JPS62169422A - Manufacture of epitaxial wafer - Google Patents

Manufacture of epitaxial wafer

Info

Publication number
JPS62169422A
JPS62169422A JP1237086A JP1237086A JPS62169422A JP S62169422 A JPS62169422 A JP S62169422A JP 1237086 A JP1237086 A JP 1237086A JP 1237086 A JP1237086 A JP 1237086A JP S62169422 A JPS62169422 A JP S62169422A
Authority
JP
Japan
Prior art keywords
boron
single crystal
silicon single
crystal wafer
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1237086A
Other languages
Japanese (ja)
Inventor
Hiromasa Kikuchi
菊池 浩昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1237086A priority Critical patent/JPS62169422A/en
Publication of JPS62169422A publication Critical patent/JPS62169422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of misfit dislocation due to lattice mismatch between an epitaxial growth layer and a silicon single crystal wafer, by conducting, before epitaxial growth, a simple heat process for forming a surface relaxation layer in which a concentration of boron is decreased on a silicon single crystal wafer to which boron is added in a high concentration. CONSTITUTION:A silicon single crystal wafer 1, to which an impurity, boron is added such that it has a resistivity of 0.005OMEGAcm or below, is steam oxidized under normal pressures so as to segregate the boron in an oxide film 3. The concentration of boron on the surface of the silicon single crystal wafer is thereby decreased to form a relaxation layer 2. The oxide film is then removed by etching it with buffered fluoric acid. Thereafter, an epitaxial growth layer 4 having added boron is vapor phase grown by using 1,100 deg.C dichlorosilane as growth gas. In this manner, an epitaxial wafer an be formed without causing any misfit dislocation in the epitacial growth layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエピタキシャルウェーハ・製造方法に関し、特
に高濃度P++シリコン単結晶ウェー・・上へ欠陥の少
ないエピタキシャル成長層を成長するエピタキシャルウ
ェーハ製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epitaxial wafer manufacturing method, and more particularly to an epitaxial wafer manufacturing method for growing an epitaxial growth layer with few defects on a high concentration P++ silicon single crystal wafer.

〔従来の技術〕[Conventional technology]

高濃度P シリコン単結晶ウェーハ上にP型エピタキシ
ャル成長層を形成したP/P  エピタキシャルウェー
ハはメガピット級超高集積回路素子への用途のために開
発が進められている。この際、デバイス特性を良くする
ために高濃度P シリコン単結晶ウェーハはできるだけ
低抵抗化することが求められている。従来、この種のエ
ピタキシャルウェーハを形成するにはボロンを高11[
に添加して低抵抗化した高濃度P++シリコン単結昌ク
エりハを用い、エピタキシャル成長前に特別な処理をお
こなわず、エピタキシャル成長をおこなう方法が一般に
おこなわれている。
P/P epitaxial wafers, in which a P-type epitaxial growth layer is formed on a high-concentration P silicon single crystal wafer, are being developed for use in mega-pit class ultra-high integrated circuit devices. At this time, in order to improve device characteristics, high concentration P silicon single crystal wafers are required to have as low resistance as possible. Conventionally, to form this type of epitaxial wafer, boron was used at a high temperature of 11 [
A commonly used method is to perform epitaxial growth using a high-concentration P++ silicon single-crystalline wafer which has been added to lower the resistance and without performing any special treatment before epitaxial growth.

〔1発明が解決しようとする問題点〕 上述した従来の方法ではボロンを高#度に添加したシリ
コン単結晶ウェーハとその上に成長するエピタキシャル
成長層との間に大きな格子不整合が生じ、エピタキシャ
ル成長層中にミスフィツト転位等の結晶欠陥を発生させ
たシ、ウェーハを湾曲させたシする。このためウェーハ
上に形成するデバイスの特性を劣化させるという欠点が
ある。
[1. Problems to be solved by the invention] In the conventional method described above, a large lattice mismatch occurs between the silicon single crystal wafer doped with a high degree of boron and the epitaxial growth layer grown thereon. If crystal defects such as misfit dislocations are generated in the wafer, the wafer may be curved. This has the disadvantage of deteriorating the characteristics of devices formed on the wafer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のエピタキシャルウェーハ製造方法は、抵抗率が
0.005Ωcm以下になるように不純物としてボロン
を添加したシリコン単結晶ウェーハの表面を熱酸化をお
こなうか、またはCVD成長等で酸化膜を形成後加熱処
理する工程と、次いでシリコン単結晶ウェーハの表面上
に形成された酸化膜をエツチングによって取シ除く工程
と、このシリコン単結晶ウェーハ上にエピタキシャル成
長層おこなうことを特徴とする。
In the epitaxial wafer manufacturing method of the present invention, the surface of a silicon single crystal wafer to which boron is added as an impurity so that the resistivity becomes 0.005 Ωcm or less is thermally oxidized, or an oxide film is formed by CVD growth or the like and then heated. The method is characterized by a step of treating the silicon single crystal wafer, a step of etching away the oxide film formed on the surface of the silicon single crystal wafer, and an epitaxial growth layer is formed on the silicon single crystal wafer.

〔実施例〕〔Example〕

本発明を図面を参照して説明する。第1図は本発明の一
実施例の製造工程を示す断面図である。
The present invention will be explained with reference to the drawings. FIG. 1 is a sectional view showing the manufacturing process of an embodiment of the present invention.

抵抗率が0.0020確になるようにボロンを添加し、
チョクラルスキー法によって成長したシリコン単結晶ウ
ェーハ上のエピタキシャル成長について示す。シリコン
単結晶ウェーハ1を1000℃5時間の常圧スチーム酸
化をおこない酸化膜3中にボロンを偏析させて、シリコ
ン単結晶ウェーハ表面のボロン濃度を低減し、緩和層2
を形成した(第1図(a))。その後バッフアート弗酸
によるエツチングによって酸化膜を除去する(第1図(
b))。その後、1100℃ ジクロロ7ラン(8iH
zCA!z)  を成長ガスとして厚さ3μm、抵抗率
が1Ωαになるようにボロンを添加したエピタキシャル
成長層4を気相成長した(第1図(C))。その結果、
エピタキシャル成長層にミスフィツト転位のないエピタ
キシャルウェーハを形成することができた。
Add boron so that the resistivity is 0.0020,
Epitaxial growth on silicon single crystal wafers grown by the Czochralski method will be described. The silicon single crystal wafer 1 is subjected to normal pressure steam oxidation at 1000° C. for 5 hours to segregate boron in the oxide film 3 to reduce the boron concentration on the silicon single crystal wafer surface and form a relaxed layer 2.
was formed (Fig. 1(a)). After that, the oxide film is removed by etching with buffered hydrofluoric acid (see Figure 1).
b)). After that, 1100℃ dichloro7 run (8iH
zCA! z) was used as a growth gas to form an epitaxially grown layer 4 doped with boron to a thickness of 3 μm and a resistivity of 1 Ωα (FIG. 1(C)). the result,
It was possible to form an epitaxial wafer without misfit dislocations in the epitaxially grown layer.

本発明の発明者は詳細な実験を行い、エピタキシャル成
長層の抵抗率が0.5Ωα以上の場合には、シリコン単
結晶ウェーハの抵抗率が0.005ΩC以下ではウェー
ハの湾曲が大きくなシ、またミスフィツト転位が発生し
てウェーハ上に形成したデバイスの特性が劣化すること
を確認した。
The inventor of the present invention conducted detailed experiments and found that when the resistivity of the epitaxially grown layer is 0.5Ωα or more, when the resistivity of the silicon single-crystal wafer is 0.005ΩC or less, the wafer has a large curvature and misfit. It was confirmed that dislocations occur and deteriorate the characteristics of devices formed on wafers.

第2図は上述の方法で形成したエピタキシャルウェーハ
la)と従来方法で成長したエピタキシャルウェーハ(
b)の内置研摩面の拡がシ抵抗11111定値を示す。
Figure 2 shows an epitaxial wafer (la) grown by the method described above and an epitaxial wafer (la) grown by the conventional method.
The expansion of the internally polished surface in b) shows a constant value of resistance 11111.

本発明によるエビタキシャ々ウェーハハ厚す3μmのエ
ピタキシャル成長層の下の高濃度P+“シリコン単結晶
ウェーハ側に熱酸化過程で形成されたボロン濃度が低減
された緩和層が存在することがわかる。
It can be seen that there is a relaxed layer with a reduced boron concentration formed in a thermal oxidation process on the high concentration P+ silicon single crystal wafer side under the 3 μm thick epitaxial growth layer of the epitaxial wafer according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は高濃度にボロンを添加した
シリコン単結晶ウェーハ上に簡単な熱プ 40セスでボ
ロン濃度が低減した表面緩和層を形成した後エピタキシ
ャル成長をおこなうことによシエビタキシャル成長層と
シリコン単結晶ウェーハとの格子不整合によるミスフィ
ツト転位の発生を防ぐことが出来る。
As explained above, the present invention uses a simple thermal process to form a surface relaxation layer with a reduced boron concentration on a silicon single crystal wafer doped with boron at a high concentration, and then performs epitaxial growth. It is possible to prevent misfit dislocations from occurring due to lattice mismatch between the layer and the silicon single crystal wafer.

ボロンを高濃度に添加したP /リコン単結晶つェーハ
上に形成したP型エピタキシャル成長層よりなるP/P
”+エピタキシャルウェーハはメガビット級の超高集積
回路素子を形成する場合に必要とされるウェーハである
が、この際、α線耐性を増すために、また溝キャパシタ
の容量を大きく保つためなどの理由でP+1シリコン単
結晶クエーハはできるだけ低抵抗であることが望まれて
いる。
P/P consisting of a P-type epitaxial growth layer formed on a P/recon single crystal wafer doped with boron at a high concentration.
”+Epitaxial wafers are required when forming megabit-class ultra-highly integrated circuit elements, but in this case, epitaxial wafers are used for reasons such as increasing resistance to alpha rays and keeping the capacitance of groove capacitors large. It is desired that the P+1 silicon single crystal wafer has as low a resistance as possible.

本発明はこのような要求に対してきわめて簡単な方法に
よってP++シリコン単結晶ウェー・・を低抵抗にして
も高品質なエピタキシャル成長層を成長することを可能
にしたもので、その工業的価値は大きい。
In response to these demands, the present invention makes it possible to grow a high-quality epitaxial growth layer even if the resistance of a P++ silicon single crystal wafer is made low by an extremely simple method, and its industrial value is great. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程を示す断面図、第
2図は拡がり抵抗値とエビタキシャルク工−へ表面から
の深さの関係の一例を示す一実測例図である。 笛1図において、1はシリコン単結晶ウェーハ、2は緩
、和層、3は酸化膜% 4はエピタキシャル成長層を示
す。 第2図においてIa)は本発明の方法によるエピタキシ
ャルウェーハ、(b)は従来方法によるエピタキシャル
ウェーハを示す。 代理人 弁理士  内 原   晋 (a) (b) (C) 〃lど34!乙 深さ (l舵)
FIG. 1 is a cross-sectional view showing the manufacturing process of an embodiment of the present invention, and FIG. 2 is an actual measurement example showing an example of the relationship between the spreading resistance value and the depth from the surface of the shrimp seal. In Fig. 1, 1 is a silicon single crystal wafer, 2 is a loose and oxidized layer, 3 is an oxide film, and 4 is an epitaxially grown layer. In FIG. 2, Ia) shows an epitaxial wafer produced by the method of the present invention, and (b) shows an epitaxial wafer produced by the conventional method. Agent Patent Attorney Susumu Uchihara (a) (b) (C) 34! Depth (l rudder)

Claims (1)

【特許請求の範囲】[Claims] 抵抗率が0.005Ωcm以下になるように不純物とし
てボロンを添加したシリコン単結晶ウェーハの表面を熱
酸化もしくは酸化膜形成後加熱処理する工程と、次いで
該シリコン単結晶ウェーハの表面に形成された酸化膜を
除去する工程と、該シリコン単結晶ウェーハ上にエピタ
キシャル成長をおこなう工程とを有することを特徴とす
るエピタキシャルウェーハ製造方法。
A process of thermally oxidizing or heat-treating the surface of a silicon single crystal wafer to which boron has been added as an impurity so that the resistivity becomes 0.005 Ωcm or less or after forming an oxide film, and then oxidizing the silicon single crystal wafer formed on the surface of the silicon single crystal wafer. An epitaxial wafer manufacturing method comprising the steps of removing a film and performing epitaxial growth on the silicon single crystal wafer.
JP1237086A 1986-01-22 1986-01-22 Manufacture of epitaxial wafer Pending JPS62169422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237086A JPS62169422A (en) 1986-01-22 1986-01-22 Manufacture of epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237086A JPS62169422A (en) 1986-01-22 1986-01-22 Manufacture of epitaxial wafer

Publications (1)

Publication Number Publication Date
JPS62169422A true JPS62169422A (en) 1987-07-25

Family

ID=11803377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237086A Pending JPS62169422A (en) 1986-01-22 1986-01-22 Manufacture of epitaxial wafer

Country Status (1)

Country Link
JP (1) JPS62169422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100579217B1 (en) * 1999-10-26 2006-05-11 주식회사 실트론 Method of manufacturing on p/p+ epitaxial wafers by means of low energy ion implantation
JP2010098284A (en) * 2008-09-19 2010-04-30 Covalent Materials Corp Method for production of silicon wafer for epitaxial substrate, and method for production of epitaxial substrate
JP2013120081A (en) * 2011-12-06 2013-06-17 Yokogawa Electric Corp Method for manufacturing vibration type transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100579217B1 (en) * 1999-10-26 2006-05-11 주식회사 실트론 Method of manufacturing on p/p+ epitaxial wafers by means of low energy ion implantation
JP2010098284A (en) * 2008-09-19 2010-04-30 Covalent Materials Corp Method for production of silicon wafer for epitaxial substrate, and method for production of epitaxial substrate
JP2013120081A (en) * 2011-12-06 2013-06-17 Yokogawa Electric Corp Method for manufacturing vibration type transducer

Similar Documents

Publication Publication Date Title
JP5018066B2 (en) Method for manufacturing strained Si substrate
JP3197803B2 (en) Semiconductor manufacturing method with few dislocation defects
JP5343889B2 (en) Method for manufacturing silicon carbide substrate
JPS62169422A (en) Manufacture of epitaxial wafer
JP2621325B2 (en) SOI substrate and manufacturing method thereof
JP4826373B2 (en) Manufacturing method of single crystal wafer
JPH0891993A (en) Production of silicon single crystal substrate and method for quality control
JPH0236059B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JP3097107B2 (en) Epitaxial growth method
JP3754294B2 (en) Method for manufacturing silicon carbide single crystal substrate and method for manufacturing semiconductor device
JP2004363199A (en) Process for producing semiconductor substrate
JPH0616498B2 (en) Method for manufacturing epitaxial wafer
EP0284107A3 (en) Method of strengthening silicon wafer
JPS6326541B2 (en)
JPH0412092A (en) Compound semiconductor and method for growing the same
JPH0247836A (en) Manufacture of semiconductor device
JP3086836B2 (en) Method for manufacturing semiconductor device
JPS6386450A (en) Manufacture of substrate for formation of semiconductor element
JPH0281423A (en) Manufacture of soi substrate
JPS60176241A (en) Manufacture of semiconductor substrate
JP2978318B2 (en) Method of forming epitaxial layer
JPS6248014A (en) Solid phase growth of semiconductor layer
JPS62173713A (en) Epitaxial wafer
JPH02164040A (en) Treatment of silicon semiconductor substrate
JPS59191323A (en) Semiconductor substrate