JPS62169981A - Power saving type freezing refrigerator - Google Patents

Power saving type freezing refrigerator

Info

Publication number
JPS62169981A
JPS62169981A JP61010851A JP1085186A JPS62169981A JP S62169981 A JPS62169981 A JP S62169981A JP 61010851 A JP61010851 A JP 61010851A JP 1085186 A JP1085186 A JP 1085186A JP S62169981 A JPS62169981 A JP S62169981A
Authority
JP
Japan
Prior art keywords
power
condenser
heat
electric compressor
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61010851A
Other languages
Japanese (ja)
Inventor
太田 恵三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61010851A priority Critical patent/JPS62169981A/en
Publication of JPS62169981A publication Critical patent/JPS62169981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (A)産業上の利用分野 本発明は冷凍サイクルの凝縮器からの凝縮熱を回収利用
し゛C熱電対の熱電発電による節電型冷凍冷蔵庫に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (A) Industrial Application Field The present invention relates to an energy-saving refrigerator-freezer that recovers and utilizes condensation heat from a condenser of a refrigeration cycle and generates thermoelectric power using a C thermocouple.

(B)従来の技術 従来の冷凍冷蔵庫にお−・で、その冷凍サイクルの凝縮
器から発熱される凝縮熱は放熱ファンによる強制冷却か
又は自然冷却させるかいづれかの方法で廃熱と17で人
気中に放散して捨てられている。
(B) Conventional technology In a conventional refrigerator-freezer, the condensation heat generated from the condenser of the refrigeration cycle is converted into waste heat by either forced cooling using a radiation fan or natural cooling. It is scattered inside and thrown away.

(q発明が解決しまうとする問題点 荊記の如〈従来の冷凍冷蔵庫の冷凍サイクルの凝縮器か
ら発熱される凝縮熱は廃熱として全くむjごに大気中に
捨てられていた。
(Q) Problems that the invention aims to solve: As stated in the following, the condensation heat generated from the condenser of the refrigeration cycle of conventional refrigerator-freezers was completely wasted into the atmosphere as waste heat.

このため強制冷却の場合は放熱ファンを設置してその運
転電力費をも必要ヒし、又自然冷却の場合も放熱面積を
大きくとるための対策を必要とし、更にこの廃熱の庫外
への放散により断熱壁で隔てられてはいるものの、この
廃熱が冷凍冷蔵庫内の冷却効率にも悪い影響を与え、そ
の分だけ余分に電動圧縮機に負荷をかけていた。
For this reason, in the case of forced cooling, it is necessary to install a heat dissipation fan and increase the operating power cost, and in the case of natural cooling, it is necessary to take measures to increase the heat dissipation area, and furthermore, it is necessary to take measures to increase the heat dissipation area. Although separated by an insulating wall due to dissipation, this waste heat had a negative effect on the cooling efficiency inside the refrigerator-freezer, placing an additional load on the electric compressor.

q問題点を解決するための手段 以上の問題点を解決するため、本発明は冷媒圧縮用の電
動圧縮機又は回転数制御のできる電動圧縮機と凝縮器と
減圧器と蒸発器等からなる冷凍サイクル又は開発中の高
性能・高効率のスーパー冷凍サイクルの冷凍冷蔵庫にと
熱交換させてその凝縮熱で加熱して廃熱回収し、この固
接合部間に温度差を与えることによって、いわゆるゼー
ベック効果による熱起電力を生ぜしめて発電した電力を
直流のま5か又は交流に変換して必要需要側の例えば電
動圧縮機、又は回転数制御電動圧縮機又はその他の必要
部(例えば庫内灯、解凍用ファン、更には電気温水給湯
器など)へ補足的に給電することによってその分だけ電
動圧縮機、回転数制御電動圧縮機の必要駆動電力又はそ
の他の必要部の電力を節電できるようにすると同時に、
この廃熱回収により強制冷却のための放熱ファン、又は
自然冷却のための放熱面積を大きくとる必要性をなくし
、併せてこの廃熱のための冷凍冷蔵庫内の冷却効率の低
下をカバーするための電動圧縮機への余分な電力負荷を
も軽減することができるように計った。
Means for Solving Problems q In order to solve the above problems, the present invention provides a refrigeration system consisting of an electric compressor for compressing refrigerant or an electric compressor capable of controlling the rotation speed, a condenser, a pressure reducer, an evaporator, etc. The so-called Seebeck The electric power generated by generating a thermoelectromotive force is converted into direct current or alternating current to be used on the necessary demand side, such as an electric compressor, or a rotation speed controlled electric compressor, or other necessary parts (for example, an interior light, By supplying supplementary power to defrosting fans, electric hot water water heaters, etc.), the power required to drive the electric compressor, rotation speed controlled electric compressor, or other necessary parts can be saved accordingly. at the same time,
This waste heat recovery eliminates the need for a heat dissipation fan for forced cooling or a large heat dissipation area for natural cooling, and also eliminates the need for a heat dissipation fan for forced cooling or a large heat dissipation area for natural cooling. The design was designed to reduce the extra power load on the electric compressor.

なお冷凍サイクルとは特に断わりのない限り通常の冷凍
サイクル及び開発中の高性能・高効率のスーパー冷凍サ
イクルとを総称するものとする。又熱電対とは特に断わ
りのない限り通常の単数又は複数の対の熱電対及び開発
中の高性能・高効率の単数又は複数の対の超然電対とを
総称するものとする。
Note that the refrigeration cycle is a general term for a normal refrigeration cycle and a high-performance, high-efficiency super refrigeration cycle that is currently under development, unless otherwise specified. In addition, unless otherwise specified, thermocouple is a general term for ordinary single or multiple pairs of thermocouples and high-performance/high-efficiency single or multiple pairs of extraneous thermocouples that are under development.

(ト)作  用 一般に熱電対の固接合部間に温度差を与えた時、前述の
如くゼーベック効果によって発生する熱起電力Eは E−α(Tr−T2)     −(1)αは熱電能で
現時点では半導体のαの値が金属と比べて1けたくらい
大きい。T1は高温接合部絶対温度、T2は低温接合部
絶対温度である。又熱電対の性能を示す熱電性能指数2
はz=、2立 K        −−−一−(2) すは熱電素子材料の電気伝導率、Kはその熱伝導率であ
る。従って(2)式から熱電素子が高性能(即ちZが大
)であるためには熱電能αが大で電気伝導率計が大きく
且つ熱伝導率Kが小さいことが必要であり、半導体は熱
電能が大きく熱伝導率が小さいといつ熱電素子材料とし
て有利な特性をそなえている。特に化合物半導体がより
有利な条件をもっている。
(G) Function Generally speaking, when a temperature difference is applied between the fixed joints of a thermocouple, the thermoelectromotive force E generated by the Seebeck effect as mentioned above is E-α(Tr-T2) - (1) where α is the thermoelectric power. At present, the α value of semiconductors is about an order of magnitude larger than that of metals. T1 is the high temperature junction absolute temperature, and T2 is the low temperature junction absolute temperature. In addition, the thermoelectric figure of merit 2 indicates the performance of the thermocouple.
z=, 2 K --- (2) where z is the electrical conductivity of the thermoelectric element material, and K is its thermal conductivity. Therefore, from equation (2), in order for the thermoelectric element to have high performance (that is, Z is large), it is necessary that the thermoelectric power α is large, the electrical conductivity meter is large, and the thermal conductivity K is small. It has advantageous properties as a thermoelectric element material because of its high capacity and low thermal conductivity. In particular, compound semiconductors have more advantageous conditions.

一方熱電対使用のゼーベック効果にょる熱電発電方式の
熱・電気変換効率の最大1直は現状では約10%である
のでこれをηOmカとする又冷凍サイクルの凝縮器から
単位時間に発熱される凝縮熱をQOとし、これをn対の
熱電対で回収するとして残りの凝縮熱をQnaするとQ
n = QO(1−”omax)n≦0,9°Qo  
’  −(4)回収率を約90%とすると(4)式から
n ′−,22゜即ち約22対の熱電対で回収できる。
On the other hand, the maximum heat-to-electricity conversion efficiency of the thermoelectric power generation system using the Seebeck effect using thermocouples is currently about 10%, so this is defined as ηOm.Also, heat is generated per unit time from the condenser of the refrigeration cycle. Let QO be the heat of condensation, and let it be collected by n pairs of thermocouples, and let the remaining heat of condensation be Qna.
n = QO(1-”omax)n≦0,9°Qo
'-(4) If the recovery rate is about 90%, then from equation (4) n'-, 22 degrees, that is, about 22 pairs of thermocouples can be used to recover.

更に冷凍サイクルの成績係数が2〜3.高性能・高効率
のスーパー冷凍サイクルの場合はその約2倍であること
なども併せて考えればこの熱電対の対の数も減ることも
期待できる。又、熱電性能指数の更によりすぐれた熱電
素子材料の技術開発が進めばこの対の数も更に減ってゆ
くことが期待される。
Furthermore, the coefficient of performance of the refrigeration cycle is 2 to 3. Considering that in the case of a high-performance, high-efficiency super refrigeration cycle, the number of thermocouple pairs is approximately twice that, we can expect the number of thermocouple pairs to be reduced. Furthermore, as the technological development of thermoelectric element materials with even better thermoelectric figures of merit progresses, it is expected that the number of these pairs will further decrease.

なお熱電対の1対で得られる出力(発電量)よりも複数
の対の熱電対を直列にして用いると、より発電量の増大
にもつながる利点もある。
Note that using multiple pairs of thermocouples in series has the advantage that the output (power generation amount) can be increased more than the output (power generation amount) obtained with one pair of thermocouples.

(D実施例 本発明の実施例を図面にもとづいて説明する。第1図は
本発明の一実施例を示す節電型冷凍冷蔵庫の乍秦孝殴十
委冷凍すイク/l/と熱電対とを示す構成図である。図
において1は電動圧縮機、2は凝縮器、3は二方弁、4
は減圧器、5は蒸発器、6はアキュムレータである。な
お二方弁、減圧器、蒸発器などは冷凍冷蔵庫の冷却室の
数、又はそれに準する数の並列の複数個づつよりなるが
特に図示せず。
(Embodiment D) An embodiment of the present invention will be explained based on the drawings. Fig. 1 shows an example of an energy-saving refrigerator/freezer according to an embodiment of the present invention. 1 is a configuration diagram showing an electric compressor. In the figure, 1 is an electric compressor, 2 is a condenser, 3 is a two-way valve, and 4 is a
is a pressure reducer, 5 is an evaporator, and 6 is an accumulator. Note that the two-way valve, pressure reducer, evaporator, etc. are not particularly shown, although they consist of a plurality of parallel valves each having the same number as the cooling chambers of a refrigerator-freezer or a similar number.

7は凝縮器2からの凝縮熱で加熱される熱交換器で例え
ばヒートパイプ等からなる。8は熱電発電器の熱電対、
aは熱電対8の高温接合部、bはその低温接合部である
。9は熱交換器7からの凝縮加熱熱量を熱電対8の高温
接合部aに伝達する伝熱接続器で例えばヒートパイプ等
からなる。なお熱交換器7と熱電対8の高温接合部aと
直結されている場合は伝熱接続器9は不要である。10
a、tobは熱電対8を構成する異種(p形、n形など
)の熱電素子である。
A heat exchanger 7 is heated by the condensation heat from the condenser 2 and is composed of, for example, a heat pipe. 8 is a thermocouple of a thermoelectric generator,
a is the high temperature junction of the thermocouple 8, and b is its low temperature junction. Reference numeral 9 denotes a heat transfer connector that transmits the condensed heating heat from the heat exchanger 7 to the high-temperature junction a of the thermocouple 8, and is made of, for example, a heat pipe. Note that if the heat exchanger 7 and the thermocouple 8 are directly connected to the high-temperature junction a, the heat transfer connector 9 is not necessary. 10
a and tob are thermoelectric elements of different types (p-type, n-type, etc.) that constitute the thermocouple 8.

11は電池又はコンデンサー、12は制御部、13は直
交流変換器(例えばインバータなど)である。但し交流
に変換する必要のない場合は直交流変換器13は不要で
ある。14は外部電源からの電動圧縮機1への主入力と
直交流変換器13又は制御部12からの熱起電力の補足
入力とを調整制御する調整器である。
11 is a battery or a capacitor, 12 is a control unit, and 13 is a DC/AC converter (for example, an inverter). However, if there is no need to convert to alternating current, the direct current converter 13 is not necessary. 14 is a regulator that adjusts and controls the main input to the electric compressor 1 from an external power source and the supplementary input of thermoelectromotive force from the DC converter 13 or the control unit 12.

なお凝縮器2.熱交換器7はできるだけ高効率のものを
選定し、更にスーパー冷凍サイクルの場合は高性能の電
動圧縮機とする。又熱電素子の10a、10bは熱電能
が大きく、電気伝導率が大で且つ熱伝導率が小さく、エ
ネルギー変換特性のすぐれている材料、例えば半導体の
V−■族のBi2 Tea 、B12(Tera )3
系:v−v族のB1Sb 1(B18b)2TeB系:
その他の化合物半導体等を用いる。更にその技術開発が
進み飛躍的な高性能・高効率の材料の超然電対が開発さ
れればそれを用いる。熱電対8の固接合部a、bは金属
(例えばOuなど)製よりなり、熱を熱電素子IQa、
10bに伝えると同時に電極の役目もする。但し半導体
と金属との接触についてはそれぞれの仕事関数との関係
を慎重に検討して最適の金属の材質を選定する必要があ
る。将来金属以外でも更にすぐれた最適の材質が開発さ
れればそれを使用する。又冷凍サイクルに使用する冷媒
はフレオン、アンモニアなどであるがスーツクー冷凍サ
イクルの場合はそれらの混合冷媒又は非共沸混合冷媒を
使用する。
Note that the condenser 2. The heat exchanger 7 is selected to be as efficient as possible, and in the case of a super refrigeration cycle, a high-performance electric compressor is selected. The thermoelectric elements 10a and 10b are made of materials that have high thermoelectric power, high electric conductivity, low thermal conductivity, and excellent energy conversion characteristics, such as Bi2 Tea and B12 (Tera) of the V-■ group of semiconductors. 3
System: v-v group B1Sb 1(B18b)2TeB system:
Other compound semiconductors are used. Furthermore, if technological development progresses and a supernatural couple made of materials with dramatically higher performance and efficiency is developed, it will be used. The solid joints a and b of the thermocouple 8 are made of metal (for example, Ou, etc.), and heat is transferred to the thermoelectric elements IQa,
10b and at the same time serves as an electrode. However, when contacting semiconductors with metals, it is necessary to carefully consider the relationship between the work functions of each semiconductor and select the optimal metal material. If a more excellent and optimal material other than metal is developed in the future, we will use it. Further, the refrigerant used in the refrigeration cycle is freon, ammonia, etc., and in the case of a soot-cooled refrigeration cycle, a mixed refrigerant or a non-azeotropic mixed refrigerant of these is used.

次にその作動として電動圧縮機1の回転数で圧縮された
冷媒が凝縮器2に流入し凝縮液化放熱され熱交換器7に
加熱熱交換され、その凝縮熱が伝熱接続器9を経て熱電
対8の高温接合部aに伝熱加熱される。一方放熱後の液
冷媒は二方弁3を介して減圧器4で減圧されて蒸発器5
に流入し蒸発気化冷却され冷凍冷蔵庫の各冷却室を冷却
する。かくて冷却後の気化冷媒はアキュムレータ6に流
入し、電動圧縮機1の吸気側に戻り冷凍サイクルが形成
される。高性能・高効率のスーパー冷凍サイクルの場合
は高性能の電動圧縮機1で圧縮された混合冷媒又は非共
沸混合冷媒が高効率の凝縮器2.減圧器4.蒸発器5.
その他の機器等を経てスーパー冷凍サイクルが形成され
る。
Next, in its operation, the refrigerant compressed at the rotational speed of the electric compressor 1 flows into the condenser 2, condenses and liquefies, radiates heat, and is heated and heat exchanged with the heat exchanger 7. The high temperature joint part a of pair 8 is heated by heat transfer. On the other hand, the liquid refrigerant after heat dissipation is reduced in pressure by a pressure reducer 4 via a two-way valve 3, and is then reduced to an evaporator 5.
The liquid flows into the refrigerator and is evaporated and cooled to cool each cooling chamber of the refrigerator-freezer. The vaporized refrigerant thus cooled flows into the accumulator 6 and returns to the intake side of the electric compressor 1, forming a refrigeration cycle. In the case of a high-performance/high-efficiency super refrigeration cycle, the mixed refrigerant or non-azeotropic mixed refrigerant compressed by the high-performance electric compressor 1 is transferred to the high-efficiency condenser 2. Pressure reducer4. Evaporator 5.
A super refrigeration cycle is formed through other equipment.

一方異種(p形、n形など)の熱電素子の108.10
bを組み合わせた熱電対8のそれぞれの高温接合部a、
低温接合部l)の間に温度差が生じゼーベック効果によ
り熱起電力が発電される。その発電電力量は(1)式に
よってきまり、そして発電された直流電力は電池又はコ
ンデンサー11に蓄電され制御部12゜直交流変換器1
3.調整器14を経て電動圧縮機1へ外部電源からの主
電力と共に補足的に制御給電されその分だけ主電力の給
電量を節電させる。なお直流のま−でよい場合は直交流
変換器13が不要で制御部12から調整器14を経て電
動圧縮機1へ外部電源からの主電力と共に補足的に制御
給電される。又高性能・高効率の超然電対使用の場合は
更にその生ずる熱起電力の発電量が多くなり、電動圧縮
機1へのWJ電量も大きくなる。以上の説明は生じた熱
起電力を電動圧縮機1へ補足給電する例であるがその他
の必要需要側(例えば庫内灯、解凍用ファン、更には電
気温水給湯器など)へ給電又は補足給電される場合は直
交流変換器13又は制御部12を経て行われる。
On the other hand, 108.10 for thermoelectric elements of different types (p-type, n-type, etc.)
Each high temperature junction a of the thermocouple 8 combined with b,
A temperature difference occurs between the low-temperature junction l), and a thermoelectromotive force is generated due to the Seebeck effect. The amount of power generated is determined by equation (1), and the generated DC power is stored in a battery or capacitor 11, and the control unit 12° DC/AC converter 1
3. Through the regulator 14, power is supplied to the electric compressor 1 in a controlled manner in addition to the main power from an external power source, thereby saving the amount of main power supplied accordingly. Note that if DC current is sufficient, the DC/AC converter 13 is unnecessary, and power is supplied from the control unit 12 via the regulator 14 to the electric compressor 1 in a supplementary controlled manner together with the main power from the external power source. Furthermore, when a high-performance, high-efficiency superstatic couple is used, the amount of generated thermoelectromotive force is further increased, and the amount of WJ electricity supplied to the electric compressor 1 is also increased. The above explanation is an example of supplementary power supply of the generated thermoelectromotive force to the electric compressor 1, but power is supplied or supplementary power to other necessary demand sides (for example, interior lights, defrosting fans, electric water heaters, etc.) If so, it is performed via the DC/AC converter 13 or the control section 12.

回転数制御電動圧縮機の場合、熱起電力を外部電源から
の主電力と共に回転数制御(交流駆動の場合はインバー
タ制御、直流駆動の場合はサイリスクレオナード制御な
ど)に補足的に制御給電される。又凝縮器2及び蒸発器
4のそれぞれの入側又は出側に流量制御弁(特に図示せ
ず)を設けて冷媒を電動圧縮機1の回転数に対応した最
適冷媒流量に制御して同期制御することにより冷媒をき
め細かく制御してそれぞれ凝縮器2及び蒸発器4に流入
制御させて更に一層精度良く熱起電力を制御発電するこ
とができる。
In the case of a rotation speed controlled electric compressor, thermoelectromotive force is supplied with supplementary control power to the rotation speed control (inverter control for AC drive, Thyris-Screenard control for DC drive, etc.) along with the main power from an external power source. Ru. In addition, a flow control valve (not particularly shown) is provided on the inlet or outlet side of each of the condenser 2 and evaporator 4 to control the refrigerant to an optimum refrigerant flow rate corresponding to the rotation speed of the electric compressor 1 for synchronous control. By doing so, the refrigerant can be finely controlled to flow into the condenser 2 and the evaporator 4, respectively, and the thermoelectromotive force can be controlled and generated even more precisely.

第2図は節電型冷凍冷蔵庫の冷凍サイクルの凝縮器と熱
電対の高温接合部が直接接合されて熱起電力を生せしめ
るようにした構成図である。図において凝縮器2が直接
接合して熱電対8の高温接合部aとなっており、このた
め伝熱接続器9は不要である。但し熱交換器7は必要と
する場合もある。その他はすべてほぼ第1図の場合と同
様である。
FIG. 2 is a configuration diagram in which the high-temperature joints of the condenser and thermocouple of the refrigeration cycle of the power-saving refrigerator-freezer are directly connected to generate a thermoelectromotive force. In the figure, the condenser 2 is directly connected to form the high-temperature joint a of the thermocouple 8, so the heat transfer connector 9 is not required. However, the heat exchanger 7 may be required. All other details are almost the same as in the case of FIG.

以上の第1図、@2図に示した実施例はそれぞれ熱電対
が1対の場合であるが、前述の如く凝縮器2から発熱さ
れる凝縮熱を極力回収し、且つより大きな発電量の熱起
電力の発生を得るために実際はそれぞれ複数の対の熱電
対を直列にして用いる場合が多い。
The embodiments shown in Fig. 1 and Fig. 2 each use one pair of thermocouples, but as mentioned above, the condensation heat generated from the condenser 2 is recovered as much as possible, and a larger amount of power generation is generated. In practice, a plurality of pairs of thermocouples are often connected in series to generate thermoelectromotive force.

第3図は従来の冷凍冷蔵庫の冷凍サイクルの凝縮器から
の凝縮熱を廃熱として放熱ファンにより強制冷却で大気
中ζζ捨てられている構成図である。図において15は
放熱ファンである。
FIG. 3 is a configuration diagram in which the condensed heat from the condenser of the refrigeration cycle of a conventional refrigerator-freezer is forcibly cooled as waste heat by a radiation fan and discarded into the atmosphere. In the figure, 15 is a heat dissipation fan.

第4図は同じく自然冷却で大気中に捨てられている構成
図である。
FIG. 4 is a diagram showing the structure of the reactor being discarded into the atmosphere due to natural cooling.

(Q発明の効果 以上の説明により本発明の節電型冷凍冷蔵庫の効果とじ
て、従来の冷凍冷蔵庫の冷凍サイクルの凝縮器から発熱
される凝縮熱は廃熱として全くむtごに大気中に捨てら
れていたのを熱交換回収してゼーベック効果による熱電
対の熱電発電方式で熱起電力を生ぜしめて廃熱エネルギ
ーを電気に変換して発電した電力を必要需要側の電動圧
縮機、又はその他−・補足的に給電することによってそ
の分だけ電動圧縮機の必要駆動電力又はその他の必要電
力か節電できる。
(Q Effect of the Invention As explained above, the effect of the power-saving refrigerator-freezer of the present invention is that the condensation heat generated from the condenser of the refrigeration cycle of the conventional refrigerator-freezer is completely discarded into the atmosphere as waste heat. The waste heat energy is recovered by heat exchange and thermoelectric power generation method using thermocouples using the Seebeck effect is used to generate thermoelectromotive force and convert the waste heat energy into electricity.The generated electricity is then used for electric compressors on the demand side or other - By supplying supplementary power, the required driving power of the electric compressor or other required power can be saved accordingly.

又、放熱ファンによる強制冷却が不必要となりその駆動
電力及び設備費も不要となる。
In addition, forced cooling by a heat dissipation fan is unnecessary, and the driving power and equipment costs are also eliminated.

或は自然冷却のための放熱面積を大きくとる必要もなく
なり凝縮器をコノパクトなものとさせろことができ合理
化される。
Alternatively, there is no need to provide a large heat dissipation area for natural cooling, and the condenser can be made compact, resulting in rationalization.

又、従来の発熱されていた凝縮熱の廃熱のだめの冷凍冷
蔵庫内の冷却効率の低下をカバーするための電動圧縮機
−・の余分な電力負荷をも軽減させその節電効果を更に
アップさせることができる。
In addition, the extra power load of the electric compressor, which is used to compensate for the decrease in cooling efficiency in refrigerators and freezers where the waste heat of condensation heat generated in the past is used, is also reduced, and the power saving effect is further increased. I can do it.

なお熱電発電装置一式の設備費及び重量の増加は極力最
小に抑えることができる。
Incidentally, the increase in equipment cost and weight of the thermoelectric generator set can be kept to a minimum as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は節電型冷凍冷蔵庫の冷凍サイクルと熱電対とを
示す構成図。 第2図は節電型冷凍冷蔵庫の冷凍サイクルの凝縮器と熱
電対の高温接合部が直接接合されて熱起電力を生ぜしめ
るようにした構成図。 第3図は従来の冷凍冷蔵庫の冷凍サイクルの凝縮器から
の凝縮熱を廃熱として放熱ファンにより強制冷却で捨て
られている構成図。 第4図は同じく自然冷却で捨てられている構成図。 である。 1 : 電動圧縮機 2:凝縮器 3:二方弁 4:減圧器 5:蒸発器 6  :  アキュムレータ 7 : 熱交換器 8:熱電対 JL:  熱電対の高温接合部 1〕:〃   低温接合部 9 : 伝熱接続器 10a、 10b :  熱電素子 11:  電池又はコンデンサー 12:制御部 13:  直交流変換器 14:調整器 15:  放熱ファン
FIG. 1 is a configuration diagram showing the refrigeration cycle and thermocouple of an energy-saving refrigerator-freezer. FIG. 2 is a configuration diagram in which the high-temperature joints of the condenser and thermocouple of the refrigeration cycle of an energy-saving refrigerator-freezer are directly connected to generate a thermoelectromotive force. FIG. 3 is a configuration diagram in which the condensed heat from the condenser of the refrigeration cycle of a conventional refrigerator-freezer is discarded as waste heat by forced cooling by a radiation fan. Figure 4 is a configuration diagram that is also discarded due to natural cooling. It is. 1: Electric compressor 2: Condenser 3: Two-way valve 4: Pressure reducer 5: Evaporator 6: Accumulator 7: Heat exchanger 8: Thermocouple JL: Thermocouple high temperature junction 1: Low temperature junction 9 : Heat transfer connectors 10a, 10b : Thermoelectric element 11 : Battery or capacitor 12 : Control unit 13 : DC/AC converter 14 : Regulator 15 : Radiation fan

Claims (1)

【特許請求の範囲】 1、冷媒圧縮用の電動圧縮機と凝縮器と減圧器と蒸発器
等からなる冷凍サイクルの冷凍冷蔵庫において、異種の
熱電素子を組み合わせた熱電対の両接合部のうちの高温
接合部を前記凝縮器と熱交換させてその凝縮熱で加熱し
てこの両接合部間に温度差を与えることによって熱起電
力を生ぜしめて発電した電力を必要需要側へ給電するこ
とによってその分だけ節電できるように構成したことを
特徴とする節電型冷凍冷蔵庫。 2、回転数制御のできる電動圧縮機駆動の冷凍サイクル
の凝縮器と熱交換させてその凝縮熱で熱電対の両接合部
間に温度差を与えることによって生じた熱起電力を必要
需要側へ給電して節電できるように構成したことを特徴
とする特許請求の範囲第1項記載の節電型冷凍冷蔵庫。
[Claims] 1. In a refrigerator with a refrigeration cycle consisting of an electric compressor for compressing refrigerant, a condenser, a pressure reducer, an evaporator, etc., one of the two junctions of a thermocouple that combines different types of thermoelectric elements. By exchanging heat with the condenser and heating the high temperature junction with the condensation heat to create a temperature difference between the two junctions, a thermoelectromotive force is generated and the generated power is supplied to the necessary demand side. This is an energy-saving refrigerator/freezer that is configured to save electricity by a certain amount. 2. The thermoelectromotive force generated by exchanging heat with the condenser of a refrigeration cycle driven by an electric compressor that can control the rotation speed and using the condensation heat to create a temperature difference between both junctions of the thermocouple is transferred to the necessary demand side. The power-saving refrigerator-freezer according to claim 1, characterized in that it is configured to be able to save power by supplying power.
JP61010851A 1986-01-21 1986-01-21 Power saving type freezing refrigerator Pending JPS62169981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010851A JPS62169981A (en) 1986-01-21 1986-01-21 Power saving type freezing refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010851A JPS62169981A (en) 1986-01-21 1986-01-21 Power saving type freezing refrigerator

Publications (1)

Publication Number Publication Date
JPS62169981A true JPS62169981A (en) 1987-07-27

Family

ID=11761855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010851A Pending JPS62169981A (en) 1986-01-21 1986-01-21 Power saving type freezing refrigerator

Country Status (1)

Country Link
JP (1) JPS62169981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469346A (en) * 1987-09-09 1989-03-15 Toppan Printing Co Ltd Cooling and heating device in printing press
JPH01120342A (en) * 1987-11-04 1989-05-12 Toppan Printing Co Ltd Drying apparatus of printing press
WO2007055852A1 (en) * 2005-11-09 2007-05-18 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric heat recovery and actuation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469346A (en) * 1987-09-09 1989-03-15 Toppan Printing Co Ltd Cooling and heating device in printing press
JPH01120342A (en) * 1987-11-04 1989-05-12 Toppan Printing Co Ltd Drying apparatus of printing press
WO2007055852A1 (en) * 2005-11-09 2007-05-18 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric heat recovery and actuation
US7296416B2 (en) 2005-11-09 2007-11-20 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
EP1946015A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric heat recovery and actuation
CN102278834A (en) * 2005-11-09 2011-12-14 艾默生环境优化技术有限公司 Refrigeration system including thermoelectric heat recovery and actuation
US8307663B2 (en) 2005-11-09 2012-11-13 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
EP1946015A4 (en) * 2005-11-09 2014-04-30 Emerson Climate Technologies Refrigeration system including thermoelectric heat recovery and actuation

Similar Documents

Publication Publication Date Title
CN110425668B (en) Machine room heat pipe air conditioning system with emergency refrigeration function and control method thereof
US7752852B2 (en) Vapor compression circuit and method including a thermoelectric device
US10539348B2 (en) Power and refrigeration cascade system
CN110838608B (en) Liquid-cooled heat management device for power battery of hybrid power locomotive
US20080128012A1 (en) Ground source energy generator
JPS61110836A (en) Air-conditioning method
US20210262706A1 (en) Energy recovery from waste heat
CN102721224A (en) Self-generating compression, condensation and refrigeration system
CN1734212A (en) Refrigerating system with energy source recovery function
CN103075838B (en) Stepped cold supplying and accumulating device of thermoelectric refrigerator
JPS62169981A (en) Power saving type freezing refrigerator
KR102322529B1 (en) air conditioning system
JPH11187682A (en) Heat accumulation-cold accumulation system power storing equipment
CN201654576U (en) Temperature control system of electronic device
JPS62182562A (en) Power saving type air conditioner
CN207635640U (en) A kind of refrigerating and heating systems of energy saving self power generation
JPS5815705B2 (en) Heat recovery method in power generation equipment
Al-Tahaineh et al. Performance of a Hybrid TEG/Single Stage Ammonia-Water Absorption Refrigeration Cycle with a Combined Effect of Rectifier and Condensate Precooler
CN210745036U (en) Heat transfer device, air conditioner assembly, water heater, refrigerating plant and thermoelectric generation device based on semiconductor wafer
CN215892827U (en) Heat pump set
JPS62175539A (en) Thermocouple type air conditioner
CN112815620B (en) Semiconductor jet type combined refrigerating system
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
CN115306507B (en) Mobile vehicle-mounted power supply system
CN218495218U (en) Distributed energy storage air conditioner based on phase change material