners, the heat generated from the air-conditioning radiator of the indoor unit, which is installed at a relatively high position, is used for air-conditioning and heating. This is done by blowing out cold or warm air using a fan, but since indoor heating and cooling are performed from the same air-conditioning and heating radiator, the hot air is blown out in a downward direction, especially during heating. It is difficult for the indoor temperature distribution to be uniform, and it is unlikely that a so-called cold-head-to-head temperature distribution can be expected.-In order to install the blade outdoor unit outdoors, holes must be made in the building for refrigerant piping to connect the indoor and outdoor units. In addition, because it is installed outdoors, it is exposed to wind, rain, and direct sunlight, making it susceptible to corrosion, damage, and external damage.
Particularly in the winter, snow, ice, cold air, etc. in cold regions such as Hokuriku, Tohoku, and Hokkaido make it difficult to install and operate fans, which cause malfunctions and require unnecessary consumption of electrical power, and waste heat is released into the atmosphere. The radiation has a negative impact on objects and people in the vicinity of the outdoor unit. Furthermore, since the radiator is cooled or heated with air in the atmosphere, it is directly affected by the outside temperature and has the disadvantage of being susceptible to fluctuations in heating and cooling capacity.

水冷式の場合も屋外にクーリングタワー、ポンプ、水配
管等を設置しその運転電力のむだな消費を必要とし、更
にその保守と、循環する水のロス分の補給、水資源の確
保などの問題をもっている。
In the case of a water-cooled type, cooling towers, pumps, water piping, etc. are installed outdoors, which requires unnecessary consumption of operating power, and there are also problems such as maintenance, replenishment of lost circulating water, and securing water resources. There is.

中央方式、パッケージ型、冷房・暖房専用の空調機にお
いてもほぼ同様な問題をもっている。
Central-type, package-type, and dedicated air conditioners for cooling and heating have similar problems.

[相]問題点を解決するための手段 以上の問題点を解決するため、本発明は従来の主力の空
冷式セパレート型冷暖房空調機の場合、屋外に設置して
いた室外ユニットを室内の比較的低い位置に設置して、
その放熱器を暖房放熱器とし、一方比較的高い位置に取
付けである従来の室内ユニットの冷暖房数のそれぞれの
室内温度分布の一様化を計ると同時に従来の室外ユニッ
トの送風ファンを廃止し、新たに熱電対を設けて熱交換
によって廃熱回収を行なうと同時にそれによって生じた
熱起電力を利用して必要需要側に給電することによって
その分だけ節電をも併せて計ろうとするものである。
[Phase] Means for Solving the Problems In order to solve the problems, the present invention has been developed to replace the outdoor unit installed outdoors in the case of the conventional main type air-cooled separate type air conditioner with a relatively small indoor unit. Install it in a low position,
The radiator is used as a heating radiator, and at the same time, the conventional indoor unit, which is installed at a relatively high position, aims to equalize the indoor temperature distribution of each cooling and heating unit, and at the same time eliminates the blower fan of the conventional outdoor unit. The idea is to install a new thermocouple and recover waste heat through heat exchange, and at the same time, use the resulting thermoelectromotive force to supply electricity to the demand side, thereby saving electricity accordingly. .

又、水冷式の場合も従来のクーリングタワー、ポンプ、
水配管等を廃止し、新たに熱電対を設けて熱交換によっ
て廃熱回収を行なうと同時にそれによって生じた熱起電
力を利用して必要需要側に給電することによってその分
だけ節電をも併せて計ろうとするものである。
In addition, in the case of water cooling type, conventional cooling tower, pump,
By abolishing water piping, installing new thermocouples and recovering waste heat through heat exchange, and at the same time using the resulting thermoelectromotive force to supply power to the necessary demand side, we can also save electricity accordingly. This is what we are trying to measure.

中央方式、パッケージ型、冷房・暖房専用の空調機にお
いてもほぼ同様にしてその問題点の解決を計ろうとする
ものである。
The aim is to solve these problems in almost the same way for central type, package type, and air conditioners dedicated to cooling and heating.

その具体的な手段として、冷媒圧縮用の電動圧縮機又は
回転数制御のできる電動圧縮機と凝縮器(暖房放熱器)
と減圧器と蒸発器(冷房放熱器)等からなるヒートポン
プサイクル又は開発中の高性能・高効率のスーパー・ヒ
ートポンプサイクルを用いて、異種の熱電素子を組み合
わせた熱電対の両接合部をそれぞれ前記凝縮器と前記蒸
発器と熱交換できるようにしておのおの加熱される高温
接合部と冷却される低温接合部とし、蒸発器(冷房放熱
器)からの蒸発冷却熱を利用した冷房用ファン又は回転
数制御冷房用ファンによる冷風吹き出しの冷房時には熱
電対の高温接合部に凝縮器からの凝縮加熱熱を熱交換し
て回収し加熱させ(但しこの時は熱電対の低温接合部と
蒸発器との熱交換はストップ)このための屋外設置やそ
の強制送風用の送風ファンの設置の必要性をなくし、同
時にこの熱電対の両接合部間に温度差を与えることによ
って、いわゆるゼーベック効果による熱起電力を生ぜし
め、一方凝縮器(暖房放熱器)からの凝縮加熱熱を利用
した新設の暖房用ファン又は回転数制御暖房用ファンに
よる温風吹き出しの暖房時には熱電対の低温接合部に蒸
発器からの蒸発冷却熱を熱交換して回収し冷却させ(但
しこの時は熱電対の高温接合部と凝縮器との熱交換はス
トップ)このための屋外設置やその強制送風用の送風フ
ァンの設置の必要性をなくし、同時にこの熱電対の両接
合部間に温度差を与えることによってゼーベック効果に
よる熱起電力を生ぜしめ、それぞれ冷房時又は暖房時に
熱電対からの回収廃熱エネルギーを電気に変換して発電
した電力を直流のま\か又は交流に変換して必要需要側
の例えば電動圧縮機又は回転数制御電動圧縮機、又はそ
の他の必要部(例えば表示灯、冷・暖房用ファン、更に
は電気温水給湯器など)へ給電又は補足的に給電するこ
とによってその分だけ電動圧縮機又は回転数制御電動圧
縮機の必要駆動電力又はその他の必要需要側の電力を節
電もできるように計ることができる。
As a specific means, an electric compressor for refrigerant compression or an electric compressor with rotation speed control and a condenser (heating radiator)
Using a heat pump cycle consisting of a pressure reducer, an evaporator (cooling radiator), etc., or a high-performance, high-efficiency super heat pump cycle under development, both junctions of a thermocouple that combines different types of thermoelectric elements are A cooling fan or rotation speed that uses the evaporative cooling heat from the evaporator (cooling radiator), with a high-temperature junction that is heated and a low-temperature junction that is cooled, so that heat can be exchanged with the condenser and the evaporator. During cooling by blowing cold air using a controlled cooling fan, the high-temperature junction of the thermocouple exchanges the condensed heating heat from the condenser and recovers it for heating. This eliminates the need for outdoor installation or the installation of a forced air fan for this purpose, and at the same time, by creating a temperature difference between both junctions of this thermocouple, the thermoelectromotive force caused by the so-called Seebeck effect can be reduced. On the other hand, when a newly installed heating fan or rotation speed controlled heating fan uses condensed heating heat from the condenser (heating radiator) to blow hot air, evaporation from the evaporator is generated at the low temperature junction of the thermocouple. The cooling heat is recovered and cooled by heat exchange (however, at this time, heat exchange between the high-temperature junction of the thermocouple and the condenser is stopped).For this purpose, it is necessary to install it outdoors and install a fan for forced air. At the same time, by creating a temperature difference between the two junctions of this thermocouple, a thermoelectromotive force is generated due to the Seebeck effect, and the waste heat energy recovered from the thermocouple during cooling or heating is converted into electricity to generate electricity. The generated electricity is converted to direct current or alternating current to power the necessary demand side, such as an electric compressor or rotation speed controlled electric compressor, or other necessary parts (for example, indicator lights, cooling/heating fans, and even electric hot water). By supplying power or supplementary power to a water heater, etc.), it is possible to save the required driving power of the electric compressor or rotation speed controlled electric compressor or other required power by that amount.

又、その他の手段として、冷房時に凝縮器の凝縮加熱熱
をその高温接合部と熱交換して専用に回収して両接合部
間に温度差を与えて熱起電力を生ぜしめる熱電対1と、
暖房時に蒸発器の蒸発冷却熱をその低温接合部と熱交換
して専用に回収して両接合部間に温度差を与えて熱起電
力を生ぜしめる熱電対2とのそれぞれ専用の熱電対を用
いて冷房及び暖房を分別して蒸発器(冷房放熱器)及び
凝縮器(暖房放熱器)で行なうことができるようにする
と共に必要需要側に給電又は補足的に給電することによ
ってその分jごけ節電もできるように計ることもできる
In addition, as another means, there is a thermocouple 1 which exchanges the condensation heating heat of the condenser with its high-temperature junction and recovers it exclusively during cooling to create a temperature difference between both junctions and generate a thermoelectromotive force. ,
During heating, the evaporative cooling heat of the evaporator is exchanged with the low-temperature junction, and the thermocouple 2 is used to recover the heat and generate a thermoelectromotive force by creating a temperature difference between the two junctions. By using the system, cooling and heating can be separated and carried out by the evaporator (cooling radiator) and condenser (heating radiator), and by supplying power or supplementary power to the necessary demand side, It can also be timed to save energy.

更にその他の手段として冷房用又は暖房用専用の空調機
の場合、そのヒートポンプサイクルと熱電対とを用いて
、それぞれの凝縮器の凝縮加熱熱又は蒸発器の蒸発冷却
熱を熱電対の高温接合部又は低温接合部と熱交換して回
収すると同時にその両接合部間の温度差によって生じた
熱起電力を必要需要側に給電又は補足的に給電すること
によってその分だけ節電もできるように計ることもでき
る。
Furthermore, as another method, in the case of an air conditioner dedicated to cooling or heating, the heat pump cycle and thermocouple are used to transfer the condensation heating heat of the condenser or the evaporative cooling heat of the evaporator to the high temperature junction of the thermocouple. Alternatively, at the same time as heat is exchanged with the low-temperature junction and recovered, the thermoelectromotive force generated due to the temperature difference between the two junctions is supplied to the necessary demand side or supplementally, so that electricity can be saved accordingly. You can also do it.

以上の手段によって、主力の空冷式セパレート型冷暖房
空調機の場合、室外ユニ′ノドの屋外設置やその強制送
風用の送風ファンを設置することなく、冷房放熱器、暖
房放熱器各々上下の別置による冷暖房か行われることに
よって従来の問題点を解決することができるばかりでな
く、熱電対の廃熱回収によって生じた熱起電力の有効利
用による節電も併せて行なうことかできる。
By using the above method, in the case of the main type air-cooled separate heating and cooling air conditioner, the cooling radiator and the heating radiator can be placed separately above and below, without having to install an outdoor unit or a fan for forced ventilation. Not only can conventional problems be solved by performing heating and cooling, but also power can be saved by effectively utilizing thermoelectromotive force generated by recovering waste heat from thermocouples.

又、水冷式の場合も屋外にクーリングタワー、ポンプ、
水配管の設置することもなくなる。
Also, in the case of a water-cooled type, a cooling tower, pump,
There is no need to install water piping.

中央方式、ハノケージ型の空調機においてもほぼ同様で
ある。
The same applies to central type and cage type air conditioners.

又、従来、室外ユニットを屋外に設置していた理由とし
て送風ファンによる強制送風の必要性の他に、室内にお
【する設置スペースの制約、送風ファンや電動圧縮機の
運転音の問題などであったが本発明による送風ファンの
廃止、最近の住宅・事務所事情の好転、及び電動圧縮機
運転音の減少等の技術向上等のためこれらは解決できる
。但しその運転音が最終的に問題になる場合は電動圧縮
機のみ室外に設置する。水冷式の場合の本発明によるり
一すノクタワー、ポツプ、水配管の廃止等もこれらと同
様である。
In addition, the reasons why outdoor units have traditionally been installed outdoors include the need for forced air flow using a blower fan, as well as constraints on the installation space indoors, and problems with the operating noise of the blower fan and electric compressor. However, these problems can be solved due to the elimination of the blower fan according to the present invention, the recent improvement in residential and office conditions, and technological improvements such as the reduction of electric compressor operating noise. However, if the operating noise ultimately becomes a problem, only the electric compressor should be installed outdoors. In the case of a water-cooled type, the present invention also eliminates the drain tower, pops, water piping, etc., as well.

なおヒートボノブサ・イクルとは持)こ断わりのない限
りヒートポツプサイクル又は冷凍サイクル、及び開発中
の高性能・高効率のスーパー・ヒートポンプサイクル又
はスーパー冷凍サイクルとを総称するものとする。又熱
電対とは特に断わりのない限り単数又は複数の対の熱電
対及び開発中の高性能・高効率の単数又は複数の対の超
然電対とを総称するものとする。
Note that the heat pump cycle is a general term for the heat pump cycle or refrigeration cycle, and the high-performance, high-efficiency super heat pump cycle or super refrigeration cycle that is currently under development, unless otherwise specified. In addition, unless otherwise specified, the term "thermocouple" shall collectively refer to a single or multiple pairs of thermocouples and a high-performance/high-efficiency single or multiple pairs of extraneous couple that are under development.

又、空調機とは特に断わりのない限り冷暖房用、冷房専
用、暖房専用各空調機を総称するものとする。
In addition, unless otherwise specified, the term "air conditioner" collectively refers to air conditioners for cooling and heating, air conditioning only, and heating only.

(均作  用 一般に異種の熱電素子を組み合わせた熱電対の両接合部
間に温度差を与えた時、前述の如くセーベツク効果によ
って発生する熱起電力Eは E = a (Tt  T2)        (1)
αは熱電能で現時点では半導体のαの値が金属と比べて
1けたくらい大きい。T1は高温接合部絶対温度、T2
は低温接合部絶対温度である。
(Equivalent action) In general, when a temperature difference is given between the two junctions of a thermocouple that combines different types of thermoelectric elements, the thermoelectromotive force E generated by the Seebek effect is E = a (Tt T2) (1)
α stands for thermoelectric power, and at present the value of α for semiconductors is about one order of magnitude larger than that for metals. T1 is the absolute temperature of the high temperature junction, T2
is the cold junction absolute temperature.

償は熱電素子材料の電気伝導率、Kはその熱伝導率であ
る。従って(2)式がら熱電素子が高性能(即ら2が大
)であるためには熱電能αが大で電気伝導率Cが大きく
且つ熱伝導率Kか小さいことが必要であり、半導体は熱
電能が大きく熱伝導率が小さいといつ熱電素子材料とし
て有利な特性をそtcえている。特に化合物半導体が有
利な条件をもっている。
K is the electrical conductivity of the thermoelectric element material, and K is its thermal conductivity. Therefore, from equation (2), in order for a thermoelectric element to have high performance (i.e., 2 is large), it is necessary that the thermoelectric power α is large, the electrical conductivity C is large, and the thermal conductivity K is small. It possesses advantageous properties as a thermoelectric element material because of its large thermoelectric power and low thermal conductivity. In particular, compound semiconductors have advantageous conditions.

一方熱電対使用のセーベノク効果による熱電発電方式の
熱・電気変換効率の最大値は現M=’J1+ Z(TI
+T2)/2 又、ヒートポンプサイクルの凝縮器又は蒸発器から単位
時間に発熱又は吸熱される凝縮加熱熱、又は蒸発冷却熱
をQ。とじ、これをn対の熱電対で熱交換して回収する
として残りの凝縮加熱熱、又は蒸発冷却熱をQnとする
とQIFQO(1−ηomax)”≦0.9”Qo  
 (4)回収率を約90%とすると(4)式から口#2
2、即ち約22対の熱電対で回収できる。更にヒートポ
ンプサイクルの成績係数が約3.高性能・高効率のスー
パー・ヒートポンプサイクルの場合はその約2倍である
ことなども併せて考えればこの熱電対の対の数も減るこ
とも期待できる。又熱電性能指数の飛躍的にすぐれた熱
電素子の技術開発が行われ、これらを組み合わせた超然
電対の使用により、この対の数も大幅に減ることも期待
される。
On the other hand, the maximum value of the heat-to-electricity conversion efficiency of the thermoelectric generation method due to the Savenok effect using thermocouples is currently M = 'J1 + Z (TI
+T2)/2 Also, Q is the condensation heating heat or evaporative cooling heat generated or absorbed per unit time from the condenser or evaporator of the heat pump cycle. If this is recovered by heat exchange with n pairs of thermocouples and the remaining condensation heating heat or evaporative cooling heat is Qn, then QIFQO(1-ηomax)"≦0.9"Qo
(4) If the recovery rate is about 90%, then from equation (4) #2
2, or approximately 22 pairs of thermocouples. Furthermore, the coefficient of performance of the heat pump cycle is approximately 3. Considering that in the case of a high-performance, high-efficiency super heat pump cycle, the number of thermocouple pairs is approximately twice that, it can be expected that the number of thermocouple pairs will be reduced. In addition, the number of thermoelectric elements is expected to be significantly reduced by the use of a thermoelectric element that has a dramatically superior thermoelectric figure of merit and the use of a superstatic couple that combines these elements.

なお熱電対の1対で得られる出力(発電量)よりも複数
の対の熱電対を直列にして用いると、より発電量の増大
にもつながる利点もある。
Note that using multiple pairs of thermocouples in series has the advantage that the output (power generation amount) can be increased more than the output (power generation amount) obtained with one pair of thermocouples.

(F)実施例 本発明の実施例を図面にもとづいて説明する。第1図は
本発明の一実施例を示すヒートポンプサイクルと熱電対
とを用いた熱電対式空調機の構成図である。図において
1は凝縮加熱熱又は蒸発冷却熱回収用の熱電発電器の熱
電対、3は電動圧縮機又は回転数制御電動圧縮機、4は
凝縮器(暖房放熱器)、5は減圧器、6は蒸発器(冷房
放熱器)、7はアキュムレータである。8は凝縮器(暖
房放熱器)4の凝縮加熱熱を室内に放散させ暖房を行な
う暖房用ファン又は回転数制御暖房用ファンである。
(F) Embodiment An embodiment of the present invention will be described based on the drawings. FIG. 1 is a block diagram of a thermocouple air conditioner using a heat pump cycle and a thermocouple, showing one embodiment of the present invention. In the figure, 1 is a thermocouple of a thermoelectric generator for recovering condensation heating heat or evaporative cooling heat, 3 is an electric compressor or rotation speed controlled electric compressor, 4 is a condenser (heating radiator), 5 is a pressure reducer, 6 is a is an evaporator (cooling radiator), and 7 is an accumulator. Reference numeral 8 denotes a heating fan or a rotation speed-controlled heating fan that radiates the condensed heating heat of the condenser (heating radiator) 4 into the room to perform heating.

一方9は凝縮器4からの凝縮加熱熱で加熱される熱交換
器で例えばヒートパイプ等からなる。aは熱電対1の高
温接合部、1〕はその低温接合部である。10は熱交換
器9からの凝縮加熱熱量を熱電対1の高温接合部aに伝
達する伝熱接続器で例えばヒートパイプ等からなる。1
0 a、10bは冷房時に開き凝縮加熱熱i7f 、i
、高温接合部51に伝熱接続させる制御の役目をもち、
暖房時に閉じその役目をストップさせる機能をもつもの
で例えばヒートパイプ用の電磁二方弁である。又同時に
暖房用ファン8は冷房時にストップし暖房時に駆動でき
るようにされている。ll+L、llbは熱電対1を構
成する異種(1)形、【1形など)加熱を室内に放散さ
せ冷房を行なう冷房用ファン又は回転数制御冷房用ファ
ンである。
On the other hand, 9 is a heat exchanger heated by condensation heating heat from the condenser 4, and is composed of, for example, a heat pipe. a is the high temperature junction of the thermocouple 1, and 1] is its low temperature junction. Reference numeral 10 denotes a heat transfer connector that transmits the condensed heating heat from the heat exchanger 9 to the high-temperature junction a of the thermocouple 1, and is made of, for example, a heat pipe. 1
0a and 10b open during cooling to condense heating heat i7f, i
, has the role of controlling heat transfer connection to the high temperature joint part 51,
An example is an electromagnetic two-way valve for a heat pipe, which has the function of closing and stopping its function during heating. At the same time, the heating fan 8 is stopped during cooling and can be driven during heating. ll+L and llb are different type (1) type [1 type, etc.] constituting the thermocouple 1, and are cooling fans or speed-controlled cooling fans that dissipate heat into the room and perform cooling.

一方9′は蒸発器6からの蒸発冷却熱で冷却される熱交
換器で例えばヒートパイプ等からなる。10′は熱交換
器9′からの蒸発冷却熱量を熱電対1の低温接合部1〕
に伝達する伝熱接続器で例えばヒートパイプ等からなる
。1o′a、■0′bは暖房時に開き、蒸発冷却熱量を
低温接合部すに伝熱接続させる制御の役目をもち、冷房
時に閉じその役目をストップさせる機能をもつもので例
えばヒートパイプ用の電磁二方弁である。又同時に冷房
用ファン8′は暖房時にストップし冷房時に駆動できる
ようにされている。
On the other hand, 9' is a heat exchanger that is cooled by the evaporative cooling heat from the evaporator 6, and is composed of, for example, a heat pipe. 10' is the amount of evaporative cooling heat from the heat exchanger 9' to the low-temperature junction 1 of the thermocouple 1]
A heat transfer connector, such as a heat pipe, that transfers heat to the 1o'a and ■0'b open during heating to control the heat transfer of evaporative cooling heat to the low-temperature joints, and close during cooling to stop this function; for example, for heat pipes. It is an electromagnetic two-way valve. At the same time, the cooling fan 8' is stopped during heating and can be driven during cooling.

12は電池又はコンデンサー、13は制御部、14は直
交流変換器(例えばインバータ4Cど)である。但し交
流に変換する必要のない場合は直交流変換器14は不要
である。15は外部電源からの電動圧縮機3への主入力
と直交流変換器14又は制御部13がらの熱起電力の補
足入力とを調整制御する調整器である。
12 is a battery or a capacitor, 13 is a control unit, and 14 is a DC/AC converter (for example, an inverter 4C). However, if there is no need to convert to alternating current, the direct current converter 14 is not necessary. Reference numeral 15 denotes a regulator that adjusts and controls the main input to the electric compressor 3 from an external power source and the supplementary input of thermoelectromotive force from the DC converter 14 or the control unit 13.

なお凝縮器上蒸発器6.熱交換器9.9′はできるtご
け高効率のものを選定し、更にスーパー、ヒートポンプ
サイクルの場合は高性能の電動圧縮機とする。又熱電素
子の1121.111)は熱電能が大きく電気伝導率が
大で且つ熱伝導率が小さく二ネルキー変換特性のすぐれ
ている材料、例えば半導体のV−VI族のBi2’To
a、B12(TcSe ) a系:V−V族のB1Sb
 、 Hi(Sl))2’l’cg系:その他の化合物
半導体等を用いる。更にその技術開発が進み飛躍的な高
性能・高効率の材料からなる超然電対が開発されればそ
れを用いる。熱電対1の固接合部a、bは金属(例えば
Cuなど)製よりなり熱を熱電素子112t、1113
に伝えると同時に電極の役目もする。
Note that the evaporator above the condenser6. The heat exchanger 9.9' is selected to have the highest efficiency possible, and in the case of a super or heat pump cycle, a high performance electric compressor is selected. Thermoelectric elements (1121.111) are made of materials that have large thermoelectric power, high electric conductivity, low thermal conductivity, and excellent two-channel conversion characteristics, such as Bi2'To of the V-VI group of semiconductors.
a, B12 (TcSe) a system: B1Sb of V-V group
, Hi(Sl))2'l'cg system: other compound semiconductors are used. Furthermore, if technological development progresses and a supernatural couple made of materials with dramatically higher performance and efficiency is developed, it will be used. The solid joints a and b of the thermocouple 1 are made of metal (such as Cu), and heat is transferred to the thermoelectric elements 112t and 1113.
It also serves as an electrode.

但し半導体と金属との接触についてはそれぞれの仕事関
数との関係を慎重に検討して最適の金属の材質を選定す
る必要がある。将来金属以外でも更にすぐれた最適の材
質が開発されればそれを使用する。又、ヒートポンプサ
イクルに使用する冷媒はフレオン、アンモニアなどの単
−又は混合冷媒であるが、スーパー・ヒートポンプサイ
クルの場合はそれらの混合冷媒又は非共沸混合冷媒を使
用する。
However, when contacting semiconductors with metals, it is necessary to carefully consider the relationship between the work functions of each semiconductor and select the optimal metal material. If a more excellent and optimal material other than metal is developed in the future, we will use it. Further, the refrigerant used in the heat pump cycle is a single or mixed refrigerant such as freon or ammonia, but in the case of a super heat pump cycle, a mixed refrigerant or a non-azeotropic mixed refrigerant is used.

次にその作動として冷房の場合、暖房用ファン8はスト
ップしたま5で冷房用ファン8′を駆動し、且つ電磁二
方弁10 a、101)は開き伝熱接続の役目を行える
ようにし、I Q/a10’+3は閉じその役目をスト
ップさせておく。
Next, in the case of cooling, the heating fan 8 is stopped and the cooling fan 8' is driven, and the electromagnetic two-way valves 10a and 101) are opened to perform the role of heat transfer connection. IQ/a10'+3 is closed and its role is stopped.

電動圧縮、i 3の回転数で圧縮された冷媒が凝縮器4
に流入し凝縮液化放熱され熱交換器9に加熱熱交換され
、その凝縮加熱熱が伝熱接続器10、電磁二方弁IQa
、lQl+を経て熱電対1の高温接合部;叫こ伝熱加熱
されて回収される。一方放熱後の液冷媒は減圧器5で減
圧されて蒸発器(冷房放熱器)6に流入し蒸発気化冷却
され冷房用ファン8′によりその蒸発冷却熱が室内に放
散され冷房が行われる。
Electric compression, refrigerant compressed at a rotation speed of 3 is transferred to condenser 4
The condensed and liquefied heat is transferred to the heat exchanger 9, and the condensed heating heat is transferred to the heat transfer connector 10 and the electromagnetic two-way valve IQa.
, lQl+, the high temperature junction of the thermocouple 1; this is heated by heat transfer and recovered. On the other hand, the liquid refrigerant after heat radiation is reduced in pressure by a pressure reducer 5, flows into an evaporator (cooling radiator) 6, is evaporated and cooled, and the cooling fan 8' radiates the evaporative cooling heat into the room to perform cooling.

この時、電磁二方弁10′a、10′bは閉じられてい
るので、その蒸発冷却熱が伝熱接続器lO′を経て熱電
対1の低温接合部すに伝熱冷却されることはないので蒸
発器(冷房放熱器)6で発生した蒸発冷却熱はフルに冷
房用に消費される。かくて冷却後の気化冷媒はアキュム
レータ7に流入し電動圧縮機3の吸気側に戻りヒー ト
ポンプサイクルが形成される。
At this time, since the electromagnetic two-way valves 10'a and 10'b are closed, the evaporative cooling heat is not transferred to the low-temperature junction of the thermocouple 1 through the heat transfer connector lO'. Therefore, the evaporative cooling heat generated by the evaporator (cooling radiator) 6 is fully consumed for cooling. The vaporized refrigerant thus cooled flows into the accumulator 7 and returns to the intake side of the electric compressor 3, forming a heat pump cycle.

高性能・高効率のスーパー・ヒートポンプサイクルの場
合は高性能の電動圧縮機3て圧縮された混合冷媒又は非
共沸混合冷媒が高効率の凝縮器4.減圧器5.蒸発器6
.その他の機器等を経てスーパー・ヒートポツプサイク
ルか形成される。
In the case of a high-performance/high-efficiency super heat pump cycle, the mixed refrigerant or non-azeotropic mixed refrigerant compressed by the high-performance electric compressor 3 is transferred to the high-efficiency condenser 4. Pressure reducer5. Evaporator 6
.. A super heat pop cycle is formed through other equipment.

一方異種(P形、+1形なと)の熱電素子の11 iL
、111)を組み合わせた熱電対1の伝熱加熱された高
温接合部LLと低温接合部))との間に温度差が生じ、
セーベツク効果により熱起電力が発電される。その発電
電力量は(1)式によってきまり、そして発電された直
流電力は電池又はコンデンサー12に蓄電され制御部1
3.直交流変換器14.調整器15を経て電動圧縮機3
へ外部電源からの主電力と共に補足的に制御給電されそ
の分だけ主電力の給電量を節電させる。なお直流のま−
でよい場合は直交流変換器14が不要で制御部13から
調整器15を経て電動圧縮機3へ外部電源からの主電力
と共に補足的に制御給電される。
On the other hand, 11 iL of thermoelectric elements of different types (P type, +1 type, etc.)
, 111), a temperature difference occurs between the conduction-heated high-temperature junction LL and the low-temperature junction)) of the thermocouple 1,
Thermoelectromotive force is generated by the Seebetsuk effect. The amount of power generated is determined by equation (1), and the generated DC power is stored in a battery or a capacitor 12, and the control unit 1
3. DC converter 14. Electric compressor 3 via regulator 15
Supplementary controlled power is supplied to the main power source along with the main power from the external power source, and the amount of main power supplied is reduced by that amount. In addition, direct current
If this is acceptable, the DC/AC converter 14 is not required, and power is supplied from the control unit 13 via the regulator 15 to the electric compressor 3 in a complementary manner together with the main power from the external power source.

又高性能・高効率の超然電対使用の場合は更に回収する
凝縮加熱熱量もより多く、又その生ずる熱起電力の発電
量もより多くなり、電動圧縮機3への節電量も大きくな
る。以上の説明は回収した凝縮加熱熱のエネルギーを電
気に変換して生じた熱起電力を電動圧縮機3へ補足給電
する例であるが、その他の必要需要側(例えば表示灯、
冷暖房用ファン、更には電気温水給湯器など)へ給電又
は補足給電される場合は直交流変換器14.又は制御部
13を経て行われる。
Furthermore, when a high-performance, high-efficiency superstatic couple is used, the amount of condensing heating heat recovered is also greater, and the amount of generated thermoelectromotive force is also greater, so that the amount of power saved to the electric compressor 3 is also greater. The above explanation is an example of supplementary power supply to the electric compressor 3 by thermoelectromotive force generated by converting the energy of the recovered condensation heating heat into electricity, but other necessary demand side (for example, indicator lights,
DC/AC converter 14. Alternatively, it is performed via the control section 13.

次に暖房の場合は、前述の冷房の場合に準じて行なう。Next, in the case of heating, it is carried out in the same manner as in the case of cooling described above.

即ち冷房用ファン8′はストップしたまトで暖房用ファ
ン8を駆動し、且つ電磁二方弁10′a、10’+3は
開き伝熱接続の役目を行なえるようにし、I Qa、 
 101)は閉じその役目をストップさせておく。電動
圧縮機3の駆動で圧縮された冷媒が凝縮器(暖房放熱器
)4に流入し凝縮液化放熱され暖房用ファン8によりそ
の凝縮加熱熱が室内に放散され暖房が行われ、一方蒸発
器6の蒸発冷却熱が熱電対1の低温接合部1〕に熱交換
して回収され伝熱冷却され、熱電対1の高温接合部aと
伝熱冷却された低温接合部1〕との間に温度差が生じ発
電された熱起電力を電動圧縮機3、又はその他の必要需
要側へ給電又は補足給電される。 なお暖房は熱電対1
の熱を利用して冷媒で温度を高めて使用していることに
なる。
That is, the heating fan 8 is driven while the cooling fan 8' is stopped, and the electromagnetic two-way valves 10'a and 10'+3 are opened to perform the role of heat transfer connection, and IQa,
101) is closed to stop its role. The refrigerant compressed by the drive of the electric compressor 3 flows into the condenser (heating radiator) 4, condenses and liquefies and radiates heat, and the heating fan 8 radiates the condensed heating heat into the room to perform heating, while the evaporator 6 The evaporative cooling heat is recovered by heat exchange to the low-temperature junction 1] of the thermocouple 1, and is cooled by heat transfer, and the temperature is increased between the high-temperature junction a of the thermocouple 1 and the low-temperature junction 1] which has been cooled by heat transfer. The thermal electromotive force generated due to the difference is supplied or supplementally supplied to the electric compressor 3 or other necessary demand side. For heating, there is 1 thermocouple
This means that the heat is used to raise the temperature with a refrigerant.

回転数制御電動圧縮機の場合、熱電対1によって生じた
熱起電力を外部電源からの主電力と共に回転数制御(交
流駆動の場合はインバータ制御、直流駆動の場合はサイ
リスクレオナード制御など)して補足的に制御給電され
る。又凝縮器4及び蒸発器6のそれぞれの入側又は出側
に流量制御弁(特に図示せf)を設けて冷媒を電動圧縮
機3の回転数に対応した最適冷媒流量に制御して同期制
御することにより冷媒をきめ細かく制御してそれぞれ凝
縮器4及び蒸発器6に流入制御させて更に一層精度良く
熱起電力を制御発電することができる。
In the case of a rotation speed controlled electric compressor, the rotation speed is controlled by controlling the thermoelectromotive force generated by the thermocouple 1 together with the main power from an external power source (inverter control in the case of AC drive, Thyle-Screenard control, etc. in the case of DC drive). supplementary control power is supplied. In addition, a flow control valve (particularly f, not shown) is provided on the inlet or outlet side of each of the condenser 4 and the evaporator 6 to control the refrigerant to an optimum refrigerant flow rate corresponding to the rotational speed of the electric compressor 3 for synchronous control. By doing so, the refrigerant can be finely controlled to flow into the condenser 4 and the evaporator 6, respectively, and the thermoelectromotive force can be controlled and generated even more precisely.

第2図はヒートポンプサイクルと熱電対1゜2とを用い
た熱電対式空調機の構成図である。
FIG. 2 is a block diagram of a thermocouple air conditioner using a heat pump cycle and a 1°2 thermocouple.

図において異種の熱電素子11 a% l 11)を組
み合わせた熱電対1は凝縮器4の凝縮加熱熱をその高温
接合部aと熱交換して、異種の熱電素子11’u 、 
 I I’llを組み合わせた熱電対2は蒸発器6の蒸
発冷却熱をその低温接合部b′と熱交換して、それぞれ
冷房時、暖房時に専用に回収しておのおのの固接合部a
、1〕ニル/137間に温度差を与えて生じた熱起電力
を必要需要側へ給電又は補足給電しその分だけ節電でき
るようにせしめている。その他はすべてほぼ第1図の場
合と同様である。
In the figure, a thermocouple 1 that combines different types of thermoelectric elements 11'u,
The thermocouple 2 combined with I I'll exchanges the evaporative cooling heat of the evaporator 6 with its low-temperature junction b' and recovers it exclusively for cooling and heating, respectively, and collects it at each solid junction a.
, 1] Nil/137, the thermoelectromotive force generated by applying a temperature difference is supplied or supplementary power to the necessary demand side, thereby making it possible to save power by that amount. All other details are almost the same as in the case of FIG.

第3図はヒートポンプサイクルと熱電対とを用いた冷房
専用の熱電対式空調機の構成図である。その大要はほぼ
第1図の冷房の場合の説明と同様である。
FIG. 3 is a configuration diagram of a thermocouple air conditioner exclusively for cooling using a heat pump cycle and a thermocouple. The outline is almost the same as the explanation for the case of cooling in FIG.

第4図はヒートポンプサイクルと熱電対とを用いた暖房
専用の熱電対式空調機の構成図である。その大要はほぼ
第1図の暖房の場合の説明と同様である。
FIG. 4 is a configuration diagram of a thermocouple air conditioner exclusively for heating using a heat pump cycle and a thermocouple. The outline is almost the same as the explanation for heating in FIG.

以上の第1図、第2図、第3図、第4図に示した実施例
はそれぞれ熱電対が1対又は1対づつの場合であるが前
述の如く凝縮器4又は蒸発器6からそれぞれ発熱される
凝縮加熱熱又は蒸発冷却熱を極力回収し且つより大きf
、(発電量の熱起電力の発生を得るために現時点ではそ
れぞれ複数の対の熱電対を直列にして用いる。この対の
数はヒートポンプサイクルの成績係数示を高性能・高効
率のスー・く−・ヒートポンプサイクルの場合はその約
2倍であることなども併せて考慮した数である。
In the embodiments shown in FIGS. 1, 2, 3, and 4, there are one pair of thermocouples or one pair of thermocouples, respectively. The condensation heating heat or evaporative cooling heat generated is recovered as much as possible, and a larger f
(Currently, multiple pairs of thermocouples are connected in series to generate thermoelectromotive force for power generation. The number of pairs is determined by the coefficient of performance of the heat pump cycle to achieve high performance and high efficiency. - This number also takes into account that in the case of a heat pump cycle, it is approximately twice that amount.

将来、熱電性能指数の飛躍的にすぐれた熱電素子材料の
技術開発が行われ、この新熱電素子を組み合わせた超然
電対を使用することにより、この対の数も大幅に減り場
合によっては1対又は1対づつの超然電対の使用で可能
となることが期待される。
In the future, technological development of thermoelectric element materials with dramatically superior thermoelectric performance index will be carried out, and by using a superordinate couple that combines these new thermoelectric elements, the number of pairs will be greatly reduced, in some cases down to just one pair. Alternatively, it is expected that this will become possible by using one pair of transcendental couple.

第5図は従来の空冷式セパレート型冷暖房空調機の冷房
時のヒートポンプサイクルの構成図である。図において
4′は室外ユニットの放熱器、5aは暖房用減圧器、5
bは冷房用減圧器、6′は室内ユニットの冷暖房放熱器
、8″は室外ユニットの送風ファン、8″′は室内ユニ
ットの冷暖房用ファン、16は四方弁、17 aは冷房
用逆止弁、17bは暖房用逆止弁である。
FIG. 5 is a configuration diagram of a heat pump cycle during cooling of a conventional air-cooled separate type air-conditioning air conditioner. In the figure, 4' is the radiator of the outdoor unit, 5a is the heating pressure reducer, and 5
b is a pressure reducer for air conditioning, 6' is an air conditioning radiator for the indoor unit, 8'' is a blower fan for the outdoor unit, 8'' is an air conditioning fan for the indoor unit, 16 is a four-way valve, and 17 a is a check valve for air conditioning. , 17b is a heating check valve.

第6図は従来の空冷式セパレート型冷暖房空調機の暖房
時のヒートポンプサイクルの構成図である。図において
四方弁16の切換によって冷媒の流れが逆となるのみで
他はすべてほぼ第5図の場合と同様である。
FIG. 6 is a configuration diagram of a heat pump cycle during heating in a conventional air-cooled separate type air-conditioning/heating air conditioner. In the figure, the only difference is that the flow of the refrigerant is reversed by switching the four-way valve 16, and everything else is substantially the same as in the case of FIG.

なお従来の水冷式の場合、空冷式の室外ユニットの送風
ファンの代わりにクーリングタワー、ポンプ、水配管を
設けであるのが異なるのみで他はほぼ空冷式の場合とほ
ぼ同様である。
In the case of a conventional water-cooled type, the only difference is that a cooling tower, a pump, and water piping are provided in place of the blower fan of the air-cooled outdoor unit, and the rest is almost the same as the air-cooled type.

又従来の中央方式、パッケージ型の空調機においてもほ
ぼ同様である。
The same applies to conventional central type and package type air conditioners.

(0)発明の効果 以上の説明により本発明の熱電対式空調機の効果として
、従来の主力の空冷式セパレート型冷暖房空調機の室外
ユニットを室内の比較的低い位置に設置して、その放熱
器を暖房放熱器とし、一方比較的高い位置に取付けであ
る従来の室内ユニットの冷暖房放熱器を冷房放熱器とし
て使用し、この2台の放熱器による分別使用により室内
の冷暖房の際のそれぞれの室内温度分布の一様化が計れ
、特に暖房時に温風の吹き出しの向きを必らずしも変え
ることなく頭寒足熱的な温度分布になると同時に新たに
設けられた熱電対との熱交換によって廃熱回収を行なう
と同時にゼーベック効果による廃熱エネルギーを電気に
変換して生じた熱起電力を必要需要側の電動圧縮機又は
その他へ給電又は補足的に給電することによってその分
だけ節電をも併せてできる効果がある。又これにより従
来の室外ユニットの屋外設置のための室内・外ユニット
の接続用冷媒配管のための建物の孔明+j工事、及びそ
れに併なう建物の傷み、気密性の劣化等もなくなり、又
屋外設置のための風雨や直射日光などによる腐食や傷み
、外部からの損壊などもなくなり、特に冬季、北陸など
の裏日本や東北・北海道等の寒冷地の雪、氷、寒気等に
よる機能障害の問題もなくなり、空調機全体の身命も延
びる。更に従来の室外ユニットの放熱器からの発生熱の
廃熱放散による強制冷却又は加温のだの送風ファンの設
置とその運転電力、保守整備などのむだな消費もなくな
り、更にその分だけ節電効果もアップすると同時に大気
中の空気で放熱器を冷却又は加温するため外気温度の影
響を直接受は冷暖房能力の変動を受(す易かった欠点も
除かれる。又廃熱の大気中への放散により室外ユニット
近隣の物品、人などへの悪影響の公害もなくなる。
(0) Effect of the invention As explained above, the effect of the thermocouple air conditioner of the present invention is that the outdoor unit of the conventional main air-cooled separate type air-conditioning air conditioner is installed at a relatively low position indoors, and its heat dissipates. The air conditioner is used as a heating radiator, while the air conditioning radiator of a conventional indoor unit, which is installed at a relatively high position, is used as a cooling radiator, and by using these two radiators separately, each of them can be used for heating and cooling the room. Uniform indoor temperature distribution, especially during heating, without necessarily changing the direction of hot air blowing out, resulting in a temperature distribution that keeps your head cold and your feet warm. At the same time, heat exchange with a newly installed thermocouple allows waste heat to be generated. At the same time as recovery, waste heat energy due to the Seebeck effect is converted into electricity and the generated thermoelectromotive force is supplied or supplementary to an electric compressor or others on the demand side, thereby saving electricity accordingly. There is an effect that can be done. In addition, this eliminates the need for drilling holes in the building for refrigerant piping to connect the indoor and outdoor units when installing the outdoor unit outdoors, as well as the associated damage to the building and deterioration of airtightness. There is no corrosion or damage caused by wind, rain, direct sunlight, etc. during installation, or damage from the outside, and there is no problem of functional failure caused by snow, ice, cold air, etc., especially in winter, in cold regions such as Hokuriku and other parts of Japan, and Tohoku and Hokkaido. This will also extend the life of the air conditioner as a whole. Furthermore, waste heat dissipation from the heat generated by the heat radiator of the conventional outdoor unit eliminates the need for forced cooling or heating by installing a fan and the unnecessary consumption of operating power and maintenance, resulting in further power savings. At the same time, the radiator is cooled or heated using air in the atmosphere, which eliminates the disadvantage of being directly affected by the outside temperature and causing fluctuations in heating and cooling capacity.Also, waste heat is dissipated into the atmosphere. This eliminates pollution that has a negative impact on goods and people in the vicinity of the outdoor unit.

一方従来の水冷式の場合も新たに設けられた熱電対との
熱交換によって廃熱回収が行われ同時にそれによって生
じた熱起電力を利用して必要需要側に給電又は補足的に
給電することによってその分だけ節電が計れると同時に
、従来のクーリングタワー、ポンプ、水配管を廃止する
ことかできそのための運転′重力、保守整備1(どのむ
た4〔消費もなく !I′i)、更にその分だけ節電効
果もアップし、循環水のロス分の補給、水資源の確保、
公害lrどの問題もなくなる。
On the other hand, in the case of the conventional water-cooled type, waste heat is recovered by heat exchange with a newly installed thermocouple, and at the same time, the resulting thermoelectromotive force is used to supply or supplementary power to the necessary demand side. At the same time, the conventional cooling tower, pump, and water piping can be abolished. The power saving effect increases accordingly, replenishing lost circulating water, securing water resources,
All pollution problems will disappear.

又従来の中央方式、パッケージ型、冷房・暖房専用の空
調機においてもほぼ同様な問題も解決される。
Also, almost the same problem can be solved with conventional central type, packaged type, cooling/heating-only air conditioners.

なお従来の主力の空冷式セバレー1〜型冷暖房空調機の
室外ユニットを屋外に設置していた理由の放熱器からの
発生熱の廃熱放散のための送風ファンによる大気中への
強制送風の必要性の他に室内における設置スペースの制
約、電動圧縮機の運転音等の問題は熱電対による廃熱回
収のための送風ファンの廃止、最近の住宅・事務所事情
の好転、電動圧縮機の運転音の減少などの技術向上のた
めこれらは解決できる。但しその運転音が最終的に問題
になる場合は電動圧縮器のみ室外に設置する。
Furthermore, the reason why the outdoor units of conventional air-cooled Severe 1~ type air conditioners are installed outdoors is that forced air is required to be blown into the atmosphere by a blower fan to dissipate the waste heat generated from the radiator. In addition to performance, problems such as indoor installation space constraints and the noise of electric compressor operation include the elimination of blower fans for recovering waste heat using thermocouples, the recent improvement in residential and office conditions, and the operation of electric compressors. These problems can be solved by technological improvements such as sound reduction. However, if the operating noise ultimately becomes a problem, only the electric compressor should be installed outdoors.

又、従来の水冷式の場合もクーリングタワー、ポンプ、
水配管の廃止により解決され、従来の中央方式、パッケ
ージ型、冷房・暖房専用の空調機においても同様に解決
できる。
Also, in the case of conventional water-cooled systems, cooling towers, pumps,
This problem can be solved by abolishing water piping, and can be solved in the same way with conventional central type, packaged type, and dedicated air conditioners for cooling and heating.

−寒熱電対なとの熱電発電装置一式の設備費は極力最小
に抑えることができる。
- The equipment cost of a complete set of thermoelectric generators such as cryo-thermocouples can be kept to a minimum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はヒートポンプサイクルと熱電対とを用いた熱電
対式空調機の構成図。 第2図はヒートポンプサイクルと熱電対1゜2とを用い
た熱電対式空調機の構成図。 第3図はヒートポンプサイクルと熱電対とを用いた冷房
専用の熱電対式空調機の構成図。 第4図はヒートポンプサイクルと熱電対とを用いた暖房
専用の熱電対式空調機の構成図。 第5図は従来の空冷式セパレート型冷暖房空調機の冷房
時のヒートポンプサイクルの構成図。 第6図は従来の空冷式セパレート型冷暖房空調機の暖房
時のヒートポンプサイクルの構成図。 である。 1 :熱電対1 2 :熱電対2 3 :電動圧縮機 4 :凝縮器(暖房放熱器) 4′二室外ユニツトの放熱器 5 :減圧器 5a:暖房用減圧器 51〕:冷房用 〃 6 :蒸発器(冷房放熱器) 6′二室内ユニツトの冷暖房放熱器 7 :アキュムレータ 8 :暖房用ファン 8′;冷房用ファン 8”:室外ユニットの送風ファン 8/// :室内ユニットの冷暖房用ファン9 :熱交
換器 9′  :    〃 ;t :熱電対1の高温接合部 ;t′:熱電対2の高温接合部 1):熱電対1の低温接合部 1〕′:熱電対2  〃  〃 10:伝熱接続器 IQ’  :  //  // lQa、lQl〕:電磁三方弁 101【、10’ll:  tt  tt11□【、I
lb:熱電素子(熱電対1用)1141、ll’l) 
://  tt  (熱電対2用)12 :電池又はコ
ンテンサー 13:制御部 14:直交流交換器 15:調整器 16:四方弁 17i1:冷房用逆止弁 1713:暖房用逆止弁
FIG. 1 is a configuration diagram of a thermocouple air conditioner using a heat pump cycle and a thermocouple. FIG. 2 is a block diagram of a thermocouple air conditioner using a heat pump cycle and a 1°2 thermocouple. Figure 3 is a configuration diagram of a thermocouple air conditioner exclusively for cooling that uses a heat pump cycle and thermocouples. Figure 4 is a configuration diagram of a thermocouple air conditioner exclusively for heating using a heat pump cycle and a thermocouple. FIG. 5 is a configuration diagram of a heat pump cycle during cooling in a conventional air-cooled separate type air-conditioning/heating air conditioner. FIG. 6 is a diagram showing the configuration of a heat pump cycle during heating in a conventional air-cooled separate heating and cooling air conditioner. It is. 1: Thermocouple 1 2: Thermocouple 2 3: Electric compressor 4: Condenser (heating radiator) Radiator 5 of 4'2 outdoor unit: Pressure reducer 5a: Heating pressure reducer 51]: Cooling 6: Evaporator (cooling radiator) 6'2 Heating/cooling radiator for indoor unit 7: Accumulator 8: Heating fan 8'; Cooling fan 8'': Outdoor unit's ventilation fan 8///: Heating/cooling fan for indoor unit 9 : Heat exchanger 9' : 〃 ;t : High-temperature junction of thermocouple 1; t': High-temperature junction of thermocouple 2 1): Low-temperature junction 1 of thermocouple 1]': Thermocouple 2 〃 〃 10: Heat transfer connector IQ': // // lQa, lQl]: Solenoid three-way valve 101[, 10'll: tt tt11□[, I
lb: Thermoelectric element (for thermocouple 1) 1141, ll'l)
:// tt (For thermocouple 2) 12: Battery or condenser 13: Control unit 14: Cross-flow exchanger 15: Regulator 16: Four-way valve 17i1: Cooling check valve 1713: Heating check valve

Claims (1)

【特許請求の範囲】 1、冷媒圧縮用の電動圧縮機と凝縮器と減圧器と蒸発器
等からなるヒートポンプサイクルを用いて、異種の熱電
素子を組み合わせた熱電対の両接合部をそれぞれ前記凝
縮器と前記蒸発器と熱交換できるようにしておのおの加
熱される高温接合部と冷却される低温接合部とし、蒸発
器からの蒸発冷却熱を利用した冷房時には前記熱電対の
高湿接合部に凝縮器からの凝縮加熱熱を熱交換して回収
し加熱させ同時にこの両接合部間に温度差を与えること
によって熱起電力を生ぜしめ、一方凝縮器からの凝縮加
熱熱を利用した暖房時には前記熱電対の低温接合部に蒸
発器からの蒸発冷却熱を熱交換して回収し冷却させ同時
にこの両接合部間に温度差を与えることによって熱起電
力を生ぜしめ、それぞれ冷房時又は暖房時に前記熱電対
からの発電した熱起電力を必要需要側に給電することに
よってその分だけ節電もできるように構成したことを特
徴とする熱電対式空調機。 2、冷房時に凝縮器からの凝縮加熱熱をその高温接合部
と熱交換して専用に回収して両接合部間に温度差を与え
て熱起電力を生ぜしめる熱電対1と、暖房時に蒸発器か
らの蒸発冷却熱をその低温接合部と熱交換して専用に回
収して両接合部間に温度差を与えて熱起電力を生ぜしめ
る熱電対2とのそれぞれ専用の熱電対を用いて必要需要
側に給電しその分だけ節電もできるように構成したこと
を特徴とする特許請求の範囲第1項記載の熱電対式空調
機。 3、冷房用又は暖房用専用の空調機において、そのヒー
トポンプサイクルと熱電対とを用いて、それぞれの凝縮
器からの凝縮加熱熱又は蒸発器からの蒸発冷却熱を熱電
対の高温接合部又は低温接合部と熱交換して回収すると
同時にその両接合部間の温度差によって生じた熱起電力
を必要需要側に給電しその分だけ節電もできるように構
成したことを特徴とする特許請求の範囲第1項記載の熱
電対式空調機。 4、回転数制御のできる電動圧縮機を用いたヒートポン
プサイクルと熱電対とを用いて、冷房時には凝縮器から
の凝縮加熱熱を、暖房時には蒸発器からの蒸発冷却熱を
熱交換して回収すると同時に生じた熱起電力を必要需要
側に給電しその分だけ節電もできるように構成したこと
を特徴とする特許請求の範囲第1項、第2項、第3項記
載の熱電対式空調機。
[Claims] 1. Using a heat pump cycle consisting of an electric compressor for refrigerant compression, a condenser, a pressure reducer, an evaporator, etc., both junctions of a thermocouple that combines different types of thermoelectric elements are condensed, respectively. The high-temperature junction is heated and the low-temperature junction is cooled so that heat can be exchanged with the thermocouple and the evaporator, respectively, and during cooling using the evaporative cooling heat from the evaporator, it condenses on the high-humidity junction of the thermocouple. The condensation heating heat from the condenser is recovered and heated by heat exchange, and at the same time a temperature difference is created between the two joints to generate a thermoelectromotive force.On the other hand, during heating using the condensation heating heat from the condenser, the thermoelectromotive force is generated. The evaporative cooling heat from the evaporator is recovered and cooled by heat exchange between the pair of low-temperature junctions, and at the same time a temperature difference is created between the two junctions to generate a thermoelectromotive force. A thermocouple air conditioner characterized in that it is configured so that power can be saved by feeding the thermoelectromotive force generated by the pair to the necessary demand side. 2. Thermocouple 1, which exchanges heat from the condensation heating from the condenser with its high-temperature junction during cooling and collects it exclusively to create a thermoelectromotive force by creating a temperature difference between the two junctions, and a thermocouple that generates thermoelectromotive force during heating. Using thermocouples 2 and 2, which exchange heat from the evaporative cooling heat from the chamber with the low-temperature junction and recover it exclusively, creating a temperature difference between the two junctions and generating a thermoelectromotive force. The thermocouple type air conditioner according to claim 1, characterized in that the thermocouple type air conditioner is configured so that power is supplied to the necessary demand side and power can be saved accordingly. 3. In an air conditioner dedicated to cooling or heating, the heat pump cycle and thermocouple are used to transfer condensation heating heat from the condenser or evaporative cooling heat from the evaporator to the high temperature junction of the thermocouple or to the low temperature. Claims characterized in that the thermoelectromotive force generated by the temperature difference between the two joint parts is recovered by exchanging heat with the joint part, and at the same time, the thermoelectromotive force generated by the temperature difference between the two joint parts is supplied to the necessary demand side, thereby saving power by that amount. Thermocouple air conditioner according to item 1. 4. Using a heat pump cycle using an electric compressor that can control the rotation speed and a thermocouple, heat exchange is performed to recover the condensed heating heat from the condenser during cooling, and the evaporative cooling heat from the evaporator during heating. The thermocouple air conditioner according to claims 1, 2, and 3, characterized in that the thermoelectromotive force generated at the same time is supplied to the necessary demand side, thereby saving power accordingly. .
JP61015490A 1986-01-27 1986-01-27 Thermocouple type air conditioner Pending JPS62175539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015490A JPS62175539A (en) 1986-01-27 1986-01-27 Thermocouple type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015490A JPS62175539A (en) 1986-01-27 1986-01-27 Thermocouple type air conditioner

Publications (1)

Publication Number Publication Date
JPS62175539A true JPS62175539A (en) 1987-08-01

Family

ID=11890237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015490A Pending JPS62175539A (en) 1986-01-27 1986-01-27 Thermocouple type air conditioner

Country Status (1)

Country Link
JP (1) JPS62175539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100521A (en) * 2001-09-21 2003-04-04 Daihen Corp Stationary induction apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100521A (en) * 2001-09-21 2003-04-04 Daihen Corp Stationary induction apparatus

Similar Documents

Publication Publication Date Title
JP6234595B2 (en) Solar air conditioning system
US20180031285A1 (en) Thermoelectric heat pump system
JP2006313034A (en) Geothermal unit
US20180087786A1 (en) Energy management apparatus, system and method
JPS61110836A (en) Air-conditioning method
JP2006292313A (en) Geothermal unit
KR100591337B1 (en) Cogeneration system
EP4343214A1 (en) Multi-mode water-fluorine multi-split system
JP4994754B2 (en) Heat source system
KR100604308B1 (en) System for supplying electric power and air conditioning by heat amalgmation
CN111750418A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system and method
US20230118671A1 (en) Photovoltaic air conditioning system
JPS62175539A (en) Thermocouple type air conditioner
JPS62182562A (en) Power saving type air conditioner
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
CN114135954A (en) Heat pipe heat exchange air conditioning system
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
CN207635640U (en) A kind of refrigerating and heating systems of energy saving self power generation
WO2021174263A1 (en) Energy saving conditioner and heat supply method
JPS62169981A (en) Power saving type freezing refrigerator
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
CN210745036U (en) Heat transfer device, air conditioner assembly, water heater, refrigerating plant and thermoelectric generation device based on semiconductor wafer
JP2002280006A (en) Exhaust heat recovery system for solid polymer fuel cell power generating facility
JP2004044818A (en) Air conditioner
CN211792595U (en) Drive plate heat abstractor and air conditioner