JPS62173155A - Input control optimization system - Google Patents
Input control optimization systemInfo
- Publication number
- JPS62173155A JPS62173155A JP61010042A JP1004286A JPS62173155A JP S62173155 A JPS62173155 A JP S62173155A JP 61010042 A JP61010042 A JP 61010042A JP 1004286 A JP1004286 A JP 1004286A JP S62173155 A JPS62173155 A JP S62173155A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- lot
- controller
- input
- machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005457 optimization Methods 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 2
- 239000013598 vector Substances 0.000 description 11
- 230000032258 transport Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Multi-Process Working Machines And Systems (AREA)
- General Factory Administration (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は多品種混合生産を行なう自動化製造ショップで
の投入制御最適化方式に係り、特に、生産効率を高める
ように部品引当9部品投入順序等を決定するのに好適な
投入制御最適化方式に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for optimizing input control in an automated manufacturing shop that performs mixed production of a wide variety of products, and in particular, to increase production efficiency by adjusting the input order of parts reservation, nine parts input order, etc. The present invention relates to an input control optimization method suitable for determining.
従来の生産要求ロフトの投入方式は1例えば特開昭53
−148681号公報あるいはIE1980.6の20
頁rMPRを核として計画を高精度にトレースする生産
情報管理」(宮田孝博)K記載されているように、納期
、コスト、ロフト作業量等の成る優先順位に従って部品
引当、投入順序決定を行なうものである。The conventional production request loft input method is 1, for example, JP-A-53
-148681 publication or IE1980.6 20
As described in "Production information management that traces the plan with high precision using MPR as the core" (Takahiro Miyata), it is a system that allocates parts and determines the order of input according to priorities such as delivery date, cost, and loft work volume. It is.
この従来方式は簡易な反面、全在庫部品のチェック、各
投入ロットの作業時間のバラツキ等を考慮していないた
め、製造ショップ内にロフトが投入された後、欠品によ
るライン停止、ロフト間の作業干渉による機械の不稼働
時間(作業待ちの遊休時間、次機械が作業中のため当該
機械が停止するブロッキング時間、等)が発生しやすく
、機械稼働率が低いという問題がある。Although this conventional method is simple, it does not take into account the checking of all inventory parts or the variations in work time for each input lot, so after the lofts are input into the manufacturing shop, line stoppages due to missing items, and between lofts. There is a problem that machine downtime due to work interference (idle time waiting for work, blocking time when the machine stops because the next machine is working, etc.) is likely to occur, resulting in a low machine utilization rate.
本発明の目的は、上記した従来技術の問題点をなくし、
多品種で混合生産を行なう自動化製造ショップを対象と
して、機械稼働率を高める部品の引当、及び投入順序を
決定する投入制御最適化方式を提供することにある。The purpose of the present invention is to eliminate the problems of the prior art described above,
The purpose of this invention is to provide an optimization method for parts allocation and input control that determines the order of parts allocation and input order to increase the machine operating rate, targeting automated manufacturing shops that perform mixed production of a wide variety of products.
本発明では、複数の機械が設置された製造ラインにおい
て、各機械での処理を行なうロフト(部品、または素材
の製造単位)の計算・作業指示を行なうコントローラを
設け、該コントローラからの入力情報に応じて、在庫部
品、使用部品、作業時間等の生産情報を予め記憶した電
子計算機で、製造ラインにおける最適な部品の引通計算
、投入順序計算を高速かつ自動的に行ない、この結果を
コントローラに作業指示として出力し、この作業指示に
従って各機械を制御する。In the present invention, in a production line where a plurality of machines are installed, a controller is provided to calculate the loft (manufacturing unit of parts or materials) to be processed by each machine and give work instructions, and input information from the controller is provided. Accordingly, an electronic computer that stores production information such as inventory parts, used parts, working hours, etc. is used to quickly and automatically calculate the optimum parts handling and input order on the production line, and send the results to the controller. It is output as a work instruction and each machine is controlled according to this work instruction.
以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を適用する製造職場の一例の
構成図である。第1図の製造職場のラインは、部品(ま
たは、素材)倉庫1と、ロフトを最適な投入順序に並べ
る配膳装置2と、各ロットを搬送する搬送ラインSと、
各ロフトの処理を行なう機械4と、各機械4間のバッフ
ァ・スペース5と、処理が完了した完成品を収納する完
成品倉庫6とから構成される。FIG. 1 is a configuration diagram of an example of a manufacturing workplace to which an embodiment of the present invention is applied. The manufacturing workplace line in FIG. 1 includes a parts (or material) warehouse 1, a serving device 2 that arranges the lofts in an optimal loading order, and a transport line S that transports each lot.
It consists of machines 4 that process each loft, buffer spaces 5 between the machines 4, and a finished product warehouse 6 that stores finished products that have been processed.
そして、部品倉庫1、配膳装置2、各機械4は。And the parts warehouse 1, the catering device 2, and each machine 4.
コントローラ8によって制御され、各コントローラ8は
ホスト・コントローラ9によって管理・制御される。な
お、これらの各コントローラ8を使用せずに、ホスト・
コントローラ9のみによる集中制御でもよいことはいう
までもない。7は入・出力装置である。Each controller 8 is managed and controlled by a host controller 9. In addition, without using each of these controllers 8, the host
It goes without saying that centralized control by only the controller 9 may be used. 7 is an input/output device.
次に、本発明の一実施例を上記製造職場において実施し
た場合の動作について具体的に説明する。Next, the operation of an embodiment of the present invention when implemented in the above-mentioned manufacturing workplace will be specifically described.
コントローラ8では、予め使用部品、使用機械、作業時
間等の生産情報、及び在庫部品、投入実績、バック1量
等の実績情報を記憶しておき、ホスト・コントローラ9
から与えられた生産計画に基づき、後述の第2図に示す
手順により一定期間内に処理を行なうロフトの最適な部
品引当及び投入順序を計算し、この結果を出力装置7へ
作業指示として表示するとともに、ホスト・コントロー
ラ9に登録する。この作業指示に基づき部品倉庫1(自
動倉庫1等)に収納されている部品群から必要なロフト
を出庫し、配膳装置2によってコントローラ8で決定さ
れた最適な投入順序に従って配膳した後、搬送ライン3
で処理を行なう各機械4へ搬送される。各機械4で処理
が終了したロフトは完成品倉庫6へ収納されるとともに
、その実績情報が各コントローラ8、及びホスト・コン
トローラ9に登録される。また、生産計画の変更、特急
品、欠品の発生、或いは各機械4の故障等による投入順
序変更の必要性が生じた場合には、入力装置7から計算
指示を入力することにより再度部品引当、投入順序計算
を行ない、その結果に基づき出庫、配膳、搬送等の同様
の処理を繰返す。なお、第1図では、各機械4が直列に
並ぶフローショップ・ラインを例示したが、本発明は、
各機械4が並列に並ぶパラレル・ライン、ジョブショッ
プ・ライン、或いは搬送ライン3を使用しない(例えば
1人手搬送、無人送車等)場合にも適用できることはい
うまでもない。The controller 8 stores in advance production information such as parts used, machines used, and working hours, as well as performance information such as parts in stock, input results, and back quantity.
Based on the production plan given by , the optimum parts allocation and input order for the loft to be processed within a certain period of time are calculated according to the procedure shown in Fig. 2 described later, and the results are displayed as work instructions on the output device 7. At the same time, it is registered in the host controller 9. Based on this work instruction, the necessary lofts are taken out from the parts stored in the parts warehouse 1 (automated warehouse 1, etc.), and after being served by the catering device 2 in accordance with the optimal loading order determined by the controller 8, they are placed on the transport line. 3
and transported to each machine 4 for processing. The lofts that have been processed by each machine 4 are stored in the finished product warehouse 6, and their performance information is registered in each controller 8 and host controller 9. In addition, if it becomes necessary to change the input order due to changes in production plans, urgent items, shortages, or breakdowns in each machine 4, parts reservation can be made again by inputting calculation instructions from the input device 7. , calculates the loading order, and repeats similar processes such as shipping, serving, and transportation based on the results. Although FIG. 1 illustrates a flow shop line in which the machines 4 are lined up in series, the present invention
Needless to say, the present invention can also be applied to a parallel line in which the machines 4 are lined up in parallel, a job shop line, or a case where the transport line 3 is not used (for example, one-man manual transport, unmanned transport, etc.).
次に、第2図により、最適な投入順序を決定する全体処
理構成を説明する。Next, with reference to FIG. 2, the overall processing configuration for determining the optimal loading order will be explained.
先ず、部品引当計画において、生産要求ロフトに必要な
在庫部品のチェックを行ない、現在庫部品で生産可能な
ロフトの中から作業量(時間)最大となるロフトを選定
する。このロットの選定手順の一例を第3図で説明する
。先ず、初期値を設定したくステップ201)後、生産
要求ロットの全所要部品ベクトルから部品在庫領域まで
の最短ベクトルを所要量ベクトルとして設立する(ステ
ップ202)。そして、ステップ203で、選定ロット
の集合からロットjを取9除いた場合の所要部品ベクト
ルの減り具合を正射影hjで表し、作業量(時間)Cを
正射影り、で割った値を有効勾配を計算する。First, in the parts allocation plan, the inventory parts required for the production request loft are checked, and the loft with the maximum amount of work (time) is selected from among the lofts that can be produced with the currently stocked parts. An example of this lot selection procedure will be explained with reference to FIG. First, after setting an initial value (step 201), the shortest vector from all required parts vectors of the requested production lot to the parts inventory area is established as a required quantity vector (step 202). Then, in step 203, the degree of decrease in the required parts vector when lot j is removed by 9 from the set of selected lots is expressed by the orthogonal projection hj, and the value obtained by orthogonally projecting the work amount (time) C and dividing by is effective. Calculate the slope.
次にステップ204に進み選定ロットの集合から最小の
有効勾配ロフトを取り除くと共に、全所要部品ベクトル
から当該ロットの所要部品ベクトルを差し引いた新たな
全所要部品ベクトルを設定する。このステップ202,
203,204の処理を繰り返し実行し、全所要部品ベ
クトルの大きさが部品在庫量ベクトルの大きさ以下にな
ったらステップ205に進み、上記ステップ204で除
外したロットの中から追加可能なロットの所要部品ベク
トルを加え、新たな全所要部品ベクトルを設定すると共
に、当該ロットを選定ロットの集合に加える。Next, proceeding to step 204, the minimum effective slope loft is removed from the set of selected lots, and a new total required parts vector is set by subtracting the required parts vector of the lot from all required parts vectors. This step 202,
The processes in steps 203 and 204 are repeatedly executed, and when the size of all required parts vectors becomes equal to or less than the size of the parts inventory vector, the process proceeds to step 205, where the required lots are determined that can be added from among the lots excluded in step 204. The parts vector is added, a new all-required parts vector is set, and the lot is added to the set of selected lots.
この様にして、選定ロフトの集合に登録されたロットが
、本手段で部品引当されたロットとなる。In this way, the lot registered in the set of selected lofts becomes the lot to which parts are allocated by this means.
ロットの選定が終わると、次に第2図の能力計画に進む
。この能力計画では、選定されたロフトを製造職場の作
業能力に応じて負荷配分し、単位期間毎、例えば、日毎
の投入ロットを決定する。Once the lot selection is complete, proceed to the capacity planning shown in Figure 2. In this capacity planning, loads are distributed among the selected lofts according to the working capacity of the manufacturing workplace, and input lots are determined for each unit period, for example, each day.
そして、最後に行なう作業計画では、決定された投入ロ
ットを、各機械4の遊休時間、ブロッキング時間が最小
となる様に第4図に示す手順で投入順序を決定する。In the final work plan, the input order of the determined input lots is determined according to the procedure shown in FIG. 4 so that the idle time and blocking time of each machine 4 are minimized.
第4図において、先ず、生産ラインを最大作業量(時間
)の機械の前後で2分割しくステップ301)、生産ラ
インを疑似2機械として、遊休時間最小の投入順序を決
定する初期解を次の判定式により決定する(ステップ3
02)。In Fig. 4, first, the production line is divided into two parts before and after the machine with the maximum amount of work (time) (step 301), and the production line is made into two pseudo machines, and the initial solution for determining the input order with the minimum idle time is as follows. Determined by judgment formula (Step 3
02).
顛(P□、+ 、 p、、 、2) <馴(P、ヤi、
+ l ”i、2 )上式が成立する時、ロットiはロ
ットi+1に先行させる。但し、P、、、はロット1の
機械jにおける作業時間である。顛(P□、+ 、p、、 、2)
+ l ''i, 2) When the above formula holds true, lot i is made to precede lot i+1. However, P, , is the working time of lot 1 in machine j.
そして、初期解で得られた投入順序を短時間で改良する
ために部分的に分割しくステップ606)、各機械毎の
遊休時間とブロッキング時間を最小化する投入順序を求
める(ステップ304)。Then, in order to improve the feeding order obtained from the initial solution in a short time, the process is partially divided (step 606), and a feeding order that minimizes the idle time and blocking time for each machine is determined (step 304).
以上説明したように、本発明によれば、ロットごとの作
業時間が異なる多品種の混合生産ラインにおいて、在庫
部品を有効利用する部品の引当、及び各機械の不稼働時
間を減少する最適なロットの投入順序が人手を要するこ
となく、高速、かつ自動的に決定でき、各機械の稼働率
が向上し、自動化の効果をよシ高めることができる。As explained above, according to the present invention, in a multi-product mixed production line where the working time for each lot is different, parts reservation that effectively utilizes inventory parts and optimum lot optimization that reduces downtime of each machine are possible. The order of feeding can be determined quickly and automatically without the need for human intervention, which improves the operating rate of each machine and further enhances the effectiveness of automation.
第1図は本発明の一実施例に係る投入制御最適化方式を
適用する製造職場の一例の構成図、第2図は本発明の一
実施例に係るシステム構成図、第3図はロット選定処理
手順を示すフローチャート、第4図はロフト投入順序決
定処理手順を示すフローチャートである。
2・・・・・・配膳装置
4・・・・・・機械
7・・・・・・入出力装置
8.9・・・・・・コントローラ。Figure 1 is a configuration diagram of an example of a manufacturing workplace to which the input control optimization method according to an embodiment of the present invention is applied, Figure 2 is a system configuration diagram according to an embodiment of the present invention, and Figure 3 is a lot selection diagram. Flowchart showing the processing procedure. FIG. 4 is a flowchart showing the processing procedure for determining the order of loft addition. 2... Serving device 4... Machine 7... Input/output device 8.9... Controller.
Claims (1)
おいて、前記機械を制御するコントローラからの入力情
報に応じて、予め在庫部品、使用部品、使用機械、作業
時間等の生産情報を記憶している電子計算機で、前記各
機械における最適なロット引当計算、投入順序計算を行
ない、該計算結果に基づく作業指示を前記コントローラ
に出力し、前記各機械へのロットの搬送、投入を制御す
ることを特徴とする投入制御最適化方式。In a production line equipped with multiple machines that process lots, an electronic system that stores production information such as inventory parts, used parts, machines used, working hours, etc. in advance according to input information from a controller that controls the machines. A computer calculates optimum lot allocation and loading order for each of the machines, outputs work instructions based on the calculation results to the controller, and controls the conveyance and loading of lots to each of the machines. input control optimization method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61010042A JPS62173155A (en) | 1986-01-22 | 1986-01-22 | Input control optimization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61010042A JPS62173155A (en) | 1986-01-22 | 1986-01-22 | Input control optimization system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62173155A true JPS62173155A (en) | 1987-07-30 |
Family
ID=11739334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61010042A Pending JPS62173155A (en) | 1986-01-22 | 1986-01-22 | Input control optimization system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62173155A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868074A (en) * | 1987-03-31 | 1989-09-19 | Mitsubishi Denki Kabushiki Kaisha | Battery holder mechanism |
JPH0446751A (en) * | 1990-06-15 | 1992-02-17 | Mitsubishi Electric Corp | Lot formation device |
JPH04267472A (en) * | 1991-02-21 | 1992-09-24 | Matsushita Electric Ind Co Ltd | Parts supplying device |
JPH06119350A (en) * | 1992-10-05 | 1994-04-28 | Nec Corp | Surplus stock drawing system in parts arrangement plan |
JPH06127637A (en) * | 1992-10-15 | 1994-05-10 | Matsushita Electric Works Ltd | Part allocating method |
JP2002236721A (en) * | 2001-02-07 | 2002-08-23 | Tokai Univ | Method for scheduling multi-item lot size |
-
1986
- 1986-01-22 JP JP61010042A patent/JPS62173155A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868074A (en) * | 1987-03-31 | 1989-09-19 | Mitsubishi Denki Kabushiki Kaisha | Battery holder mechanism |
JPH0446751A (en) * | 1990-06-15 | 1992-02-17 | Mitsubishi Electric Corp | Lot formation device |
JPH04267472A (en) * | 1991-02-21 | 1992-09-24 | Matsushita Electric Ind Co Ltd | Parts supplying device |
JPH06119350A (en) * | 1992-10-05 | 1994-04-28 | Nec Corp | Surplus stock drawing system in parts arrangement plan |
JPH06127637A (en) * | 1992-10-15 | 1994-05-10 | Matsushita Electric Works Ltd | Part allocating method |
JP2002236721A (en) * | 2001-02-07 | 2002-08-23 | Tokai Univ | Method for scheduling multi-item lot size |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fontes et al. | A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources | |
JP7113560B2 (en) | ROBOT-BASED LOGISTICS REGIONAL PICKING METHOD, APPARATUS, TERMINAL, SYSTEM AND STORAGE MEDIUM | |
JP3189326B2 (en) | Production management device and production management method using the device | |
KR20210009386A (en) | Management method and device applied to GTP (Goods to Person) system, system, server and computer storage media | |
US20210109509A1 (en) | System for performing dynamic production and material transportation management in factory area | |
JP2002137808A (en) | Method and device for material procurement and material management | |
JP2003241822A (en) | Management method based on flow management for supply-chain product management | |
US20220270033A1 (en) | Work planning system and work planning method | |
JPS62173155A (en) | Input control optimization system | |
WO2021104524A1 (en) | Agv scheduling method and apparatus | |
CN111703802B (en) | Control method and device for warehouse-in and warehouse-out process and warehousing system | |
TWI448861B (en) | Shorten the handling time of handling time | |
JPH0812026A (en) | Manufacture management in factory comprising plural manufacturing processes | |
JPS60207749A (en) | Supply-order determining apparatus | |
JP2004086734A (en) | Centralized control system for service parts | |
JP2003022119A (en) | Multiproduct production system, its design/operation method, its design/operation program and recording medium recorded with the program | |
Xu et al. | A “Push-Pull” Workshop Logistics Distribution Under Single Piece and Small-Lot Production Mode | |
JP2001075609A (en) | Method and device for production line batch constitution | |
JP2019207671A (en) | Simulation device, simulation method, and simulation program | |
JPS6215065A (en) | Parts draft optimizing system | |
JPH05218177A (en) | Semiconductor fabrication control system | |
JPH0744614A (en) | Device for controlling production and method therefor | |
JP2001117624A (en) | Production management system | |
JPH07117851B2 (en) | Carrier allocation method | |
Irwan et al. | The Optimization Inventory Process on Identical Machine Job Shop with Multiple Setups Using Genetic Algorithm |