JPS62167850A - Soft magnetic material - Google Patents

Soft magnetic material

Info

Publication number
JPS62167850A
JPS62167850A JP61008838A JP883886A JPS62167850A JP S62167850 A JPS62167850 A JP S62167850A JP 61008838 A JP61008838 A JP 61008838A JP 883886 A JP883886 A JP 883886A JP S62167850 A JPS62167850 A JP S62167850A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
alloy
flux density
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61008838A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61008838A priority Critical patent/JPS62167850A/en
Publication of JPS62167850A publication Critical patent/JPS62167850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a soft magnetic material consisting of an Fe-Sn alloy which has the compsn. expressed by the specific chemical formula and has a high satd. magnetic flux density and small magnetorestriction in addition to excellent magnetic permeability and coercive force. CONSTITUTION:This soft magnetic material consists of the compsn. expressed by the chemical formula FexSny [x=100-y(at%), y; 2.0-7.0(at%)]. 1 or >=2 kinds among B, Hf, Ti, V, Nb, Ta, Zr, Cr, Mo, W, Mn, Al and Si can be further added as a magnetic characteristic improving component in a 0.05-10.0% range to the above-mentioned compsn. The soft magnetic material of this invention is usable in the as-cast state to a prescribed shape and is often used in the form of a thin sheet. Since this Fe-Sn alloy is extremely brittle, the alloy is subjected to an annealing treatment after casting by a method for forming a thin strip by quick cooling, by which the characteristics are additionally improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、透磁率や保磁力のみならず、飽和磁束密度
および磁歪特性にも優れた軟磁性材料に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a soft magnetic material that is excellent not only in magnetic permeability and coercive force but also in saturation magnetic flux density and magnetostriction properties.

変圧器やチョーク、磁気ヘッドなどの用途に用いられる
磁性材料としては、単に透磁率や保磁力に優れるだけで
なく、飽和磁束密度さらには磁歪特性も良好であること
が必要とされる。というのはけ歪が大きいと透磁率の低
下を招き、加えてとくに電力用変圧器として用いた場合
には騒音発生の原因ともなるからである。また飽和磁束
密度が小さいと小型化を図れないという不利がある。
Magnetic materials used in applications such as transformers, chokes, and magnetic heads are required not only to have excellent magnetic permeability and coercive force, but also to have good saturation magnetic flux density and magnetostriction properties. This is because a large brush strain leads to a decrease in magnetic permeability and, in addition, causes noise generation, especially when used as a power transformer. Furthermore, if the saturation magnetic flux density is low, there is a disadvantage that miniaturization cannot be achieved.

しかしながら一般に、飽和磁束密度とけ歪特性とは相反
する性質とされ、上記の如き高透磁率磁性材料において
、従来両特性を満足させることはできなかった。
However, in general, the saturation magnetic flux density and the strain characteristics are considered to be contradictory properties, and conventionally it has not been possible to satisfy both characteristics in the above-mentioned high permeability magnetic materials.

(従来の技術) たとえば変圧器等の鉄心材料として汎用されているけい
素鋼板を例にとると、Si含有債が少なければ高い飽和
磁束密度が得られるけれども磁歪は大きく、一方Si含
有量を6.5wt%程度まで高めれば磁歪はほぼ0にす
ることができるけれども、逆に飽和磁束密度はSilの
増加に伴って低下する。
(Prior art) For example, if we take silicon steel sheets that are commonly used as iron core materials for transformers, etc., if the Si content is small, a high saturation magnetic flux density can be obtained, but the magnetostriction is large; Although the magnetostriction can be reduced to almost 0 by increasing it to about .5 wt%, on the contrary, the saturation magnetic flux density decreases as Sil increases.

また磁心材料として用いられるセンダスト合金は、磁歪
はほぼ0ではあるけれども飽和磁束密度は低い。しかも
この合金は、非常に脆いために、塑性加工が極めて困難
という不利もある。
Furthermore, although the Sendust alloy used as the magnetic core material has a magnetostriction of almost 0, its saturation magnetic flux density is low. Moreover, this alloy has the disadvantage that it is extremely difficult to plastically work because it is extremely brittle.

(発明が解決しようとする問題点) このように従来は、高透磁率磁性材料において高い飽和
磁束密度と小さい磁歪を兼ね備えたものは見当たらず、
その開発が望まれていた。
(Problems to be Solved by the Invention) As described above, conventionally, there has been no high permeability magnetic material that has both high saturation magnetic flux density and low magnetostriction.
Its development was desired.

この発明は、上記の要請に有利に応じるもので、高透磁
率および低保磁力だけでなく、飽和磁束密度や磁歪特性
にも優れた軟磁性材料を提案することを目的とする。
The present invention advantageously meets the above requirements, and aims to propose a soft magnetic material that not only has high magnetic permeability and low coercive force, but also has excellent saturation magnetic flux density and magnetostriction properties.

(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく鋭意研究を重
ねた結果、Fe −Sn系合金が所期した目的に有利に
適うことを試行錯誤の末に見出した。
(Means for Solving the Problems) As a result of intensive research to achieve the above object, the inventors have discovered through trial and error that Fe-Sn alloys advantageously suit the intended purpose. I found it.

すなわちこの発明は、下記の化学式(I)または(II
)で示される組成に成る、飽和磁束密度が高くかつ磁歪
が小さい軟磁性材料である。
That is, this invention provides the following chemical formula (I) or (II
) is a soft magnetic material with a high saturation magnetic flux density and low magnetostriction.

PexSny        −−−(1)ここでx 
−100−y (at%) y : 2.O〜7.0(at%) Pe、Sn、M、      −−−< II )ここ
でM : B、IIf、Ti、V、Nb、Ta、Zr、
Cr、Mo、W、Mn、AtおよびSiのうちから選ん
だ少なくと も一種 x =100− y −z (at%)Y : 2.0
〜7.0(at%) z : 0.05〜10.0(at%)以下この発明を
具体的に説明する。
PexSny---(1) where x
-100-y (at%) y: 2. O~7.0 (at%) Pe, Sn, M,---<II) where M: B, IIf, Ti, V, Nb, Ta, Zr,
At least one selected from Cr, Mo, W, Mn, At, and Si x = 100-y-z (at%) Y: 2.0
-7.0 (at%) z: 0.05 - 10.0 (at%) This invention will be specifically explained below.

まずこの発明において成分組成を上記の範囲番こ限定し
た理由について説明する。
First, the reason why the component composition is limited to the above range in this invention will be explained.

Sn:2.0〜?、Oat%(以下単に%で示す)Sn
liが2.0%より少ないと製造過程におし)てT−α
変態を起し、磁気特性を劣化させる等の不利を招くので
少なくとも2.0%以上が必要である。
Sn: 2.0~? , Oat% (hereinafter simply expressed as %) Sn
If li is less than 2.0%, T-α
At least 2.0% or more is required because it causes disadvantages such as transformation and deterioration of magnetic properties.

一方7.0%より多くなると脆化が著しくなるので上限
は7.0%に限定した。
On the other hand, if the content exceeds 7.0%, embrittlement becomes significant, so the upper limit was limited to 7.0%.

上記のFe −Sn二元合金でも所期した目的は達成さ
れるが、この発明ではさらに磁気特性改善成分としてB
、 Hf、Ti、V、 Nb、Ta、Zr、Cr、Mo
+ w、 Mn+^lおよびSiのうちから選んだ一種
または二種以上を0.05〜10.0%の範囲において
添加することができる。
The above-mentioned Fe-Sn binary alloy also achieves the intended purpose, but in this invention B is further added as a magnetic property improving component.
, Hf, Ti, V, Nb, Ta, Zr, Cr, Mo
One or more selected from +w, Mn+^l, and Si can be added in an amount of 0.05 to 10.0%.

上記の各元素のうちTitV、Cr、Mo、W、Mn、
八1およびSiはγループ型、またB+ Iff + 
Nb+ TaおよびZrはT狭小型であって、いずれも
Snとの複合使用によって軟磁気特性を改善する点で同
効である。しかしながら上記の各元素を単独で使用する
場合および併用いずれの場合においても、添加量が0.
05%に満たないと十分な添加効果が期待できず、一方
10.0%を超えると飽和磁束密度の低下を招くおそれ
が大きいので、添加量は0.05〜10.0%の範囲に
限定した。
Among the above elements, TitV, Cr, Mo, W, Mn,
81 and Si are γ-loop type, and B+ If +
Nb+Ta and Zr have a narrow T and are both equally effective in improving the soft magnetic properties when used in combination with Sn. However, whether the above elements are used alone or in combination, the amount added is 0.
If the amount is less than 0.05%, a sufficient addition effect cannot be expected, while if it exceeds 10.0%, there is a strong possibility that the saturation magnetic flux density will decrease, so the amount added is limited to a range of 0.05 to 10.0%. did.

この発明に従う軟磁性材料は、所定の形状に鋳込んだま
までも勿論使用されるけれども、薄板として使用される
場合が多い。
Although the soft magnetic material according to the present invention can of course be used as it is cast into a predetermined shape, it is often used as a thin plate.

ところがこのFe −Sn系合金は、非常に脆いため従
来のような冷間圧延などによる薄板化は極めて難しい。
However, this Fe-Sn alloy is very brittle, and therefore it is extremely difficult to make it into a thin sheet by conventional cold rolling.

しかしながらこの点については、急冷薄帯化法すなわち
金属溶湯から直接金属薄板を製造する方法を採用するこ
とによって解決される。ここに急冷薄帯化法としては、
単ロール法、双ロール法および回転ドラム法など従来公
知のいずれの方法をも使用できる。
However, this point can be solved by employing a rapid thinning method, that is, a method for directly manufacturing thin metal sheets from molten metal. Here, the quenching method is as follows:
Any conventionally known method can be used, such as a single roll method, a twin roll method, and a rotating drum method.

かくして得られた急冷凝固直後の状態でも十分満足のい
く軟磁気特性が得られるけれども、その後に焼鈍処理を
施すことによってより一層の特性向上がもたらされる。
Although sufficiently satisfactory soft magnetic properties can be obtained in the state immediately after the rapid solidification obtained in this manner, further improvement in properties is brought about by performing an annealing treatment thereafter.

かかる焼鈍処理において、処理温度が800℃に満たな
いと長時間を要する不利があり、一方1300℃を超え
ると合金系によっては薄帯表面が溶融する場合もあるの
で、800〜1300℃の範囲で焼鈍することか好まし
い。
In such annealing treatment, if the treatment temperature is less than 800°C, there is a disadvantage that it requires a long time, while if it exceeds 1300°C, the surface of the ribbon may melt depending on the alloy system, so Annealing is preferred.

(作 用) Fe −Sn系合金において、と(に高い飽和磁束密度
と小さい磁歪が併せて得られる理由は、まだ明確に解明
されたわけではないが、次のとおりに考えられる。
(Function) The reason why both high saturation magnetic flux density and small magnetostriction are obtained in Fe-Sn alloys has not yet been clearly elucidated, but it is thought to be as follows.

Fe合金において磁歪を零にする添加元素の中で、Si
は12%であるがSnでは3〜4%である。SiもSn
も非磁性元素であるから、添加量の増大とともにFeの
強磁性すなわち飽和磁束密度を低下させる。
Among the additive elements that make magnetostriction zero in Fe alloys, Si
is 12%, but it is 3 to 4% for Sn. Si and Sn
Since Fe is also a non-magnetic element, the ferromagnetism of Fe, that is, the saturation magnetic flux density, decreases as the amount added increases.

従って、添加量が少ない程、飽和磁束密度の低下を制限
できる。
Therefore, the smaller the amount added, the more the reduction in saturation magnetic flux density can be restricted.

(実施例) 実施例1 下表1に示す成分組成に調製した各溶湯を、その供給ノ
ズルから高速で回転する双ロールのロール接触部に連続
して供給し、急冷凝固させて0.30龍厚の急冷薄帯を
作製した。ついで各薄帯に対して1000℃で3分間の
焼鈍を加えた。
(Example) Example 1 Each molten metal prepared to have the composition shown in Table 1 below was continuously supplied from its supply nozzle to the roll contact part of twin rolls rotating at high speed, and rapidly solidified to a temperature of 0.30 mm. A thick quenched ribbon was produced. Each ribbon was then annealed at 1000° C. for 3 minutes.

かくして得られた各製品薄帯の磁気特性および靭性につ
いて調べた結果を表1に併記する。
Table 1 also shows the results of investigating the magnetic properties and toughness of each product ribbon thus obtained.

なお靭性は、1000曲げを行ったときに、折れない場
合を○、部分的に折れた場合を△、完全に折れた場合を
×でそれぞれ評価した。
The toughness was evaluated as ◯ if it did not break after 1000 bends, △ if it partially broke, and × if it completely broke.

実施例2 下表2に示す成分組成になる5酊φの丸棒を作製した。Example 2 A round bar with a diameter of 5 mm and a composition shown in Table 2 below was prepared.

ついで各材料に対して970℃、5分間の焼鈍を施した
Each material was then annealed at 970°C for 5 minutes.

かくして得られた各丸棒材料の磁気特性および靭性につ
いて調べた結果を表2に併記する。
Table 2 also shows the results of investigating the magnetic properties and toughness of each round bar material thus obtained.

(発明の効果) かくしてこの発明によれば、透磁率および保磁力に優れ
るだけでなく、高い飽和磁束密度および小さい磁歪を兼
備する軟磁性材料を容易かつ安価に得ることができる。
(Effects of the Invention) Thus, according to the present invention, it is possible to easily and inexpensively obtain a soft magnetic material that not only has excellent magnetic permeability and coercive force but also has high saturation magnetic flux density and low magnetostriction.

Claims (1)

【特許請求の範囲】 1、化学式:Fe_xSn_y ここでx=100−y(at%) y:2.0〜7.0(at%) で示される組成に成る、飽和磁束密度が高くかつ磁歪が
小さい軟磁性材料。 2、化学式:Fe_xSn_yM_z ここでM:B、Hf、Ti、V、Nb、Ta、Zr、C
r、Mo、W、Mn、AlおよびSiのうちから選 んだ少なくとも一種 x=100−y−z(at%) y:2.0〜7.0(at%) z:0.05〜10.0(at%) で示される組成に成る、飽和磁束密度が高くかつ磁歪が
小さい軟磁性材料。
[Claims] 1. Chemical formula: Fe_xSn_y, where x = 100-y (at%) y: 2.0 to 7.0 (at%), and has a high saturation magnetic flux density and a low magnetostriction. Small soft magnetic material. 2. Chemical formula: Fe_xSn_yM_z where M: B, Hf, Ti, V, Nb, Ta, Zr, C
At least one selected from r, Mo, W, Mn, Al and Si x = 100-y-z (at%) y: 2.0-7.0 (at%) z: 0.05-10. A soft magnetic material having a composition expressed as 0 (at%) and having a high saturation magnetic flux density and low magnetostriction.
JP61008838A 1986-01-21 1986-01-21 Soft magnetic material Pending JPS62167850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008838A JPS62167850A (en) 1986-01-21 1986-01-21 Soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008838A JPS62167850A (en) 1986-01-21 1986-01-21 Soft magnetic material

Publications (1)

Publication Number Publication Date
JPS62167850A true JPS62167850A (en) 1987-07-24

Family

ID=11703919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008838A Pending JPS62167850A (en) 1986-01-21 1986-01-21 Soft magnetic material

Country Status (1)

Country Link
JP (1) JPS62167850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451521A (en) * 2013-08-23 2013-12-18 苏州长盛机电有限公司 Tin-iron alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451521A (en) * 2013-08-23 2013-12-18 苏州长盛机电有限公司 Tin-iron alloy material

Similar Documents

Publication Publication Date Title
JPS6362579B2 (en)
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JPS62167850A (en) Soft magnetic material
JP3366681B2 (en) Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability
US5318639A (en) Method of manufacturing grain oriented silicon steel sheets
JPS6286146A (en) High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JP3387962B2 (en) Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
JPS63195217A (en) Nonoriented electrical steel sheet having small iron loss after magnetic annealing
JPH02225621A (en) Production of high permeability magnetic material
JP3124690B2 (en) Iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance and method for producing the same
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JPS6372824A (en) Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel
JPS6256203B2 (en)
JPS62182250A (en) Soft-magnetic foil excellent in iron loss characteristic
JPS5853694B2 (en) Method for manufacturing in-plane non-oriented high silicon steel ribbon with excellent magnetic properties
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPH04276022A (en) Manufacture of ni-fe-cr series soft magnetic alloy sheet
JP2750238B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JP2588635B2 (en) Thin slabs for manufacturing unidirectional electrical steel sheets
JPH02133523A (en) Production of non-oriented electrical steel having excellent magnetic characteristics