JPS6216745B2 - - Google Patents

Info

Publication number
JPS6216745B2
JPS6216745B2 JP4903782A JP4903782A JPS6216745B2 JP S6216745 B2 JPS6216745 B2 JP S6216745B2 JP 4903782 A JP4903782 A JP 4903782A JP 4903782 A JP4903782 A JP 4903782A JP S6216745 B2 JPS6216745 B2 JP S6216745B2
Authority
JP
Japan
Prior art keywords
welding
metal
weld metal
steel
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4903782A
Other languages
Japanese (ja)
Other versions
JPS58167094A (en
Inventor
Takashi Fukuda
Masaru Kanetani
Masahide Shimazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP4903782A priority Critical patent/JPS58167094A/en
Publication of JPS58167094A publication Critical patent/JPS58167094A/en
Publication of JPS6216745B2 publication Critical patent/JPS6216745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ステンレスクラツド鋼の継手の溶接
方法に関するものである。 耐食性、耐高温酸化性、高温強度等にすぐれた
鉄―クローム(Fe―Cr)系、鉄―クローム―ニ
ツケル(Fe―Cr―Ni)系、鉄―クローム―ニツ
ケル―モリブデン(Fe―Cr―Ni―Mo)系等のス
テンレス鋼を合せ材とするクラツド鋼は、その経
済性と相俟つて、従来より腐食環境下にさらされ
る構造物に多く使用されている。 そして、構造物としてのクラツド鋼の継手溶接
は、一般に第1図イ,ロに示す如くに行なわれて
いる。すなわち、第1図イにおいては、合材1側
を開口部とするV型開先を設け、開先底部より母
材2と同等成分の溶接金属3で母材2を溶接した
後、母材溶接金属3の上に合金成分が合材1と同
等か、あるいはそれ以上の高合金成分を有する溶
接材を用いて合材1を溶接し、合材1と同等か、
あるいはそれ以上の性能を有する合材溶接金属4
を得ていた。また第1図ロではX型開先を設け、
まず母材2側より母材2を母材2と同等の母材溶
接金属3aにより溶接し、次いで合材1側より母
材2を母材2と同等の母材溶接金属3bを溶接
し、該溶接金属3bの上に合材1と同等、あるい
はそれ以上の高合金の合材溶接金属4により溶接
して良好な溶接継手を得ている。 このように、ステンレスクラツド鋼の継手溶接
作業が合材1側から実施可能な場合は第1図イ,
ロに基いて説明した方法で問題なく行なわれる
が、小径の内面ステンレスクラツド鋼管の長手溶
接や周継手溶接においては、溶接装置や、溶接作
業者が鋼管内部に入れないために鋼管外側たる母
材2側から溶接作業をしなければならない。この
場合、従来より一般に実施されている溶接方法
は、第2図に示すごとく、母材2側を開口部とす
るV型開先を設け、開先底部の合材1の部分より
母材2の部分までクラツド鋼全厚を合材1に比較
して合金成分を多量に含有する溶接材を用いて全
溶接金属4′を得ていた。これは、合材1の溶接
金属である高合金鋼の上に母材2と同種の低炭素
鋼や、低合金鋼の溶接材料を用いて溶接を行なう
と、母材2の溶接金属の一部が合材1の溶接金属
により成分が濃化され、そのために母材2の溶接
金属の一部が硬化し、その結果として、著しく延
性、靭性が低下したり、割れが発生したりする等
の問題があるのでクラツド鋼全厚を合材1に該当
する全溶接金属4′で溶接せざるを得ないためで
あつた。しかしながら、このように母材側から溶
接作業を行なつて、クラツド鋼全厚をステンレス
系高合金鋼を用いて溶接すると溶接材料費が高額
となり、また溶接金属は全てステンレス系で構成
されるために母材によつては、溶接継手部の強度
が母材強度を下回る恐れもある。さらに、ステン
レスクラツド鋼の構造物は、高温域又は高温と室
温との間のくり返えし温度域等の熱環境下で使用
されることが多く、このような使用条件下では、
溶接金属の全層がオーステナイト系ステンレス鋼
で構成されると、溶接金属と母材との熱膨張係数
の相違のために熱応力を発生して溶接継手が変形
したり、母材から溶接金属へ炭素の拡散のために
母材とのボンド部のクリープ強度が低下するとい
つた問題があつた。 本願出願人は特開昭56―30081号「ステンレス
クラツド鋼継手の片面溶接方法」として、母材溶
接金属層と合材溶接金属層との間に、溶接金属の
化学成分が重量%で、C0.15%以下、Si1.0%以
下、Mn2.0%以下、Cr12%以下、Ni12%以下、残
部Feならびに不可避不純物元素になるように1
層以上の中間溶接金属層を設けることを提案し
た。しかし、上記のような中間溶接金属層にあつ
ては、なおその硬度が350〜400Hvと高く、また
靭性値が低かつた。また曲げ試験においても中間
溶接金属層は延性がなく、ほとんど曲がつていな
かつた。かかるステンレスクラツド鋼継手を有す
るクラツドパイプを硫化水素を多く含む高温環境
下の使用において、継手部に割れを発生した。こ
れは、中間溶接金属層に割れが発生し、この割れ
が母材溶接金属中に伝播し、破壊に至つたものと
認められた。このように溶接金属中に局部的であ
つても硬度が高く、靭性の低い個所を含んでいる
と、厳しい使用環境下においては割れ発生の可能
性が大きく、構造物としての安全設計上問題を生
じた。このために中間溶接金属の硬度を下げ、靭
性を上げる対策が必要となつた。 本発明は、上記の事情に鑑みてなされたもの
で、中間溶接金属の溶接に際し、ステンレスクラ
ツド鋼の母材から中間溶接金属への炭素の浸入を
防ぐため、低希釈の溶接法を採用し、さらにチタ
ン(Ti)又はニオブ(Nb)、あるいはTi及びNb
を含有した低炭素鋼溶加材を用いて該溶接金属中
の炭素を固定し、低硬度、高靭性の中間溶接金属
層を得ることにより、上記の問題点を解決するこ
とにある。 本発明に係るステンレスクラツド鋼の継手溶接
方法の詳細を図面を参照して説明する。第3図に
おいて、継手部の両母材2側を開口部とするV型
開先を設け、両合材1は突き合わせとしてある。
開先はV型以外にU型も使用できる。 まず最初に、合材1のみの溶接が行なわれ、合
材溶接金属4で接合される。この場合に合材1,
1のみを溶融させることができれば、溶加材を用
る必要はないが、母材2,2の一部を溶融させる
恐れのある場合には合材1よりも合金成分の高い
溶加材を用いて溶接し、合材溶接金属4の化学成
分が所定の成分範囲に入るようにする必要があ
る。次に合材溶接金属4の上に低炭素鋼等の溶加
材を用いて中間層を1層以上溶接する。この際に
得られる中間溶接金属5の成分が母材2ならびに
合材溶接金属4からの合金元素の溶け込みにより
重量%で、C<0.1%、Si<1.0%、Mn<2.0%、
Cr<12%、Ni<10%、Mo<1.0%及びTi,Nbの
いずれか一方の元素、もしくはそれらの合計が
1.0%を上限とし、Ti単独の場合はC量の4倍、
Nb単独の場合はC量の8倍、両者共存の場合は
Ti量と2倍のNb量との和がC量の4倍を下限と
して含有し、残部がFeならびに不可避不純物元
素からなるようにしなければならない。このよう
な中間溶接金属5を得るためには、重量%で、
C0.02%以下、Si0.1〜0.3%およびTi0.5〜1.0%、
Nb0.5〜1.0%の1種または2種を含み残部をFe
ならびに不可避不純物元素からなる溶加材を使用
する必要がある。次に中間溶接金属5の上に母材
2と同等かそれ以上の合金元素を含有する溶加材
を用いて両母材2の全厚を母材溶接金属3によつ
て接合する。これに適用される溶接法、特に低炭
素中間肉盛法としては、低入熱、低希釈溶接が望
ましく、パルス―TIG溶接、パルス―MIG溶接、
被覆アーク溶接が適しているが、被覆アーク溶接
の場合は溶接棒の棒径を4mmφ以下とする。 次に中間層を溶接するための溶加材の化学成分
の限定理由について述べる。 炭素Cが低いほど中間溶接金属5の硬度は低
く、靭性も良好となる。しかして、0.02%以上に
なると中間溶接金属5は、母材2に含有する炭素
の移動によつて炭素が濃化し、極めて硬度が高く
なり、中間溶接金属5の性能劣化を招く。シリコ
ンSiは溶加材の溶融時における流動性を良好と
し、かつ脱酸剤として作用する。脱酸剤としてSi
は0.1%以上を必要とし、0.3%以上添加すると靭
性の著しい低下を招くのでその範囲を0.1〜0.3%
とした。 チタンTiとネオブNbは、Cを固定するために
必要な元素であり、TiはC量の4倍以上、Nbは
C量の8倍以上を必要とするが過剰のTi,Nbの
添加による靭性の低下および経済性を考慮して、
それぞれ1.0%以下とした。また溶接時にTi,Nb
は空気中へ飛散し、有効量が減少するのでそれぞ
れの下限値を0.5%とした。 次に本発明の実施例を説明する。 供試材として、合材に厚さ2.5mmのSUS316L材
を、母材に厚さ12.5mmのSB42材を使用したステ
ンレスクラツド鋼板を使用した。開先形状は第4
図に示すごとく、V型で母材2の開先角度α=
α′=15゜である。まず、第4図イに示す開先形
状の合材1をType309MoLの被覆アーク溶接棒を
用いて第4図ロに示すごとく溶接し、合材溶接金
属4を得た。次いで合材溶接金属4上に中間層用
溶加材として第1表の化学成分を有する1.6mm径
の低炭素鋼溶加材を用い、パルスTIG溶接法によ
り下記の条件にて中間溶接金属5の1層溶接を行
なつた。 パルス電流:電流190A、電圧12V、 時間0.3sec ベース電流:電流 80A、電圧 9V、 時間0.3sec 溶接速度:8cm/min、 Arシールドガス流量10/min
The present invention relates to a method of welding a stainless steel joint. Iron-chromium (Fe-Cr) series, iron-chromium-nickel (Fe-Cr-Ni) series, iron-chromium-nickel-molybdenum (Fe-Cr-Ni) with excellent corrosion resistance, high-temperature oxidation resistance, high-temperature strength, etc. - Clad steel, which is made of stainless steel such as Mo) series, has been widely used in structures exposed to corrosive environments due to its economic efficiency. Joint welding of clad steel as a structure is generally carried out as shown in FIGS. 1A and 1B. That is, in FIG. 1A, a V-shaped groove is provided with the opening on the composite material 1 side, and after welding the base metal 2 with weld metal 3 having the same composition as the base metal 2 from the bottom of the groove, Composite material 1 is welded onto weld metal 3 using a welding material whose alloy composition is equal to or higher than that of composite material 1, and is equal to or higher than composite material 1.
Composite weld metal 4 with or better performance
I was getting . In addition, in Figure 1 B, an X-shaped groove is provided,
First, weld the base metal 2 from the base metal 2 side with a base metal weld metal 3a equivalent to the base metal 2, then weld the base metal 2 with a base metal weld metal 3b equivalent to the base metal 2 from the composite material 1 side, A good welded joint is obtained by welding a composite weld metal 4 of a high alloy equivalent to or higher than the composite material 1 on the weld metal 3b. In this way, if the stainless clad steel joint welding work can be carried out from the composite material 1 side, then
However, in the case of longitudinal welding or circumferential welding of small-diameter inner stainless steel clad steel pipes, welding equipment and welders cannot enter the inside of the steel pipe, so the outer base of the steel pipe must be welded without any problems. Welding work must be done from the material 2 side. In this case, as shown in Fig. 2, the commonly used welding method is to provide a V-shaped groove with the opening on the base metal 2 side, and to Comparing the total thickness of the clad steel up to the part with composite material 1, the total weld metal 4' was obtained using a welding material containing a large amount of alloying components. This is because when welding is performed on high alloy steel, which is the weld metal of composite material 1, using low carbon steel of the same type as base material 2 or welding material of low alloy steel, the weld metal of base material 2 will The components are concentrated by the weld metal of the composite material 1, which causes a part of the weld metal of the base material 2 to harden, resulting in a significant decrease in ductility and toughness, cracking, etc. This was because the entire thickness of the clad steel had to be welded with the entire weld metal 4' corresponding to composite material 1 due to the problem of. However, if welding is performed from the base metal side in this way and the entire thickness of the clad steel is welded using stainless steel high alloy steel, the welding material cost will be high, and the weld metal will be entirely made of stainless steel. Depending on the base metal, the strength of the welded joint may be lower than the base metal strength. Furthermore, stainless steel structures are often used in thermal environments such as high temperature ranges or repeated temperature ranges between high temperature and room temperature, and under such usage conditions,
When all layers of the weld metal are made of austenitic stainless steel, the difference in thermal expansion coefficient between the weld metal and the base metal causes thermal stress, which can cause the weld joint to deform, or cause the weld metal to shift from the base metal. There was a problem in that the creep strength of the bond with the base metal decreased due to carbon diffusion. The applicant of the present application has published Japanese Patent Application Laid-Open No. 56-30081 entitled "Single-sided welding method for stainless steel clad steel joints," in which the chemical composition of the weld metal is in weight percent between the base metal weld metal layer and the composite weld metal layer. 1 so that C0.15% or less, Si1.0% or less, Mn2.0% or less, Cr12% or less, Ni12% or less, the balance being Fe and unavoidable impurity elements.
It was proposed to provide an intermediate weld metal layer of more than one layer. However, the intermediate weld metal layer as described above still had a high hardness of 350 to 400 Hv and a low toughness value. Also, in the bending test, the intermediate weld metal layer had no ductility and was hardly bent. When a clad pipe having such a stainless clad steel joint was used in a high temperature environment containing a large amount of hydrogen sulfide, cracks occurred in the joint. It was recognized that this was due to cracks occurring in the intermediate weld metal layer, which propagated into the base weld metal, leading to fracture. If the weld metal contains areas of high hardness and low toughness, even locally, there is a high possibility that cracks will occur under harsh usage environments, causing problems in the safe design of the structure. occured. For this reason, it became necessary to take measures to reduce the hardness and increase the toughness of the intermediate weld metal. The present invention has been made in view of the above circumstances, and employs a low dilution welding method to prevent carbon from penetrating from the base metal of stainless clad steel into the intermediate weld metal when welding the intermediate weld metal. , and also titanium (Ti) or niobium (Nb), or Ti and Nb
The object of the present invention is to solve the above-mentioned problems by fixing carbon in the weld metal using a low carbon steel filler metal containing . The details of the stainless clad steel joint welding method according to the present invention will be explained with reference to the drawings. In FIG. 3, a V-shaped groove is provided with openings on both base material 2 sides of the joint portion, and both composite materials 1 are butted.
In addition to the V-shaped groove, a U-shaped groove can also be used. First, only the composite material 1 is welded and joined with the composite weld metal 4. In this case, composite material 1,
If only 1 can be melted, there is no need to use a filler metal, but if there is a risk of melting part of the base metals 2 and 2, use a filler metal with a higher alloy content than composite material 1. It is necessary to weld the composite weld metal 4 so that the chemical composition falls within a predetermined composition range. Next, one or more intermediate layers are welded onto the composite weld metal 4 using a filler metal such as low carbon steel. The components of the intermediate weld metal 5 obtained at this time are C<0.1%, Si<1.0%, Mn<2.0%,
Cr<12%, Ni<10%, Mo<1.0% and either one of Ti or Nb, or the sum of them
The upper limit is 1.0%, and in the case of Ti alone, it is 4 times the amount of C,
In the case of Nb alone, 8 times the amount of C, in the case of both coexisting
The sum of the amount of Ti and twice the amount of Nb must be contained as a lower limit of four times the amount of C, and the balance must be made of Fe and unavoidable impurity elements. In order to obtain such an intermediate weld metal 5, in weight %,
C0.02% or less, Si0.1~0.3% and Ti0.5~1.0%,
Contains one or two types of Nb0.5~1.0% and the balance is Fe
In addition, it is necessary to use a filler metal consisting of unavoidable impurity elements. Next, a filler metal containing an alloying element equal to or higher than that of the base metal 2 is used on the intermediate weld metal 5 to join the entire thickness of both base metals 2 with the base metal weld 3. Welding methods applied to this, especially low carbon intermediate overlay methods, are preferably low heat input and low dilution welding, such as pulse-TIG welding, pulse-MIG welding,
Covered arc welding is suitable, but in the case of covered arc welding, the diameter of the welding rod should be 4 mmφ or less. Next, we will discuss the reasons for limiting the chemical composition of the filler metal for welding the intermediate layer. The lower the carbon C content, the lower the hardness of the intermediate weld metal 5 and the better the toughness. However, when the content exceeds 0.02%, carbon in the intermediate weld metal 5 becomes concentrated due to the movement of carbon contained in the base metal 2, and the hardness becomes extremely high, causing performance deterioration of the intermediate weld metal 5. Silicon improves the fluidity of the filler metal during melting and acts as a deoxidizing agent. Si as a deoxidizer
requires 0.1% or more, and adding more than 0.3% will cause a significant decrease in toughness, so the range should be reduced to 0.1 to 0.3%.
And so. Titanium (Ti) and neobium (Nb) are elements necessary to fix C. Ti requires at least 4 times the amount of C, and Nb requires at least 8 times the amount of C, but the addition of excess Ti and Nb improves toughness. Considering the decrease in and economic efficiency,
Each was set to 1.0% or less. Also, during welding, Ti, Nb
The lower limit for each was set at 0.5%, as these substances disperse into the air and reduce the effective amount. Next, embodiments of the present invention will be described. The test materials used were stainless clad steel plates with a 2.5 mm thick SUS316L material as the composite material and a 12.5 mm thick SB42 material as the base material. The groove shape is 4th
As shown in the figure, the groove angle α of the base material 2 is V-shaped.
α′=15°. First, a composite material 1 having the groove shape shown in FIG. 4A was welded using a Type 309 MoL coated arc welding rod as shown in FIG. 4B to obtain a composite weld metal 4. Next, using a 1.6 mm diameter low carbon steel filler metal having the chemical composition shown in Table 1 as the filler metal for the intermediate layer on the composite weld metal 4, welded the intermediate weld metal 5 by pulse TIG welding under the following conditions. Single layer welding was performed. Pulse current: current 190A, voltage 12V, time 0.3sec Base current: current 80A, voltage 9V, time 0.3sec Welding speed: 8cm/min, Ar shielding gas flow rate 10/min

【表】 さらに、中間溶接金属5の上に第4図ニに示す
ごとく軟鋼系被覆アーク溶接により母材溶接金属
3を最終層まで溶接した。なお溶接前の予熱なら
びに溶接後の熱処理は全く行なつていない。 上記の手順により得られた中間溶接金属5の化
学成分を第2表に、また継手溶接部の機械試験の
結果を第3表に示す。
[Table] Furthermore, base metal weld metal 3 was welded to the final layer on intermediate weld metal 5 by mild steel covered arc welding as shown in FIG. 4D. Note that preheating before welding and heat treatment after welding were not performed at all. The chemical composition of the intermediate weld metal 5 obtained by the above procedure is shown in Table 2, and the results of the mechanical test of the joint weld are shown in Table 3.

【表】【table】

【表】 上記の結果よりして、いずれの中間層用溶加材
を用いても極めて低硬度、高靭性の溶接金属が継
手部に得られている。この程度の硬度であれば、
構造物としての使用時の割れ発生の可能性は殆ど
ないことが経験的に確認されている。 Ti,Nb添加の効果をより明確にするために中
間溶接金属相当に化学成分を有するTi単独添
加、Nb単独添加、Ti,Nb添加およびTi,Nbのい
ずれをも添加しない金属を溶接アークにて再溶
解、固化した溶接金属模擬試験材の硬度測定およ
びシヤルピー試験を行なつた。その結果を第4表
に示す。
[Table] From the above results, weld metal with extremely low hardness and high toughness can be obtained in the joint regardless of which filler metal for the intermediate layer is used. With this level of hardness,
It has been empirically confirmed that there is almost no possibility of cracking during use as a structure. In order to clarify the effects of Ti and Nb addition, welded metals with chemical components equivalent to intermediate weld metals, such as Ti alone, Nb alone, Ti, Nb, and neither Ti nor Nb, were welded using a welding arc. The hardness of the remelted and solidified weld metal simulant test material was measured and the Charpy test was performed. The results are shown in Table 4.

【表】 勿論、実施例で得られた中間溶接金属とは熱履
歴が異なり、また化学成分も若干異なるために、
第3表に示す硬度に比して高い硬度となつてい
る。しかしながらTi,Nbあるいは両者添加の金
属は無添加の金属に比し低硬度、高靭性であるこ
とが知られる。これはTi,Nbの添加により炭素
がTi,Nbに固定され、固溶炭素が減少したこと
による。 以上の説明により理解されるように、本発明に
係るステンレスクラツド鋼の継手の溶接方法にお
いては、Fe―Cr系、Fe―Cr―Ni系あるいはFe―
Cr―Ni―Mo系ステンレス鋼を合材とし、軟鋼あ
るいは低合金鋼を母材としたステンレスクラツド
鋼の継手の溶接において、母材側を開口とする開
先を設け、最初に合材と略同等の化学成分の溶加
材により合材部を溶接し、この合材溶接金属の上
に化学成分が重量%で、C0.02%以下、Si0.1〜
0.3%およびTi0.5〜1.0%、Nb0.5〜1.0%の1種ま
たは2種を含み残部をFeならびに不可避不純物
元素からなる溶加材を用いてTIG溶接法もしくは
MIG溶接法により中間層を1層以上溶接し、さら
にこの中間層上に母材と同等かそれ以上の合金元
素を含有する溶加材によつて溶接するので、継手
溶接部に合材と同等の耐食性、耐高温酸化性等が
与えられ、また母材と同等の機械的強度が与えら
れ、中間溶接金属にTi,Nbを含有させることに
より硬度を低下させて靭性に富んだ継手溶接部が
得られるのでパイプ等として厳しい条件下で使用
しても亀裂を生ずる懸念のないステンレスクラツ
ド鋼の構造物を提供できる。
[Table] Of course, the thermal history is different from the intermediate weld metal obtained in the example, and the chemical composition is also slightly different.
The hardness is higher than the hardness shown in Table 3. However, it is known that metals containing Ti, Nb, or both have lower hardness and higher toughness than metals containing no additives. This is because the addition of Ti and Nb fixed carbon to Ti and Nb, reducing the amount of solid solution carbon. As can be understood from the above explanation, in the welding method for stainless clad steel joints according to the present invention, Fe-Cr type, Fe-Cr-Ni type or Fe-
When welding a stainless clad steel joint using Cr-Ni-Mo stainless steel as a composite material and mild steel or low-alloy steel as the base material, a groove with an opening on the base metal side is created and the composite material is first welded. The composite part is welded using a filler metal with approximately the same chemical composition, and the chemical composition is 0.02% or less by weight, and Si0.1~ on top of this composite weld metal.
TIG welding or
One or more intermediate layers are welded using the MIG welding method, and a filler metal containing alloy elements equal to or higher than that of the base metal is welded onto this intermediate layer, so the welded joint is equivalent to a composite material. corrosion resistance, high-temperature oxidation resistance, etc., and mechanical strength equivalent to that of the base metal. By containing Ti and Nb in the intermediate weld metal, the hardness is reduced and a joint weld with high toughness is created. Therefore, it is possible to provide a stainless-clad steel structure that is free from cracking even when used as a pipe under severe conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロはステンレスクラツド鋼の継手の
従来の合材側からの溶接方法の説明図、第2図は
従来の母材側からの溶接方法の説明図、第3図は
本発明に係る溶接方法の説明図、第4図イ,ロ,
ハ,ニは本発明の実施例の説明図である。 1…合材、2…母材、3…母材溶接金属、4…
合材溶接金属、5…中間溶接金属。
Figures 1A and 2B are explanatory diagrams of the conventional welding method for stainless clad steel joints from the composite material side, Figure 2 is an explanatory diagram of the conventional welding method from the base metal side, and Figure 3 is an explanatory diagram of the present invention. Explanatory diagram of the welding method according to Figure 4 A, B,
C and D are explanatory diagrams of embodiments of the present invention. 1...Mixture material, 2...Base metal, 3...Base metal weld metal, 4...
Composite weld metal, 5...Intermediate weld metal.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe―Cr系、Fe―Cr―Ni系あるいはFe―Cr
―Ni―Mo系ステンレス鋼を合材とし、軟鋼ある
いは低合金鋼を母材としたステンレスクラツド鋼
の継手の溶接において、母材側を開口とする開先
を設け、最初に合材と略同等の化学成分の溶加材
により合材部を溶接し、この合材溶接金属の上に
化学成分が重量%で、C0.02%以下、Si0.1〜0.3
%およびTi0.5〜1.0%、Nb0.5〜1.0%の1種また
は2種を含み残部をFeならびに不可避不純物元
素からなる溶加材を用いてTIG溶接法もしくは
MIG溶接法により中間層を1層以上溶接し、さら
にこの中間層上に母材と同等かそれ以上の合金元
素を含有する溶加材によつて最終層まで溶接する
ことを特徴とするステンレスクラツド鋼の継手の
溶接方法。
1 Fe-Cr system, Fe-Cr-Ni system or Fe-Cr
- When welding stainless clad steel joints using Ni-Mo stainless steel as a composite material and mild steel or low-alloy steel as the base material, a groove with an opening on the base metal side is created and the composite material is first welded. The composite part is welded with filler metal of the same chemical composition, and the chemical composition is 0.02% or less by weight, Si0.1~0.3 on top of this composite weld metal.
% and one or two of Ti0.5~1.0% and Nb0.5~1.0%, with the remainder consisting of Fe and unavoidable impurity elements, using the TIG welding method or
A stainless steel club characterized by welding one or more intermediate layers using the MIG welding method, and then welding the final layer on the intermediate layer with a filler metal containing an alloy element equal to or higher than that of the base metal. How to weld joints made of Tsudo steel.
JP4903782A 1982-03-29 1982-03-29 Method for welding joint of stainless steel clad steel Granted JPS58167094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4903782A JPS58167094A (en) 1982-03-29 1982-03-29 Method for welding joint of stainless steel clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4903782A JPS58167094A (en) 1982-03-29 1982-03-29 Method for welding joint of stainless steel clad steel

Publications (2)

Publication Number Publication Date
JPS58167094A JPS58167094A (en) 1983-10-03
JPS6216745B2 true JPS6216745B2 (en) 1987-04-14

Family

ID=12819882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4903782A Granted JPS58167094A (en) 1982-03-29 1982-03-29 Method for welding joint of stainless steel clad steel

Country Status (1)

Country Link
JP (1) JPS58167094A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290939A (en) 1998-04-08 1999-10-26 Daido Steel Co Ltd Manufacture of long double metallic tube
JP4742290B2 (en) * 2001-07-31 2011-08-10 シブヤマシナリー株式会社 Capper cap feeder

Also Published As

Publication number Publication date
JPS58167094A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
US6042782A (en) Welding material for stainless steels
EP0867256B1 (en) Welding material for stainless steels
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JPH0825041B2 (en) Clad steel pipe manufacturing method
JPS5937157B2 (en) Single-sided welding method for stainless steel fittings
JP2924731B2 (en) Welding material for overlay welding of Cr steel turbine rotor and overlay welding method using the welding material
JPS6216745B2 (en)
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
Maruyama Arc welding technology for dissimilar joints
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JP2000015447A (en) Welding method of martensitic stainless steel
US6521060B1 (en) Filler metal for use in welding of Ni-Cr-W alloys
JPH11104885A (en) Fe-ni low thermal expansion coefficient alloy made welding structure and welding material
JPH0299280A (en) Method for welding clad steel
JPS62286677A (en) Welding method for two-phase stainless steel products
JPS59125278A (en) One-side welding method of stainless clad steel
JP3155150B2 (en) High strength Cr-Mo steel welding wire
JP2001107200A (en) Martensitic stainless steel welded joint excellent in toughness and strength
JPS63154269A (en) Method for welding high alloy clad steel
JPH0558835B2 (en)
JPS61186195A (en) Welding method of different material joint
JPH03159B2 (en)