JPS62172150A - System utilizing heat engine exhaust gas - Google Patents

System utilizing heat engine exhaust gas

Info

Publication number
JPS62172150A
JPS62172150A JP1262286A JP1262286A JPS62172150A JP S62172150 A JPS62172150 A JP S62172150A JP 1262286 A JP1262286 A JP 1262286A JP 1262286 A JP1262286 A JP 1262286A JP S62172150 A JPS62172150 A JP S62172150A
Authority
JP
Japan
Prior art keywords
exhaust gas
water
steam
heat engine
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1262286A
Other languages
Japanese (ja)
Inventor
Tsutomu Morie
森江 勉
Daisei Tanaka
大生 田中
Tomohiko Kubo
久保 智彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP1262286A priority Critical patent/JPS62172150A/en
Publication of JPS62172150A publication Critical patent/JPS62172150A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To obtain a system utilizing heat engine exhaust gas, which is capable of effecting the secondary utilization of the exhaust gas even when the amount of the exhaust gas is small, by a method wherein the system is provided with a hot-water/ steam-utilizing means, utilizing hot-water or steam generated by a heat exchanging means, and a condensing means, cooling the hot-water or the steam after utilization. CONSTITUTION:When a diesel engine 1 is operated and the exhaust gas of the engine is supplied to a steam generating device 4, a controller 10 detects the temperature and the flow amount of the supplied exhaust gas to control a pump 11 and a water, whose amount is matching with the supplying amount of the exhaust gas, is supplied from a water tank 9 to the steam generating device 4. The water, injected and atomized, is heated in the steam generating device 4 by the exhaust gas having the temperature of the degree of 400-450 deg.C and steam is generated. The steam drives a turbine 5 and is condensed by a condenser 8, thereafter, is reserved in the water tank 9. Injurious materials, such as NOx or the like, in the water tank 9 and are removed through processing devices 12, 13 while the same materials, remaining as gas, are extracted by utilizing a vacuum pump 7 and are removed through the processing device 14. Water, reserved in the water tank 9, is sent by pressure into the steam generating device 4 again by the pump 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱機関から発生する1廃ガス、自家発電その
他の1廃ガスを利用する熱機関排気ガス利用システムに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat engine exhaust gas utilization system that utilizes waste gas generated from a heat engine, private power generation, and other waste gases.

〔従来の技術〕[Conventional technology]

工場やゴミ処理場等、熱機関から熱エネルギーを残した
’IFA廃ガス全ガスする施設は多い。このような1廃
ガスの有する熱工ふルギーをさらに有効に利用するため
に、1廃ガスを廃熱ボイラーにより熱交換することによ
り蒸気を発生させ、発電及びその他吸収式冷凍機による
冷暖房等の設備に利用するシステムは従来からある。
There are many facilities, such as factories and garbage disposal sites, that use IFA waste gas, which is the thermal energy left over from heat engines. In order to make more effective use of the thermal energy contained in waste gas, steam is generated by exchanging heat with waste gas in a waste heat boiler, which can be used for power generation and other purposes such as heating and cooling using absorption chillers. Systems used in equipment have been around for a long time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の温廃ガス利用システムでは、効率
が悪いため現実にシステムに利用するには大量の廃ガス
が必要とされた。従って、廃ガスが少量の場合には、コ
スト的に採算が合わず、何ら利用されることなく廃棄さ
れていた。
However, conventional hot waste gas utilization systems are inefficient and require a large amount of waste gas to actually be used in the system. Therefore, when the amount of waste gas is small, it is not cost-effective and is discarded without being used.

本発明は、上記の考察に基づくものであって、少量の廃
ガスでも効率よく二次利用できる熱機関排気ガス利用シ
ステムの提供を目的とするものである。
The present invention is based on the above considerations, and aims to provide a heat engine exhaust gas utilization system that can efficiently utilize even a small amount of waste gas for secondary use.

[問題点を解決するための手段] そのために本発明の熱機関排気ガス利用システムは、熱
機関から発生する排気ガスを霧状噴射の水と直接接触さ
せ温熱水又は7気を生成する熱交換手段、該熱交換手段
で生成された温熱水又は蒸気を利用する温水/蒸気利用
手段、該利用後の温熱水又は蒸気を冷却する復水手段を
備えたことを特徴とするものである。
[Means for Solving the Problems] To this end, the heat engine exhaust gas utilization system of the present invention is a heat exchange system that directly contacts exhaust gas generated from a heat engine with atomized water to generate hot water or 7 gas. The apparatus is characterized by comprising a means for utilizing hot water or steam, a means for utilizing hot water or steam generated by the heat exchange means, and a condensing means for cooling the hot water or steam after the use.

〔作用〕[Effect]

本発明の熱機関排気ガス利用システムは、排気ガスを水
と直接接触させ温熱水又は蒸気を生成し温熱水又は仄気
の温度に応して利用するので、効率よく熱エネルギーを
回収することができ、また、排気ガスを水と直接接触さ
せることによって或いは復水手段で残ったガスを処理す
ることによって、排気ガス中に含まれる有毒ガス等を水
に吸収させて、大気に排出することなく除去することが
できる。
The heat engine exhaust gas utilization system of the present invention brings the exhaust gas into direct contact with water to generate hot water or steam, which is used according to the temperature of the hot water or steam, so thermal energy can be efficiently recovered. In addition, by bringing the exhaust gas into direct contact with water or by treating the remaining gas with condensation means, toxic gases contained in the exhaust gas can be absorbed into water without being released into the atmosphere. Can be removed.

〔実施例〕〔Example〕

以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る熱機関排気ガス利用システムの1
実施例構成を示す図であり、1はディーゼルエンジン、
2と6は発電機、3は廃ガスファン、4は蒸気発生装置
、5はタービン、7は真空ポンプ、8は復水器、9は水
槽、IOはコントローラ、11はポンプ、12ないし1
4は処理装置を示す。
FIG. 1 shows one of the heat engine exhaust gas utilization systems according to the present invention.
FIG. 1 is a diagram showing the configuration of an embodiment, in which 1 is a diesel engine;
2 and 6 are generators, 3 is a waste gas fan, 4 is a steam generator, 5 is a turbine, 7 is a vacuum pump, 8 is a condenser, 9 is a water tank, IO is a controller, 11 is a pump, 12 to 1
4 indicates a processing device.

第1図において、ディーゼルエンジンlは、発電機2が
直結された温熱源であって、相当の熱エネルギーを有す
る排気ガスを出力するものであり、廃ガスファン3は、
この排気ガスを蒸気発生装置4へ圧送するものである。
In FIG. 1, a diesel engine l is a heat source to which a generator 2 is directly connected, and outputs exhaust gas having considerable thermal energy, and an exhaust gas fan 3 is
This exhaust gas is sent under pressure to the steam generator 4.

蒸気発生装置4は、廃ガスファン3を使ってディーゼル
エンジン1から排気ガスが供給されると、そのガス中に
直接水を噴霧するように構成し、排気ガスを水に直接接
触させることにより蒸気を発生させるものである。
The steam generator 4 is configured to spray water directly into the exhaust gas when it is supplied from the diesel engine 1 using the exhaust gas fan 3, and generates steam by bringing the exhaust gas into direct contact with the water. It is something that generates.

タービン5は、発電機6が直結され蒸気発生装置4によ
って発生した蒸気により駆動されるものである。復水器
8は、タービン5で仕事をした後の茎気を冷却水と接触
させて復水するものであり、この水を貯留しておくのが
水槽である。コントローラ【0は、蒸気発生装置4に供
給される排気ガスの温度及び流星を検出してポンプ11
を制御し、排気ガスの温度及び流量に対応して茎気発生
装置4に供給する水を適切な量に調節するものである。
The turbine 5 is directly connected to a generator 6 and is driven by steam generated by the steam generator 4 . The condenser 8 is for condensing the stem air after work in the turbine 5 by contacting it with cooling water, and the water tank is for storing this water. The controller 0 detects the temperature of the exhaust gas supplied to the steam generator 4 and the meteor, and controls the pump 11.
and adjusts the amount of water supplied to the stem air generator 4 to an appropriate amount in accordance with the temperature and flow rate of the exhaust gas.

処理装置12ないし14は、例えばフィルターのような
ものであって、処理装置12は、茎気発生装置4の水に
吸収された有害物質の除去処理を行うものであり、処理
装置13は、同様に水槽9の水に吸収された有害物質の
除去処理を行うものであり、処理装置14は、復水器8
のガス中に残存する有害物質の除去処理を行うものであ
る。
The processing devices 12 to 14 are, for example, filters, and the processing device 12 is used to remove harmful substances absorbed in the water of the stem air generator 4, and the processing device 13 is similar to the above. The processing device 14 removes harmful substances absorbed into the water in the water tank 9.
This process removes harmful substances remaining in the gas.

次にシステム全体の動作を説明する。ディーゼルエンジ
ン1が運転され、排気ガスが蒸気発生装置4へ供給され
ると、コントローラ10がこの供給される排気ガスの温
度及び流量を検出して、ポンプ11を制御し排気ガスの
供給量に見合った水量を水槽9から蒸気発生装置4へ供
給する。そうすると、蒸気発生装置4では、400℃〜
450℃程度の排気ガスにより霧状に噴射された加熱さ
れて版気を発生する。そして、この蒸気はタービン5を
駆動し、その後復水器8で復水され水槽9に貯留される
。なお、排気中にはNOx等の有害物質が含まれている
が、これらは、蒸気発生装置4や水槽9で水に吸収させ
て処理装置12.13を通して適宜除去すると共に、蒸
気発生装置4で水に吸収されずにガスとして残存したも
のは、復水器8に接続された真空ポンプ7を使って引き
出して処理装置14を通して除去する。水槽9に貯留さ
れた水は、ポンプ11により再び蒸気発生装置4へ圧送
される。
Next, the operation of the entire system will be explained. When the diesel engine 1 is operated and exhaust gas is supplied to the steam generator 4, the controller 10 detects the temperature and flow rate of the supplied exhaust gas and controls the pump 11 to match the supplied amount of exhaust gas. The amount of water is supplied from the water tank 9 to the steam generator 4. Then, in the steam generator 4, 400℃~
The plate is heated and sprayed in the form of a mist by exhaust gas at about 450°C to generate a printing plate. This steam drives a turbine 5, and is then condensed in a condenser 8 and stored in a water tank 9. Note that the exhaust gas contains harmful substances such as NOx, but these are absorbed into water in the steam generator 4 and water tank 9 and removed as appropriate through the treatment equipment 12 and 13. What remains as a gas without being absorbed by the water is drawn out using a vacuum pump 7 connected to a condenser 8 and removed through a processing device 14. The water stored in the water tank 9 is pumped again to the steam generator 4 by the pump 11.

上記システムによれば、例えば400℃〜450℃程度
の排気ガスを使った場合、低くとも150℃程度の蒸気
を得ることができ、蒸気タービンを駆動するのに充分な
蒸気を得ることができる。
According to the above system, when exhaust gas of about 400°C to 450°C is used, steam of at least about 150°C can be obtained, which is sufficient to drive the steam turbine.

また、例えば化石燃料を使った場合、熱機関から発生す
る排気ガスには多量の炭酸ガス(CO2)を含むが、c
o、は、臨界温度35℃、70kg/−であり、これを
65 ’C,130kg/c1aに昇温、昇圧しても熱
分解することなく安定性がある。そこで、この臨界温度
35℃、70kg/cJの特性と安定したCOlの性状
を活用して、COtを65°C1130kg/−に昇温
、昇圧してタービン発電に利用することが既に考えられ
、低熱温源に適用できるものとして提案されている。排
気ガスに多量のCO2を含む場合には上記CO,の性状
が効果的に作用することになる。即ち、蒸気発生装置4
で生成される蒸気と共に排気ガスも多量にタービン5に
供給されると、臨界温度を越えた状態でCO2が供給さ
れることになる。
In addition, for example, when fossil fuels are used, the exhaust gas generated from the heat engine contains a large amount of carbon dioxide (CO2), but c
o has a critical temperature of 35° C. and 70 kg/−, and is stable without thermal decomposition even when the temperature and pressure are increased to 65′ C and 130 kg/c1a. Therefore, it has already been considered to take advantage of the critical temperature of 35°C, 70kg/cJ and the stable properties of COl to raise the temperature and pressure of COt to 65°C and 1130kg/cJ and use it for turbine power generation. It has been proposed that it can be applied to heat sources. When the exhaust gas contains a large amount of CO2, the above-mentioned properties of CO2 will work effectively. That is, the steam generator 4
If a large amount of exhaust gas is supplied to the turbine 5 together with the steam generated, CO2 will be supplied at a temperature exceeding the critical temperature.

第2図は本発明の熱機関排気ガス利用システムに適用で
きる冷凍設備の1実施例構成を示す図であり、21は蒸
発タンク、22は凝縮タンク、23と24は冷媒、25
はポンプ、26は受皿を示す。
FIG. 2 is a diagram showing the configuration of an embodiment of refrigeration equipment that can be applied to the heat engine exhaust gas utilization system of the present invention, in which 21 is an evaporation tank, 22 is a condensation tank, 23 and 24 are refrigerants, and 25
indicates a pump, and 26 indicates a saucer.

第2図において、冷媒23と24は、臭化リチウムニ水
和物(Li−Br・2+1□0)にエタノールやメタノ
ールなどのアルコール系液を混入したもので、蒸発タン
ク21は、この冷媒23を水銀柱約75mmの真空下で
収容し、凝縮タンク22は、水銀柱約71の真空下で収
容したものである。そして蒸発タンク21に収容した冷
媒23の中に第1図に示す蒸気発生装置4からの蒸気又
は温熱水を供給し、冷媒23を水銀柱約75mmの真空
下で加温する。冷媒23は、アルコール系液を混入して
いるので、沸点が低く65℃程度の蒸気又温熱水でも沸
騰蒸発する。また、蒸発タンク21の冷媒23の面より
上方には、屋外用クーラーの水が還流するパイプを配置
するとともに、その下方に受皿26を配置し、冷媒23
より沸騰蒸発した水蒸気をここで湿り蒸気にして受皿2
6を通して凝縮タンク22へ還流させ、その途中で断熱
膨張により冷水を生成する。この冷水を凝縮タンク22
の上方に導き、ここで冷房用の水管を冷やし冷媒24に
合流させる。これにより、冷房用の水管を還流する水は
、12℃から7℃程度に冷却される。この過程において
、冷媒23は、沸騰蒸発により濃度が高くなり、逆に冷
媒24は、冷水の合流により濃度が低くなるから、冷媒
23の一部を凝縮タンク22の冷媒24に合流させると
ともにポンプ25を使ってさらに冷媒24の一部を茎発
タンク21の冷媒23に還流させて、冷媒の濃度を常に
所定の値に維持することも必要である。
In FIG. 2, refrigerants 23 and 24 are lithium bromide dihydrate (Li-Br・2+1□0) mixed with an alcoholic liquid such as ethanol or methanol. The condensation tank 22 was housed under a vacuum of about 75 mm of mercury, and the condensation tank 22 was housed under a vacuum of about 71 mm of mercury. Then, steam or hot water from the steam generator 4 shown in FIG. 1 is supplied into the refrigerant 23 housed in the evaporation tank 21, and the refrigerant 23 is heated under a vacuum of about 75 mm of mercury. Since the refrigerant 23 contains an alcohol-based liquid, its boiling point is low and even steam or hot water at about 65° C. will boil and evaporate. Further, above the surface of the refrigerant 23 of the evaporation tank 21, a pipe through which water from the outdoor cooler flows is arranged, and a saucer 26 is arranged below the pipe, so that the refrigerant 23
The water vapor that has boiled and evaporated is turned into wet steam here and sent to saucer 2.
6 to the condensing tank 22, and during the flow, cold water is generated by adiabatic expansion. This cold water is condensed in the tank 22.
Here, the cooling water pipe is cooled and joined with the refrigerant 24. As a result, the water flowing back through the cooling water pipe is cooled from 12°C to about 7°C. In this process, the concentration of the refrigerant 23 increases due to boiling and evaporation, and conversely, the concentration of the refrigerant 24 decreases due to the joining of cold water. It is also necessary to circulate a part of the refrigerant 24 back to the refrigerant 23 in the stem tank 21 using the refrigerant to maintain the concentration of the refrigerant at a predetermined value at all times.

上述のように冷凍設備では、アルコール系液を混入する
ことによってさらに沸点を低くした臭化リチウムニ水和
物を冷媒とし、蒸発タンク21でその水分を蒸発、凝縮
させ、その途中で断熱膨張により冷水を生成して冷房用
の水管をぶ流する水の冷却を行う。これにより一般に活
用が難しいとされていた低温の熱源が有効に活用できる
ようになる。なお、第2図において、屋外クーラーによ
って32℃にgfN ’/Nrした冷却水は、蒸発タン
ク21の水蒸気及びa縮タンク22の冷媒24を補助的
に冷却するためのもので、版発タンク21及び凝縮タン
ク22の状態を改善するものである。すなわち、蒸発タ
ンク21では、水蒸気の一部を冷却凝縮して湿り蒸気と
することにより、断熱膨張の効果を高め、凝縮タンク2
2では、蒸発タンク21から高温で還流する冷媒のため
に 冷房用の水管を還流する水の吐出温度が上昇しない
ように冷媒24の温度を下げるものである。
As mentioned above, in refrigeration equipment, lithium bromide dihydrate, whose boiling point has been further lowered by mixing an alcoholic liquid, is used as a refrigerant, and the water is evaporated and condensed in the evaporation tank 21, and during the process, it is converted into cold water by adiabatic expansion. The system generates water that flows through air-conditioning water pipes to cool the water. This makes it possible to effectively utilize low-temperature heat sources that were generally considered difficult to utilize. In FIG. 2, the cooling water heated to 32°C gfN'/Nr by the outdoor cooler is for supplementary cooling of the water vapor in the evaporation tank 21 and the refrigerant 24 in the a-condensation tank 22. and to improve the condition of the condensation tank 22. That is, in the evaporation tank 21, a part of the water vapor is cooled and condensed to become wet steam, thereby increasing the effect of adiabatic expansion, and the condensation tank 2
In step 2, the temperature of the refrigerant 24 is lowered so that the discharge temperature of the water recirculating through the cooling water pipe does not rise due to the refrigerant recirculating at high temperature from the evaporation tank 21.

−最に温熱源を使った冷凍設備では、例えば90℃の淡
水を95°Cの熱湯に換え、それを熱源として5°C〜
10°C程度の冷水を生成している。従って、この冷凍
設備では、低温の熱源が存在しても、上記温度以下の場
合には活用することができず、80℃以下の低温熱源で
はよくても成績係数が3〜4程度にしかならず、を効な
活用は難しいしかし、上述のように冷媒とじて臭化リチ
ウムニ水和物(Li−Br・2+1□0)にアルコール
系液を混入したものを用いると、65℃〜68℃程度の
低温熱水をエネルギー源としても冷凍機を働かせること
ができる。しかもその結果、成績係数も3〜4から倍の
7〜8の成績係数を達成することができる。これにより
低温の地熱流体の熱エネルギーをさらに広範囲に活用す
ることが可能となる。
- In the case of refrigeration equipment that uses a heat source, for example, fresh water at 90°C is replaced with boiling water at 95°C, and this is used as a heat source to heat the water to 5°C or more.
It produces cold water of about 10°C. Therefore, in this refrigeration equipment, even if there is a low-temperature heat source, it cannot be utilized if the temperature is below the above-mentioned temperature, and a low-temperature heat source below 80°C has a coefficient of performance of only about 3 to 4 at best. However, as mentioned above, if lithium bromide dihydrate (Li-Br・2+1□0) mixed with an alcoholic liquid is used as a refrigerant, the temperature will be as low as 65℃ to 68℃. Refrigerators can also be operated using hot water as an energy source. Moreover, as a result, the coefficient of performance can be doubled from 3 to 4 to 7 to 8. This makes it possible to utilize the thermal energy of low-temperature geothermal fluids more widely.

なお、本発明は、種々の変形が可能であり、上記実施例
に限定されるものではない。例えば温熱源としては、工
場廃ガスに限らずゴミ焼却場その他の熱機関からの排気
ガスを使うことができることは勿論である。また、蒸気
発生装置に代えて温水発生装置を使い、タービン発電機
以外の動力や吸収式冷凍機による冷暖房等に温熱源とし
て利用してもよいことはいうまでもない。
Note that the present invention can be modified in various ways and is not limited to the above embodiments. For example, as a heat source, it is of course possible to use not only industrial waste gas but also exhaust gas from a garbage incinerator or other heat engine. It goes without saying that a hot water generator may be used in place of the steam generator and used as a heat source for power other than a turbine generator or for heating and cooling using an absorption refrigerator.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、温廃
ガスを用いてガスと蒸気によるタービン発電及び温水利
用(冷暖房、給湯等)が可能となる。しかも、温廃ガス
に水を噴霧することにより直接蒸気及び温水を発生させ
るため、無駄なく蒸気及び温水をつくることができる。
As is clear from the above description, according to the present invention, it is possible to use hot waste gas to generate turbine power generation using gas and steam, and to utilize hot water (for air conditioning, heating, hot water, etc.). Furthermore, since steam and hot water are directly generated by spraying water onto hot waste gas, steam and hot water can be produced without waste.

このように熱交換効率がよいため、従来、200℃程度
までと言われていたが、120 ’C程度の低温度まで
回収できる。また、このシステムでは、蒸気及び温水を
つくるための廃熱ボイラー(熱交換器)が不要となり、
システムの簡素化を図ることができる。
Because of this high heat exchange efficiency, it is possible to recover down to temperatures as low as 120'C, which was conventionally said to be around 200°C. This system also eliminates the need for a waste heat boiler (heat exchanger) to generate steam and hot water.
The system can be simplified.

さらには、工場から出る有害ガスやエンジン等から出る
排気がすを水に吸収させてしまうため、大気汚染防止に
も役立てることができる。
Furthermore, since the water absorbs harmful gases from factories and exhaust fumes from engines, it can also be used to prevent air pollution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る熱機関排気ガス利用システムの1
実施例構成を示す図、第2図は本発明の熱機関排気ガス
利用システムに適用できる冷凍設備の1実施例構成を示
す図である。 ■・・・ディーゼルエンジン、2と6・・・発電機、3
・・・廃ガスファン、4・・・蒸気発生装置、5・・・
タービン、7・・・真空ポンプ、8・・・復水器、9・
・・水槽、10・・・コントローラ、11・・・ポンプ
、12ないし14・・・処理装置、21・・・蒸発タン
ク、22・・・凝縮タンク、23と24・・・冷媒、2
5・・・ポンプ、26・・・受皿。
FIG. 1 shows one of the heat engine exhaust gas utilization systems according to the present invention.
FIG. 2 is a diagram showing an example configuration of a refrigeration equipment that can be applied to the heat engine exhaust gas utilization system of the present invention. ■...Diesel engine, 2 and 6...Generator, 3
...waste gas fan, 4...steam generator, 5...
Turbine, 7... Vacuum pump, 8... Condenser, 9.
... Water tank, 10 ... Controller, 11 ... Pump, 12 to 14 ... Processing device, 21 ... Evaporation tank, 22 ... Condensation tank, 23 and 24 ... Refrigerant, 2
5...Pump, 26...Saucer.

Claims (5)

【特許請求の範囲】[Claims] (1)熱機関から発生する排気ガスを霧状噴射の水と直
接接触させ温熱水又は蒸気を生成する熱交換手段、該熱
交換手段で生成された温熱水又は蒸気を利用する温水/
蒸気利用手段、該利用後の温熱水又は蒸気を冷却する復
水手段を備えたことを特徴とする熱機関排気ガス利用シ
ステム。
(1) Heat exchange means for generating hot water or steam by bringing exhaust gas generated from a heat engine into direct contact with water sprayed in the form of mist, and hot water using the hot water or steam generated by the heat exchange means.
1. A heat engine exhaust gas utilization system comprising: steam utilization means; and condensation means for cooling the hot water or steam after use.
(2)熱交換手段では、排気ガスを霧状噴射の水と直接
接触させる過程で有害ガスを水に吸収させるようにした
ことを特徴とする特許請求の範囲第1項記載の熱機関排
気ガス利用システム。
(2) In the heat exchange means, the exhaust gas of a heat engine according to claim 1 is characterized in that the harmful gases are absorbed by the water in the process of bringing the exhaust gas into direct contact with the sprayed water. Usage system.
(3)熱交換手段に供給する排気ガスのエネルギー量を
検出して供給水量を調節することを特徴とする特許請求
の範囲第1項又は第2項記載の熱機関排気ガス利用シス
テム。
(3) The heat engine exhaust gas utilization system according to claim 1 or 2, wherein the amount of water supplied is adjusted by detecting the energy amount of the exhaust gas supplied to the heat exchange means.
(4)温水/蒸気利用手段は、タービン発電機であるこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載の熱機関排気ガス利用システム。
(4) The heat engine exhaust gas utilization system according to any one of claims 1 to 3, wherein the hot water/steam utilization means is a turbine generator.
(5)温水/蒸気利用手段は、吸収冷凍機による冷暖房
設備であることを特徴とする特許請求の範囲第1項ない
し第3項のいずれかに記載の熱機関排気ガス利用システ
ム。
(5) The heat engine exhaust gas utilization system according to any one of claims 1 to 3, wherein the hot water/steam utilization means is a heating and cooling equipment using an absorption refrigerator.
JP1262286A 1986-01-23 1986-01-23 System utilizing heat engine exhaust gas Pending JPS62172150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262286A JPS62172150A (en) 1986-01-23 1986-01-23 System utilizing heat engine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262286A JPS62172150A (en) 1986-01-23 1986-01-23 System utilizing heat engine exhaust gas

Publications (1)

Publication Number Publication Date
JPS62172150A true JPS62172150A (en) 1987-07-29

Family

ID=11810474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262286A Pending JPS62172150A (en) 1986-01-23 1986-01-23 System utilizing heat engine exhaust gas

Country Status (1)

Country Link
JP (1) JPS62172150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093830A (en) * 1999-07-19 2001-04-06 Tokyo Electron Ltd Substrate treatment method and system thereof
JP2008277551A (en) * 2007-04-27 2008-11-13 Tokyo Electron Ltd Coating/developing device and method, and storage medium
JP2008277554A (en) * 2007-04-27 2008-11-13 Tokyo Electron Ltd Heating device, heating method coating/developing device, and storage medium
JP2011007413A (en) * 2009-06-25 2011-01-13 Noriko Utano Drying device for solar battery printing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198337A (en) * 1984-03-19 1985-10-07 Toshiba Corp Fuel system heater for gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198337A (en) * 1984-03-19 1985-10-07 Toshiba Corp Fuel system heater for gas turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093830A (en) * 1999-07-19 2001-04-06 Tokyo Electron Ltd Substrate treatment method and system thereof
JP2008277551A (en) * 2007-04-27 2008-11-13 Tokyo Electron Ltd Coating/developing device and method, and storage medium
JP2008277554A (en) * 2007-04-27 2008-11-13 Tokyo Electron Ltd Heating device, heating method coating/developing device, and storage medium
JP2011007413A (en) * 2009-06-25 2011-01-13 Noriko Utano Drying device for solar battery printing

Similar Documents

Publication Publication Date Title
US6076369A (en) Evaporative concentration apparatus for waste water
JP4343738B2 (en) Binary cycle power generation method and apparatus
CN106925115B (en) Gas distributed energy system and process for denitration by using liquid ammonia as reducing agent
JP2006266610A (en) Absorption chiller and heater using wood biomass as heat source
CN208458303U (en) Domestic Gas Air-conditioner
JPS62172150A (en) System utilizing heat engine exhaust gas
CN107314571A (en) Heat pump and its heat recovery method
JP2007322028A (en) Absorption type refrigerating system
JPH1122418A (en) Steam plant
JP2004301344A (en) Ammonia absorption heat pump
JP2000121196A (en) Cooling/heating system utilizing waste heat
CN107289665A (en) Regional Energy supply system
Babu et al. Performance analysis of lithium-bromide water absorption refrigeration system using waste heat of boiler flue gases
JP3865346B2 (en) Absorption chiller / heater
KR100526084B1 (en) Absorption Refrigerator
JPH1183232A (en) Combined absorption refrigerating equipment
KR100530751B1 (en) Composite energy generating system
JPH05272837A (en) Compression absorption composite heat pump
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
CN218379971U (en) Flue gas waste heat recovery system
JPH05256535A (en) Sorption heat pump system
JP2002098436A (en) Freezing apparatus
JPS634835A (en) Wet type stack gas desulfurization facility with built-in heat exchanger for exhaust heat recovery
JPH05280825A (en) Absorption heat pump
JPH05263610A (en) Power generating facility