JPS62167Y2 - - Google Patents

Info

Publication number
JPS62167Y2
JPS62167Y2 JP12070181U JP12070181U JPS62167Y2 JP S62167 Y2 JPS62167 Y2 JP S62167Y2 JP 12070181 U JP12070181 U JP 12070181U JP 12070181 U JP12070181 U JP 12070181U JP S62167 Y2 JPS62167 Y2 JP S62167Y2
Authority
JP
Japan
Prior art keywords
insulator
holes
variable resistor
micro
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12070181U
Other languages
Japanese (ja)
Other versions
JPS5827901U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12070181U priority Critical patent/JPS5827901U/en
Publication of JPS5827901U publication Critical patent/JPS5827901U/en
Application granted granted Critical
Publication of JPS62167Y2 publication Critical patent/JPS62167Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は可変抵抗器に関し、とくに基板のビア
ホールを用いた基板端子の接続構造に関する。
[Detailed Description of the Invention] The present invention relates to a variable resistor, and more particularly to a connection structure for substrate terminals using via holes in a substrate.

従来、可変抵抗器用抵抗基板に用いられる端子
の外部接続構造にはいろいろあるが、最も広く採
用されているものを第1図に示す。これは絶縁基
板1に直径0.6〜0.8mmの孔2をあけ、その孔2の
内壁面に銀ペーストなどの導電性物質3を被着
し、そこにリード端子4を半田5の半田付けによ
り接続する。この後、気密性を保持するために樹
脂6を被覆する。この端子の接続構造にはいくつ
かの欠点があり、その1つは半田付するために片
面に鉛−アンチモン合金などの軟塊を半田付けに
耐える金属の封口体7として嵌合しなければなら
ない。その2は底面側の気密を確保するための樹
脂6を厚くリード端子4の半田付け面5aに被覆
しなければならない欠点がある。
Conventionally, there are various external connection structures for terminals used in resistance boards for variable resistors, but the most widely used structure is shown in FIG. This involves drilling a hole 2 with a diameter of 0.6 to 0.8 mm in an insulating substrate 1, coating the inner wall of the hole 2 with a conductive substance 3 such as silver paste, and connecting a lead terminal 4 to it by soldering 5. do. Thereafter, a resin 6 is applied to maintain airtightness. This terminal connection structure has several drawbacks, one of which is that in order to solder it, a soft lump of lead-antimony alloy or the like must be fitted on one side as a metal sealing body 7 that is resistant to soldering. . The second problem is that the soldering surface 5a of the lead terminal 4 must be covered with a thick layer of resin 6 to ensure airtightness on the bottom side.

本考案の目的はかかる従来欠点を除去した構造
の高信頼性の可変抵抗器用抵抗基板を提供するこ
とにある。
An object of the present invention is to provide a highly reliable resistance substrate for a variable resistor, which has a structure that eliminates such conventional drawbacks.

本考案によれば導電性物質が充填された微小貫
通孔およびその微小貫通孔に導電性物質を介して
接続された抵抗体を有する表層絶縁体と、この表
層絶縁体と同一外形寸法を有し、かつ導電性物質
が充填された微小貫通孔を有する1個以上の内層
絶縁体と、導電性物質が充填された微小貫通孔お
よびその微小貫通孔に導電性物質を介して接続さ
れた電極を有する下層絶縁体とが、それぞれ微小
貫通孔を介して導通接続された積層基板からなる
ことを特徴とする可変抵抗器用基板が得られる。
According to the present invention, there is provided a surface insulator having a minute through-hole filled with a conductive substance and a resistor connected to the minute through-hole through a conductive substance, and a surface insulator having the same external dimensions as the surface insulator. , and one or more inner layer insulators having micro through holes filled with a conductive material, micro through holes filled with a conductive material, and electrodes connected to the micro through holes via the conductive material. There is obtained a variable resistor substrate characterized in that the substrate is made of a laminated substrate in which the lower layer insulator and the lower layer insulator are electrically connected through minute through holes.

さらに本考案によれば表層絶縁体、内層絶縁体
及び下層絶縁体に設けられた微小貫通孔の軸が隣
接不一致状態で接続されることを特徴とする可変
抵抗器用基板をも得られる。
Furthermore, according to the present invention, there is also obtained a substrate for a variable resistor characterized in that the axes of minute through holes provided in the surface insulator, inner layer insulator, and lower layer insulator are connected in a manner that the axes are not adjacent to each other.

以下、本考案を第2図および第3図を参照して
説明する。第2図は本考案一実施例の積層前の基
板各層の分解構造を示す。可変抵抗器用の絶縁基
板の表層用、内装用および下層用の絶縁体として
は、アルミナ粉末を用いたスラリーをドクターブ
レード法を採用して形成した絶縁グリーンシート
8を用いる。この絶縁グリーンシート7を金型を
用いて外枠形状とビアホール9を打抜き加工す
る。この場合、ビアホール9の打抜き加工の位置
は外部端子の接続に要求される位置に孔あけされ
るのであるが、本考案では第2図に示すように一
層毎に位置をずらしてジグザグ状に上下で接続で
きるように、ビアホール9を加工してあるのは積
層化した時に上,下面間での通気性を極力押える
最良状態の構造である。なお、ビアホールの軸が
まつたく一致している構造を採用しても本考案の
目的を達成することはできる。
Hereinafter, the present invention will be explained with reference to FIGS. 2 and 3. FIG. 2 shows an exploded structure of each layer of a substrate before lamination according to an embodiment of the present invention. As insulators for the surface layer, interior layer, and lower layer of the insulating substrate for the variable resistor, an insulating green sheet 8 formed by using a doctor blade method from slurry using alumina powder is used. This insulating green sheet 7 is punched out to form an outer frame shape and a via hole 9 using a mold. In this case, the via hole 9 is punched at the position required for connection of the external terminal, but in the present invention, the position is shifted layer by layer in a zigzag pattern up and down, as shown in Figure 2. The structure in which the via hole 9 is processed so that the connection can be made is the best structure that suppresses the air permeability between the upper and lower surfaces as much as possible when stacked. Note that the object of the present invention can be achieved even if a structure in which the axes of the via holes are closely aligned is adopted.

次にビアホール9の真上にペースト状の銀−パ
ラジウム導体10をスクリーン印刷で塗布する。
銀−パラジウム導体10はペースト状であるから
ビアホール9中に流れ込んで、ビアホール9内を
充填させて埋めることが出来る。同時に表層用お
よび下層用の絶縁グリーンシート8a,8cにそ
れぞれ抵抗体11と外部接続端子に接続する電極
10としてペースト状の銀−パラジウム導体10
をスクリーン印刷により被着して形成する。次に
銀−パラジウム導体10中の溶媒を蒸発させるた
めに温度150℃の恒温槽で10分間乾燥した。この
ように形成した絶縁グリーンシート8を最上層に
表層用の絶縁グリーンシート8a、最下層に下層
用の絶縁グリーンシート8cを各1枚と内装用の
絶縁グリーンシート8bの数枚(通常は5〜8
枚)を積層し、温度115℃、圧力250Kg/cm2、時間
20分間の熱圧着をホツトプレス機で実施した。
Next, a paste-like silver-palladium conductor 10 is applied directly above the via hole 9 by screen printing.
Since the silver-palladium conductor 10 is in the form of a paste, it can flow into the via hole 9 and fill the inside of the via hole 9. At the same time, paste-like silver-palladium conductors 10 are applied to the surface layer and lower layer insulating green sheets 8a and 8c as electrodes 10 connected to resistors 11 and external connection terminals, respectively.
is formed by applying it by screen printing. Next, in order to evaporate the solvent in the silver-palladium conductor 10, it was dried for 10 minutes in a constant temperature bath at a temperature of 150°C. The insulating green sheet 8 formed in this way is made up of an insulating green sheet 8a for the surface layer as the top layer, one insulating green sheet 8c for the lower layer as the bottom layer, and several insulating green sheets 8b for the interior (usually 5 ~8
) were stacked at a temperature of 115℃, a pressure of 250Kg/cm 2 , and a time of
Thermocompression bonding was performed for 20 minutes using a hot press machine.

次に抵抗体11は表層用の絶縁グノーンシート
8a上に二酸化ルテニウムを主成分とする抵抗ペ
ーストをスクリーン印刷で被着形成した。この抵
抗体11の形成された積層体を温度850℃で10分
間のピーク領域を有し、かつ入口から出口までの
時間が60分間で通過する中性雰囲気の焼成炉中で
焼成して可変抵抗器用基板を製作した。
Next, the resistor 11 was formed by screen printing a resistor paste containing ruthenium dioxide as a main component on the insulating gnome sheet 8a for the surface layer. The laminate in which the resistor 11 was formed was fired in a firing furnace with a neutral atmosphere that had a peak area of 10 minutes at a temperature of 850°C and passed from the inlet to the outlet in 60 minutes to create a variable resistor. I made a dexterity board.

このようにした形成された可変抵抗器用基板1
3に第4図に示すように0リング15、回転板1
6、摺動子17を入れた金属ケース14をかぶせ
て内部への気密性をプレツシヤクツクテスト法に
より調べると、従来例のように下層絶縁体に樹脂
をぬらなくとも十分保証できた。
Variable resistor substrate 1 thus formed
3, as shown in FIG.
6. When the metal case 14 containing the slider 17 was placed over the metal case 14 and the airtightness to the inside was examined by a pressure test method, it was found that it was sufficiently ensured without wetting the lower layer insulator with resin as in the conventional example.

以上、本考案基板は(i)ビアホールに間隙部のな
い接続材が充填されるので気密性に優れた一体構
造の接続ができる。(ii)可変抵抗器の組立工程のう
ち樹脂塗布による間隙部充填補強の工程を省略で
きる等の効果がある。
As described above, in the substrate of the present invention, (i) the via holes are filled with the connecting material without any gaps, so that connections can be made in an integral structure with excellent airtightness. (ii) Among the assembling steps of the variable resistor, the step of filling and reinforcing the gap by applying resin can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変抵抗器のリード端子取り出
し部の断面図。第2図は本考案の一実施例の可変
抵抗器用基板の分離状態を示した断面図。第3図
は本考案の一実施例の可変抵抗器用基板に金属ケ
ースをかぶせた組立図。 1……絶縁基板、2……孔、3……導電性物
質、4……リード端子、5……半田、6……樹
脂、7……金属、8……絶縁グリーンシート、9
……ビアホール、10……銀−パラジウム導体、
11……電極、12……抵抗体、13……可変抵
抗器用基板、14……金属ケース、15……0リ
ング、16……回転板、17……摺動子。
FIG. 1 is a sectional view of a lead terminal extraction portion of a conventional variable resistor. FIG. 2 is a sectional view showing a separated state of a variable resistor substrate according to an embodiment of the present invention. FIG. 3 is an assembly diagram of a variable resistor substrate according to an embodiment of the present invention covered with a metal case. 1... Insulating substrate, 2... Hole, 3... Conductive material, 4... Lead terminal, 5... Solder, 6... Resin, 7... Metal, 8... Insulating green sheet, 9
... Via hole, 10 ... Silver-palladium conductor,
11... Electrode, 12... Resistor, 13... Variable resistor substrate, 14... Metal case, 15... O ring, 16... Rotating plate, 17... Slider.

Claims (1)

【実用新案登録請求の範囲】 (1) 導電性物質が充填された微小貫通孔および前
記微小貫通孔に導電性物質を介して接続された
抵抗体を有する表層絶縁体と、前記表層絶縁体
と同一外形寸法を有し、かつ導電性物質が充填
された微小貫通孔を有する1個以上の内層絶縁
体と、導電性物質が充填された微小貫通孔およ
び前記微小貫通孔に導電性物質を介して接続さ
れた電極を有する下層絶縁体とが、それぞれ微
小貫通孔を介して導通接続された積層基板を有
することを特徴とする可変抵抗器。 (2) 前記表層絶縁体、内層絶縁体及び下層絶縁体
に設けられた微小貫通孔の軸が隣接不一致状態
で接続されることを特徴とする実用新案登録請
求の範囲第1項記載の可変抵抗器。
[Claims for Utility Model Registration] (1) A surface insulator having a minute through-hole filled with a conductive substance and a resistor connected to the minute through-hole via a conductive substance; one or more inner layer insulators having the same external dimensions and having micro through holes filled with a conductive material, a micro through hole filled with a conductive material, and a conductive material inserted into the micro through holes; 1. A variable resistor comprising a laminated substrate in which a lower layer insulator having electrodes connected to each other is electrically connected through micro through holes. (2) The variable resistor according to claim 1 of the utility model registration, characterized in that the axes of the minute through holes provided in the surface insulator, inner layer insulator, and lower layer insulator are connected in a state where they are not adjacent to each other. vessel.
JP12070181U 1981-08-14 1981-08-14 variable resistor Granted JPS5827901U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12070181U JPS5827901U (en) 1981-08-14 1981-08-14 variable resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12070181U JPS5827901U (en) 1981-08-14 1981-08-14 variable resistor

Publications (2)

Publication Number Publication Date
JPS5827901U JPS5827901U (en) 1983-02-23
JPS62167Y2 true JPS62167Y2 (en) 1987-01-07

Family

ID=29914683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12070181U Granted JPS5827901U (en) 1981-08-14 1981-08-14 variable resistor

Country Status (1)

Country Link
JP (1) JPS5827901U (en)

Also Published As

Publication number Publication date
JPS5827901U (en) 1983-02-23

Similar Documents

Publication Publication Date Title
US4458294A (en) Compliant termination for ceramic chip capacitors
JPS5969910A (en) Laminated capacitor and method of producing same
US4953273A (en) Process for applying conductive terminations to ceramic components
US6011683A (en) Thin multilayer ceramic capacitors
JP2002015939A (en) Multilayered electronic component and its manufacturing method
JPS583397B2 (en) Conservancy service
JPS62167Y2 (en)
JPS63300593A (en) Ceramic composite substrate
JP2850200B2 (en) Multilayer ceramic electronic components
JPS5917227A (en) Method of producing composite laminated ceramic part
CN218525462U (en) Multilayer ceramic capacitor
JPS5950596A (en) Chip type electronic part and method of producing same
JPH08264859A (en) Magnetoresistive effect element and manufacture thereof
JPH01109711A (en) Composite chip-type solid electrolytic capacitor
JPH04206910A (en) Manufacture of laminated coil
JPS6152969B2 (en)
JPH05267854A (en) Ceramic multilayer circuit board and manufacture thereof
JPH0231798Y2 (en)
JPH0195595A (en) Method for vertically providing pin in ceramic substrate
JPS5917294A (en) Composite laminated ceramic part and method of producing same
JPH08759Y2 (en) Package for storing semiconductor devices
JPH0347341Y2 (en)
JP2975491B2 (en) Chip resistor
CN115458331A (en) Multilayer ceramic capacitor and preparation method thereof
JP3770196B2 (en) Circuit board with through hole