JPH01237079A - Welding method for clad steel - Google Patents

Welding method for clad steel

Info

Publication number
JPH01237079A
JPH01237079A JP6340288A JP6340288A JPH01237079A JP H01237079 A JPH01237079 A JP H01237079A JP 6340288 A JP6340288 A JP 6340288A JP 6340288 A JP6340288 A JP 6340288A JP H01237079 A JPH01237079 A JP H01237079A
Authority
JP
Japan
Prior art keywords
welding
intermediate layer
welded
base metal
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340288A
Other languages
Japanese (ja)
Inventor
Hiroyuki Koike
弘之 小池
Satoyuki Miyake
三宅 聰之
Tatsuo Enomoto
榎本 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6340288A priority Critical patent/JPH01237079A/en
Publication of JPH01237079A publication Critical patent/JPH01237079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To obtain a weld zone having characteristics equal to base metal by welding first the clad side by material to be welded for cladding material and forming an intermediate layer by material to be welded in the specific component range thereon and subsequently, welding the base metal side by material to be welded for the base metal. CONSTITUTION:A V type groove with the base metal 2 side as an opening is provided and the cladding material 1 side is welded by weld metal 3 for cladding material and various characteristics required for the cladding material 1 are secured. More than one layer is then welded on the cladding material weld metal 3 by the material to be welded consisting of, by weight, 20-30% Cr, 2-4.5% Mo, 4-13 Ni <=0.06% C, <=0.20% N, (Ni+30C+20N)/(Cr+Mo) in the range of 0.20-0.70 and the balance Fe with impurities and the intermediate layer 4 is formed. The intermediate layer 4 has strong resistivity to the component change caused by melting the cladding material and the base metal and a weld crack does not take place. Further, welding is performed on the intermediate layer 4 by the material to be welded for the base metal. Base metal side weld metal 5 does not cause the weld crack and other harmful weld defects and is provided with satisfactory ductility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ステンレスクラッド鋼或はニッケル基合金ク
ラッド鋼の溶接方法に係り、さらに詳しくはこれらクラ
ッド鋼同志を経済的且つ高能率に溶接し、しかも健全な
溶接部を得ることを可能とする溶接方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for welding stainless clad steel or nickel-based alloy clad steel, and more specifically to a method for welding these clad steels together economically and with high efficiency. Moreover, the present invention relates to a welding method that makes it possible to obtain a sound weld.

[従来の技術] 化学プラント等の容器や配管には、耐食性、耐熱性等に
優れたステンレス鋼やニッケル基合金そのものと同様に
それらのクラッド鋼がその経済性ゆえに多種、多様、多
量に用いられている。このクラッド鋼同志の接合に際し
て、最も一般的には第2図(イ)(ロ)(ハ)に示すご
とくに行われている。
[Prior Art] Clad steels are used in large quantities in large quantities for containers and piping in chemical plants, etc., due to their economic efficiency, as well as stainless steel and nickel-based alloys themselves, which have excellent corrosion resistance and heat resistance. ing. The most common method of joining these clad steels is as shown in FIGS. 2(a), 2(b), and 2(c).

即ち第2図(イ)においては、合材1側及び軟鋼或は低
合金鋼(以下母材という)2側両方にV型開光を設け、
(ロ)において母材2側を母材2に適合する溶接金属5
で溶接し、(ハ)において母材溶接金属5の上に合材が
ステンレス鋼の場合であれば異材溶接等に用いられる高
合金タイプのオーステナイト系ステンレス鋼等の溶接金
属4で、合材がニッケル基合金の場合であればN i−
Cr−F e合金のいわゆるインコネル系等の溶接金属
4で溶接した後、合材1に適合する溶接金属3で合材1
の溶接を行っている。このような施工手順を採用する大
きな理由は、溶接割れの防止、溶接材料コストの低減、
溶接の効率化1合材側の特性確保である。しかし、構造
物の形状や寸法によっては第2図のごとき開先や手順を
採用出来ないこともあり(例えば小径管の内面が合材と
なるもの)、その場合には特に第3図(イ)(ロ)(ハ
)に示すごとくに行われている。
That is, in FIG. 2 (a), V-shaped openings are provided on both the composite material 1 side and the mild steel or low alloy steel (hereinafter referred to as base material) 2 side,
In (b), the base metal 2 side is the weld metal 5 that matches the base metal 2.
In (c), if the composite material is stainless steel, the composite material is welded with a weld metal 4 such as a high alloy type austenitic stainless steel used for dissimilar metal welding etc. on the base weld metal 5. In the case of nickel-based alloys, Ni-
After welding with a weld metal 4 such as the so-called Inconel type of Cr-Fe alloy, weld a composite material 1 with a weld metal 3 that matches the composite material 1.
welding. The main reasons for adopting this construction procedure are to prevent weld cracking, reduce welding material costs,
Improving welding efficiency 1. Ensuring the properties of the composite material. However, depending on the shape and dimensions of the structure, it may not be possible to adopt the bevels and procedures shown in Figure 2 (for example, the inner surface of a small diameter pipe is made of composite material), and in such cases, especially ) (b) and (c).

即ち第3図(イ)においては、母材2側を開口部とする
V型開光を設け、(ロ)において開先底部の合材l側を
合材1に適合する溶接金属3で溶接し、(ハ)において
合材溶接金属3の上に合材がステンレス鋼の場合であれ
ば異材溶接等に用いられる高合金タイプのオーステナイ
ト系ステンレス鋼等の溶接金属5で、合材がニッケル基
合金の場合であればN i−Cr−F e合金のいわゆ
るインコネル系等の溶接金属5で最終までの溶接を行っ
ていた。この場合、高価なしかも溶接性の劣る異材溶接
用の溶接材料を多量に用いて溶接することとなり、経済
面でも能率面でも大きな犠牲を払わなければならないの
が現状であった。又熱膨張係数が大きいために生じる変
形や9強度等の特性確保の問題もあった。
That is, in Fig. 3 (a), a V-shaped opening is provided with the opening on the base metal 2 side, and in (b), the composite l side at the bottom of the groove is welded with weld metal 3 that is compatible with composite material 1. , in (c), if the composite weld metal 3 is stainless steel, the weld metal 5 is a high-alloy type austenitic stainless steel used for dissimilar metal welding, etc., and the composite material is a nickel-based alloy. In this case, the final welding was performed using a weld metal 5 such as a so-called Inconel-based Ni-Cr-Fe alloy. In this case, a large amount of welding material for dissimilar metal welding, which is expensive and has poor weldability, has to be used for welding, and the current situation is that large sacrifices have to be made in terms of economy and efficiency. Furthermore, there were problems in ensuring properties such as deformation and strength due to the large coefficient of thermal expansion.

又特開昭52−155151号公報には、ステンレスク
ラッド鋼の溶接において炭素鋼側の開先を炭素鋼用溶接
材料で一層の自動溶接を行った後、ステンレス鋼側から
裏掘りして被溶接材のステンレス鋼とほぼ同材質の溶接
材料を用いて溶接することによって経済性を確保する方
法が開示されているが。
In addition, Japanese Patent Application Laid-open No. 52-155151 discloses that in welding stainless clad steel, after performing automatic welding of the groove on the carbon steel side with a welding material for carbon steel, the groove to be welded is dug from the stainless steel side. However, a method is disclosed in which economical efficiency is ensured by welding using a welding material that is almost the same as the material stainless steel.

小径管の内面が合材となる場合などは適用できない等の
問題は残っていた。
Problems remained, such as that it could not be applied to cases where the inner surface of a small-diameter pipe was made of composite material.

又特開昭58−167094号公報には、ステンレスク
ラッド鋼の溶接において最初に合材とほぼ同等の化学成
分の溶加材により合材部を溶接し、この合材溶接金属の
上にC,SiとT1及び/又はNbを特定した溶加材を
用いてTIGもしくはMIG溶接法により中間層を1層
以上溶接し、さらにこの中間層上に母材と同等かそれ以
上の合金元素を含有する溶加材で最終層まで溶接するこ
とによって、溶接金属の特性を改善しかつ経済性を確保
する方法が開示されているが、中間層の耐割れ性、中間
層上の溶接金属の耐割れ性が不十分である等の課題が残
っていた。
Furthermore, in JP-A-58-167094, in welding stainless clad steel, the composite part is first welded with a filler metal having almost the same chemical composition as the composite material, and C, C, One or more intermediate layers are welded by TIG or MIG welding using filler metals containing Si and T1 and/or Nb, and furthermore, this intermediate layer contains an alloying element equal to or greater than that of the base metal. A method of improving the properties of the weld metal and ensuring economic efficiency by welding up to the final layer with filler metal is disclosed, but the crack resistance of the intermediate layer and the crack resistance of the weld metal on the intermediate layer are Issues remained, such as insufficient support.

以上のごとく、ステンレスクラッド鋼或はニッケル基合
金クラッド鋼同志の接合において1割れや特性劣化もな
くかつ経済面や能率面の犠牲もない溶接方法が強く要望
されている。
As described above, there is a strong demand for a welding method for joining stainless clad steels or nickel-base alloy clad steels without cracking or property deterioration, and without sacrificing economy or efficiency.

[発明が解決しようとする課題] 即ち、本発明は従来のクラッド鋼溶接方法の問題点であ
った、施工上の困難性、経済面や能率面における犠牲、
溶接部の特性上の問題点等を解決すべくなされたもので
あって、その目的とするところは、ステンレスクラッド
鋼或はニッケル基合金クラッド鋼同志の接合において、
クラッド側の耐食性や耐熱性等の品質を損うことなく、
溶接部の健全性確保と経済的且つ高能率な溶接を可能と
する溶接方法を提供することにある。
[Problems to be Solved by the Invention] That is, the present invention solves the problems of conventional clad steel welding methods, such as difficulty in construction, sacrifices in economy and efficiency, and
This was developed to solve problems in the characteristics of welded parts, and its purpose is to solve problems in the characteristics of welded parts, and its purpose is to
without compromising quality such as corrosion resistance or heat resistance on the cladding side.
The object of the present invention is to provide a welding method that ensures the soundness of a welded part and enables economical and highly efficient welding.

[3題を解決するための手段〕 本発明者等は、ステンレスクラッド鋼或はニッケル基合
金クラッド鋼同志を接合するにあたって、開先や溶接施
工手順を自由に採択出来ないような場合でも、クラッド
側の諸特性を損うことなく、又溶接割れ等の有害な欠陥
も発生することなく経済的且つ高能率な溶接が可能とな
る方法を見出すことを目的として鋭意検討した。その結
果得られた本発明に係るステンレスクラッド鋼或はニッ
ケル基合金クラッド鋼同志の溶接方法の詳細を図面参照
のもとに説明する。
[Means for Solving the Three Problems] The present inventors have discovered that when joining stainless clad steel or nickel-based alloy clad steel, even in cases where the groove and welding procedure cannot be freely adopted, the cladding The purpose of this study was to find a method that would enable economical and highly efficient welding without impairing the properties of the welding material or causing harmful defects such as weld cracks. The details of the resulting method of welding stainless clad steel or nickel-based alloy clad steel together according to the present invention will be explained with reference to the drawings.

第1図(イ)において母材2側を開口部とするV型開光
を設け、(ロ)において第一に合材1側をその合材用溶
接金属3で溶接することにより、合材1に要求される諸
特性を確保すること、(ハ)において合材溶接金属3の
上に、Cr 20〜30%、Mo2〜4゜5%、Ni4
〜13%、 C0.06%以下、N 0.20%以下で
且つ(Ni+30C+20N) / (Cr+Mo)が
0,20〜0.70の範囲にあり、残部Fe及び不可避
的な不純物からなる溶接材料で1層以上溶接して中間層
4を形成する。この成分範囲の溶接材料から得られる中
間M4は、合材であるステンレス鋼又は二ケッル基合金
の溶融及び軟鋼或は低合金鋼の母材を溶融することから
生じる成分変動に対して抵抗性が強く、溶接割れが発生
しないこと、(ニ)において、さらにその中間層4の上
に母材側の軟鋼或は低合金鋼用溶接材料で溶接すること
によっって母材側溶接金属5は溶接割れその他の有害な
欠陥も発生せず良好な延性を持つ健全なものとなること
、即ち安価で溶接作業性が良くしかも強度は母材に適合
し溶接による変形も小さい母材と共金糸の溶接材料の使
用が可能になること、等が明らかになった。
In FIG. 1 (a), a V-shaped opening is provided with the opening on the base metal 2 side, and in (b), the composite material 1 side is first welded with the weld metal 3 for the composite material. In (c), on the composite weld metal 3, Cr 20-30%, Mo2-4°5%, Ni4
~13%, C 0.06% or less, N 0.20% or less, and (Ni+30C+20N)/(Cr+Mo) is in the range of 0.20 to 0.70, with the balance consisting of Fe and inevitable impurities. The intermediate layer 4 is formed by welding one or more layers. Intermediate M4 obtained from welding materials in this composition range is resistant to composition fluctuations resulting from melting of the composite stainless steel or Nichel base alloy and melting of the base metal of mild steel or low alloy steel. In (d), the weld metal 5 on the base metal side is strong and does not cause weld cracks. Welding cracks and other harmful defects do not occur, and welding is healthy with good ductility.In other words, it is inexpensive, has good welding workability, and has a strength that matches the base material and has minimal deformation due to welding. It has become clear that it will be possible to use welding materials.

本発明は、以上の新な知見に基づくものであって、その
要旨とするところは、ステンレス鋼或はニッケル基合金
クラッド鋼の溶接において、最初にクラッド側をその合
材用溶接材料で溶接し、次にその合材溶接金属の上に、
Cr20〜30%、M。
The present invention is based on the above-mentioned new knowledge, and its gist is that in welding stainless steel or nickel-based alloy clad steel, the cladding side is first welded with the welding material for the composite material. , then on top of that composite weld metal,
Cr20-30%, M.

2〜4.5%、Ni4〜13%、 G 0.06%以下
、 N 0.20%以下で且つ(Ni+30C+20N
)/ (Cr+Mo)が0.20〜0゜70の範囲にあ
り、残部Fe及び不可避的な不純物からなる溶接材料で
1層以上溶接して中間層を形成し、しかる後その中間層
の上に母材用溶接材料で母材側を最終まで溶接すること
を特徴とするクラッド鋼の溶接方法にある。
2 to 4.5%, Ni 4 to 13%, G 0.06% or less, N 0.20% or less, and (Ni+30C+20N
)/(Cr+Mo) is in the range of 0.20 to 0°70, the balance is Fe and unavoidable impurities, weld one or more layers to form an intermediate layer, and then weld on the intermediate layer. A welding method for clad steel is characterized in that the base metal side is welded to the final stage using a welding material for the base metal.

なおここでいう合材とするステンレス鋼とは、日本工業
規格JIS G 4305等に規定されているオーステ
ナイト系、オーステナイト・フェライト系、フェライト
系、マルテンサイト系、析出硬化系ステンレス鋼等を指
す。
Note that the stainless steel used as the composite material herein refers to austenitic, austenite-ferritic, ferritic, martensitic, precipitation hardening stainless steel, etc. specified in Japanese Industrial Standards JIS G 4305 and the like.

又合材とするニッケル基合金とは、ASME(A+me
rican 5ociety of Mechanic
al Engineers)等で規格化されているいわ
ゆるインコネル系やハステロイ系のニッケルを主成分と
する合金を指す。
The nickel-based alloy used as the composite material is ASME (A+me
rican 5ociety of Mechanic
It refers to the so-called Inconel-based and Hastelloy-based alloys, which are standardized by Al Engineers, etc., and whose main component is nickel.

合金用溶接材料とは、合材がステンレス鋼の場合そのス
テンレス鋼同志の溶接に通常用いられるJIS Z 3
221.3321. AWS(American We
lding 5ociaty)A5.4. A5.9等
で規格化されている溶接材料を指し、合材がニッケル基
合金の場合そのニッケル基合金同志の溶接に通常用いら
れるJIS Z 3224゜AWS A5.11. A
5.14等で規格化されている溶接材料を指す。
Welding materials for alloys are JIS Z 3, which is usually used for welding stainless steel together when the composite material is stainless steel.
221.3321. AWS (American We)
lding 5ociety) A5.4. Refers to welding materials standardized by A5.9 etc., and when the composite material is a nickel-based alloy, JIS Z 3224° AWS A5.11. A
Refers to welding materials standardized by 5.14 etc.

母材用溶接材料とは、母材としての軟鋼或は低合金鋼同
志の溶接に通常用いられるJIS Z 3211゜32
12、3213.3214.3223.3241.33
11.3312.3313、3314.3315. A
VS A5.1. A5.5. A5.1?、 A5.
23゜A5.18. A5.28. A5.20. A
5.29等で規格化されている溶接材料を指す。
Welding materials for base metals are JIS Z 3211゜32 commonly used for welding mild steel or low alloy steel as base metals.
12, 3213.3214.3223.3241.33
11.3312.3313, 3314.3315. A
VS A5.1. A5.5. A5.1? , A5.
23°A5.18. A5.28. A5.20. A
Refers to welding materials standardized by 5.29 etc.

ステンレスクラッド鋼或はニッケル基合金クラッド鋼と
は、上記ステンレス鋼或はニッケル基合金と軟鋼或は低
合金鋼との接合材を指す、さらにCr20〜30%、M
o 2〜4.5%、Ni4〜13%、C0,06%以下
、N 0.20%以下で且つ(Ni+30C+20N)
/(Cr十阿0)が0.20〜0.70の範囲にあり、
残部Fs及び不可避的な不純物からなる溶接材料とは、
ティグ、ミグ及び潜弧溶接の各溶接方法の場合ワイヤの
組成が上記の成分範囲にあることを意味し、被覆アーク
溶接棒の場合JIS Z 3221等で規定されている
溶着金属の組成が上記の成分範囲にあることを意味して
いる。
Stainless clad steel or nickel-based alloy clad steel refers to a joining material of the above-mentioned stainless steel or nickel-based alloy and mild steel or low alloy steel, and further contains 20 to 30% Cr, M
o 2 to 4.5%, Ni 4 to 13%, C 0.06% or less, N 0.20% or less, and (Ni + 30C + 20N)
/(Cr100) is in the range of 0.20 to 0.70,
A welding material consisting of the remainder Fs and unavoidable impurities is:
In the case of TIG, MIG, and submerged arc welding methods, this means that the wire composition is within the above range, and in the case of coated arc welding rods, the composition of the deposited metal specified by JIS Z 3221 etc. is within the above range. This means that the ingredients are within the range.

[作用] 先ずクラッド鋼としての合材の要求される諸特性を満足
するために、溶接施工順序として、第一にクラッド側を
その合材用溶接材料にて溶接する。
[Function] First, in order to satisfy various properties required of the composite material as clad steel, the cladding side is first welded using the welding material for the composite material as the welding procedure.

この場合、溶接金属の特性をより高品位に保つために母
材からの希釈は出来るだけ避けるよう開先形状、溶接条
件等を選定することが望ましい。
In this case, it is desirable to select the groove shape, welding conditions, etc. to avoid dilution from the base metal as much as possible in order to maintain the properties of the weld metal at a higher quality.

次にクラッド側溶接金属の上に中間層を形成する溶接材
料の組成について述べると、Cr20%未満では合材と
してのステンレス鋼或はニッケル基合金を溶融し且つ母
材を溶融することによる成分変動に対して中間層の高温
割れ抵抗性が不十分となるecrが30%を超えると、
次層の溶接による熱影響部が脆化し延性、靭性が劣化す
る、同時に次層のCr量が過剰となって次層の延性が劣
化する。従ってCrは20〜30%とする。
Next, regarding the composition of the welding material that forms the intermediate layer on the cladding side weld metal, if the Cr content is less than 20%, the composition will change due to melting the stainless steel or nickel-based alloy as a composite material and melting the base metal. When ecr exceeds 30%, the hot cracking resistance of the intermediate layer becomes insufficient.
The heat affected zone due to welding of the next layer becomes brittle and its ductility and toughness deteriorate, and at the same time, the amount of Cr in the next layer becomes excessive and the ductility of the next layer deteriorates. Therefore, Cr should be 20 to 30%.

Mo2%未満では次層の耐高温割れ性が不十分となる。If Mo is less than 2%, the hot cracking resistance of the next layer will be insufficient.

4.5%を超えると中間層が脆化する。従ってMoは2
〜4.5%とする。
If it exceeds 4.5%, the intermediate layer becomes brittle. Therefore, Mo is 2
~4.5%.

Ni4%未満では次層の溶接による熱影響部が脆化し延
性、靭性が劣化する。同時に次層が脆く延性の低い組織
となる。13%を超えると合材としてのステンレス鋼或
はニッケル合金を溶融し且つ母材を溶融することによる
成分変動に対して中間層の高温割れ抵抗性が不十分とな
る。従ってNiは4〜13%とする。
If Ni is less than 4%, the heat affected zone due to welding of the next layer will become brittle and the ductility and toughness will deteriorate. At the same time, the next layer becomes brittle and has low ductility. If it exceeds 13%, the intermediate layer will have insufficient high-temperature cracking resistance against compositional fluctuations caused by melting the stainless steel or nickel alloy as a composite material and melting the base material. Therefore, Ni should be 4 to 13%.

Cが0.06%を超えると次層の溶接による熱影響部が
脆化し延性、靭性が劣化する。同時に次層の延性が劣化
するので0.06%以下に制限する。
If C exceeds 0.06%, the heat affected zone due to welding of the next layer becomes brittle, resulting in deterioration of ductility and toughness. At the same time, the ductility of the next layer deteriorates, so it is limited to 0.06% or less.

Nが0.2%を超えると次層でブローホール等の溶接欠
陥が発生し溶接作業性も劣化するので0.2%以下とす
る。
If N exceeds 0.2%, welding defects such as blowholes will occur in the next layer and welding workability will deteriorate, so it should be kept at 0.2% or less.

次に(Ni+30G+20N)/(Cr+Mo)の値が
0.20未満では中間層そのものが脆く延性の低い組織
となり同時に次層も脆く延性の低い組織となる。
Next, if the value of (Ni+30G+20N)/(Cr+Mo) is less than 0.20, the intermediate layer itself will have a brittle structure with low ductility, and at the same time, the next layer will also have a brittle structure with low ductility.

0.70を超えると中間層及び次層の高温割れ感受性が
非常に大きくなる。従って0.20〜0.70の範囲と
する。
When it exceeds 0.70, the susceptibility to hot cracking of the intermediate layer and the next layer becomes very large. Therefore, it is set in the range of 0.20 to 0.70.

更に次層として母材側溶接材料にて溶接を行ってその溶
接金属の健全性を確保するためには、中間層の層数は1
層で有効であり、2層以上でも効果は変らない。
Furthermore, in order to perform welding using the welding material on the base metal side as the next layer and ensure the soundness of the weld metal, the number of intermediate layers must be 1.
It is effective with multiple layers, and the effect remains the same even with two or more layers.

又中間層以降の溶接には安価で高能率の溶接を可能とす
るため且つ母材と同等以上の特性を維持するためには母
材の鋼種に応じた適正な溶接材料を用いる。中間層直上
の母材用溶接材料による溶接において、溶接金属に割れ
が発生しないようにするため、又その他延性、靭性、強
度等の特性を確保するためには、母材用溶接材料による
中間層直上の溶接金属の中間層からの希釈率が30%以
下となるよう電流、速度等の溶接条件を管理することが
望ましい、なおここでいう中間層からの希釈率とは、母
材用溶接材料による中間層直上の溶接金属の面積と溶融
した中間層溶接金属の面積の比の百分率を指し、次式で
表す。
In addition, for welding the intermediate layer and subsequent layers, appropriate welding materials are used depending on the steel type of the base metal in order to enable inexpensive and highly efficient welding and to maintain properties equal to or better than those of the base metal. In welding using the welding material for the base metal directly above the intermediate layer, in order to prevent cracks from occurring in the weld metal and to ensure other characteristics such as ductility, toughness, and strength, the intermediate layer made of the welding material for the base metal is required. It is desirable to control welding conditions such as current and speed so that the dilution rate from the intermediate layer of the weld metal directly above is 30% or less. Note that the dilution rate from the intermediate layer here refers to the welding material for the base metal. It refers to the percentage of the ratio of the area of the weld metal directly above the intermediate layer to the area of the molten intermediate layer weld metal, and is expressed by the following formula.

D=B/AX 100 但し、D:希釈率(%) A:母材用溶接材料による中間層直上の溶接金属の面積
(am″) B:中間層溶接金属の面積(■2) 以上のように本発明は、第一にクラッド側を溶接し、次
に特定の成分範囲の溶接材料により中間層を形成し、し
かる後に母材用溶接材料で母材側の最後まで溶接すると
いう溶接方法を採用することによって、ステンレス鋼或
はニッケル基合金クラッド鋼同志の接合において、健全
な溶接部を経済的且つ高能率に得ることが出来る。
D=B/AX 100 However, D: Dilution rate (%) A: Area of the weld metal directly above the intermediate layer due to the base metal welding material (am″) B: Area of the intermediate layer weld metal (■2) As above The present invention provides a welding method in which the cladding side is first welded, then an intermediate layer is formed using a welding material having a specific composition range, and then the base metal welding material is welded to the end of the base metal side. By employing this method, a sound weld can be obtained economically and with high efficiency when joining stainless steel or nickel-based alloy clad steel.

以下に実施例により本発明の効果を具体的に説明する。The effects of the present invention will be specifically explained below using Examples.

[実施例] 第1表に供試したクラッド鋼を示す、これらクラッド鋼
はいずれも、合材の厚さ3■、母材の厚さ22mmでク
ラッド鋼としては25mmである。
[Example] Table 1 shows the clad steels tested. In all of these clad steels, the thickness of the composite material is 3 mm, the thickness of the base material is 22 mm, and the clad steel is 25 mm.

第2表に供試した中間層形成用溶接材料を示す。Table 2 shows the welding materials used for forming the intermediate layer.

これらの内記号fの溶接材料はNiが4%未満で且つ(
Ni+30C+20N) / (Cr+No)の値が0
.20未満で本発明外のものである。、又記号gの溶接
材料は(Ni+30C+20N) / (Cr◆Mo)
の値が0.70を超え本発明外のものである。さらに記
号りの溶接材料はMOが2%未満で本発明外のものであ
る。
These welding materials with internal symbol f contain less than 4% Ni and (
Ni+30C+20N) / (Cr+No) value is 0
.. If it is less than 20, it is outside the scope of the present invention. , and the welding material with symbol g is (Ni+30C+20N) / (Cr◆Mo)
The value exceeds 0.70 and is outside the scope of the present invention. Furthermore, the welding materials marked with symbols have an MO content of less than 2% and are outside the scope of the present invention.

第3表にこれらクラッド鋼と中間層形成材料との組合せ
によるクラッド鋼同志の継手溶接試験結果を示す。
Table 3 shows the results of joint welding tests between clad steels and the combinations of these clad steels and intermediate layer forming materials.

開先形状は第1図(イ)に示すごとくv型で、第一に第
1図(ロ)及び第3表に示すごとく合材1に適合する溶
接材料を用いて合材1側をティグ又は被環アークによっ
て裏波溶接を行い、合材溶接金属3を得た。ティグによ
る裏波溶接の場合、ワイヤ径2.4eu*、溶接電流1
20A、溶接電圧12■、溶接速度8cm/+min 
、 A rシールドガス流量20 Q /winの手動
溶接を行った。又被覆アークによる裏波溶接の場合、棒
径4.Omm、溶接電流120A、溶接電圧24V、溶
接速度8cm/winの手動溶接を行った。
The groove shape is v-shaped as shown in Figure 1 (a), and first, weld the composite material 1 side using a welding material compatible with composite material 1 as shown in Figure 1 (b) and Table 3. Alternatively, Uranami welding was performed using a circular arc to obtain composite weld metal 3. For Uranami welding with TIG, wire diameter 2.4eu*, welding current 1
20A, welding voltage 12■, welding speed 8cm/+min
, Manual welding was performed at a shielding gas flow rate of 20 Q/win. In addition, in the case of Uranami welding using a covered arc, the rod diameter is 4. Manual welding was performed at a welding current of 120 A, a welding voltage of 24 V, and a welding speed of 8 cm/win.

第二に第3図(ハ)に示すごとく合材溶接金属3の上に
第3表に示す要領で0〜2層の中間層溶接金属4を形成
した。被覆アーク溶接の場合、棒径4.0■、溶接電流
140A、溶接電圧24v、溶接速度15am/win
の手動溶接を行った。ミグ溶接の場合、ワイヤ径1 、
2mm 、溶接電流220A、溶接電圧22V、溶接速
度20cm/win、 Arシールドガス流量20 g
 /@inの半自動溶接を行った。ティグ溶接の場合、
ワイヤ径2.4+am、溶接電流160A、溶接電圧1
2V 、溶接速度13cm/+min、 Arシールド
ガス流量20 Q /winの半自動溶接を行った。フ
ラックス入りワイヤによるC01溶接の場合、ワイヤ径
1.2mm、溶接電流220A、溶接電圧20v、溶接
速度20cm/win、 C0.シールドガス流量20
Q7重inの半自動溶接を行った。
Second, as shown in FIG. 3(c), zero to two layers of intermediate layer weld metal 4 were formed on composite weld metal 3 in the manner shown in Table 3. In the case of covered arc welding, the rod diameter is 4.0 mm, welding current 140 A, welding voltage 24 V, and welding speed 15 am/win.
Manual welding was performed. For MIG welding, wire diameter 1,
2mm, welding current 220A, welding voltage 22V, welding speed 20cm/win, Ar shielding gas flow rate 20g
/@in semi-automatic welding was performed. For TIG welding,
Wire diameter 2.4+am, welding current 160A, welding voltage 1
Semi-automatic welding was performed at a voltage of 2V, a welding speed of 13 cm/+min, and an Ar shielding gas flow rate of 20 Q/win. In the case of C01 welding with flux-cored wire, the wire diameter is 1.2 mm, the welding current is 220 A, the welding voltage is 20 V, the welding speed is 20 cm/win, and C0. Shield gas flow rate 20
Semi-automatic welding of Q7 heavy-in was performed.

第三に第1図(ニ)に示すごとく中間層溶接金属4の上
に第3表に示すとおり母材に適合する母材用溶接材料に
て溶接金属5を積層して最終まで溶接を行った。被覆ア
ーク溶接の場合、棒径5.Omm、溶接電流190〜2
40A 、溶接電圧24〜28v、溶接速度14〜25
cm/winの手動溶接を行った。ミグ溶接の場合、ワ
イヤ径1.2+m謙、溶接電流220〜290A、溶接
電圧18〜22V、溶接速度20〜30cm/win、
 Ar+ 10%CO2シールドガス流量20 Q /
minの半自動溶接を行った。フラックス入りワイヤに
よるCO□溶接の場合、ワイヤ径1 、2mm、溶接電
流200〜280A、溶接電圧18〜22■、溶接速度
20〜30cm/win、 Go、シールドガス流量2
0 n /winの半自動溶接を行った。
Thirdly, as shown in Figure 1 (d), weld metal 5 is laminated on intermediate layer weld metal 4 using a base metal welding material that is compatible with the base metal as shown in Table 3, and welded to the final stage. Ta. In the case of covered arc welding, the rod diameter is 5. Omm, welding current 190~2
40A, welding voltage 24~28v, welding speed 14~25
Manual welding was performed at cm/win. For MIG welding, wire diameter is 1.2+m, welding current is 220-290A, welding voltage is 18-22V, welding speed is 20-30cm/win,
Ar+ 10% CO2 shielding gas flow rate 20 Q/
Semi-automatic welding of min. For CO□ welding with flux-cored wire, wire diameter is 1 mm, 2 mm, welding current is 200 to 280 A, welding voltage is 18 to 22 mm, welding speed is 20 to 30 cm/win, Go, and shielding gas flow rate is 2.
Semi-automatic welding of 0 n/win was performed.

中間層の健全性を評価するため一層目溶接金属のカラー
チエツク検査を行い割れの有無を調べた又中間層の直上
層の健全性を評価するためカラーチエツク検査を行い割
れの有無を調べた。さらに全溶接終了後クラッド鋼継手
溶接部全体の健全性を評価するため、JIS Z 31
22に基づいた側曲げ試験及びJIS Z 3121に
基づいた継手引張試験を行った。
In order to evaluate the soundness of the intermediate layer, a color check test was performed on the first layer weld metal to check for cracks, and to evaluate the soundness of the layer immediately above the middle layer, a color check test was performed to check for cracks. Furthermore, in order to evaluate the soundness of the entire clad steel joint weld after completion of all welding, JIS Z 31
A side bending test based on JIS Z 3121 and a joint tensile test based on JIS Z 3121 were conducted.

これらクラッド鋼継手溶接試験の結果1本発明の溶接方
法試験No、1.2.4.5.6.8.9.10.12
゜+3.15.16.17.19.20.21.23及
び24は、中間層及び中間層の直上層に割れは認められ
ず、又側曲げ試験においては無欠陥であり十分な延性を
示し、さらに継手引張試験においてはクラッド鋼原質部
で破断しており母材以上の強度を有することが明らかで
ある。
Results of these clad steel joint welding tests 1 Welding method test No. of the present invention, 1.2.4.5.6.8.9.10.12
+3.15.16.17.19.20.21.23 and 24 had no cracks in the intermediate layer or the layer directly above the intermediate layer, and showed sufficient ductility with no defects in the side bending test. Furthermore, in the joint tensile test, the clad steel was fractured in the original part, and it is clear that it has a strength greater than that of the base metal.

これに対し、試験N003は母材側の溶接を高合金タイ
プのオーステナイト系ステンレス鋼溶接材料AWS 1
11309を用いて行ったため、溶接による変形が大き
く又溶接性が劣るため側曲げ試験で溶接欠陥が発生した
On the other hand, in test N003, welding on the base metal side was performed using high-alloy type austenitic stainless steel welding material AWS 1.
11309, the deformation caused by welding was large and the weldability was poor, resulting in welding defects in the side bending test.

1拭験No、7は、中間層の溶接を(Ni+30C+2
0N) /(Cr+Mo)の値が0.70を超える中間
層形成用溶接材料を用いて行ったため中間層及び中間層
の直上層に1ヤjれが発生し1つ側曲げ試験においても
割れが発生した。さらに継手引張試験においては溶接金
属破断となり強度にも問題が有った。
1 wiping test No. 7 is welding of the intermediate layer (Ni+30C+2
Since the welding material for forming the intermediate layer was used with a value of 0N)/(Cr+Mo) exceeding 0.70, a 1-year tear occurred in the intermediate layer and the layer directly above the intermediate layer, and cracks were also observed in the bending test on one side. Occurred. Furthermore, in the joint tensile test, the weld metal broke and there was also a problem with the strength.

試験No、11は中間層の溶接をNiが4%未満で且つ
(Ni+30C+20N) / (Cr+Mo)の値が
0.20未満の中間層形成用溶接材料を用いて行ったた
め中間層及び中間層の直上層に割れが発生し且つ側曲げ
試験においても割れが発生した。さらに継手引張試験に
おいては溶接金属破断となり強度にも問題が有った。
In test No. 11, the intermediate layer was welded using an intermediate layer forming welding material containing less than 4% Ni and the value of (Ni + 30C + 20N) / (Cr + Mo) less than 0.20, so the intermediate layer and the intermediate layer were directly welded. Cracks occurred in the upper layer and also in the side bending test. Furthermore, in the joint tensile test, the weld metal broke and there was also a problem with the strength.

試験No、14は母材側の溶接をNi−Cr−Fe系合
金の溶接材料is ENiCrFe−3を用いて行った
ため、溶接による変形が大きく又溶接性が劣るため側曲
げ試験で溶接欠陥が発生した。さらに継手引張試験にお
いては溶接金属破断となり強度にも問題が有った。
In test No. 14, welding on the base metal side was performed using the Ni-Cr-Fe alloy welding material is ENiCrFe-3, so the deformation caused by welding was large and the weldability was poor, resulting in welding defects in the side bending test. did. Furthermore, in the joint tensile test, the weld metal broke and there was also a problem with the strength.

試験No、18は、中間層を形成せずに直接クラッド側
溶接金属の上に母材用溶接材料で溶接したため、クラッ
ド側溶接金属の直上の層に割れが発生し且つ側曲げ試験
においても割れが発生した。さらに継手引張試験におい
ては溶接金属破断、となり強度にも問題が有った。
In test No. 18, the base metal welding material was welded directly onto the cladding side weld metal without forming an intermediate layer, so cracks occurred in the layer directly above the cladding side weld metal, and cracks were also observed in the side bending test. There has occurred. Furthermore, in the joint tensile test, the weld metal broke, and there were also problems with the strength.

試験No、22は中間層の溶接をMoが2%未満の中間
層形成用溶接材料を用いて行ったために中間層及び中間
層の直上層に割れが発生し且つ側曲げ試験においても割
れが発生した。さらに継手引張試験においては溶接金属
破断となり強度にも問題が有った。
In test No. 22, because the intermediate layer was welded using an intermediate layer forming welding material containing less than 2% Mo, cracks occurred in the intermediate layer and the layer directly above the intermediate layer, and cracks also occurred in the side bending test. did. Furthermore, in the joint tensile test, the weld metal broke and there was also a problem with the strength.

試験No、25は中間層の溶接を(Ni+30C+20
N)/ (Cr+Mo)の値が0.70を超える中間層
形成用溶接材料を用いて行ったため中間層の直上層に割
れが発生し且つ側曲げ試験においても割れが発生した。
Test No. 25 welded the intermediate layer (Ni+30C+20
Since a welding material for forming an intermediate layer having a value of N)/(Cr+Mo) exceeding 0.70 was used, cracks occurred in the layer immediately above the intermediate layer, and cracks also occurred in the side bending test.

さらに継手引張試験においては溶接金属破断となり強度
にも問題が有った。
Furthermore, in the joint tensile test, the weld metal broke and there was also a problem with the strength.

[発明の効果] 以上のように本発明は1、ステンレス鋼或はニッケル基
合金クラッド鋼の溶接において、最初にクラッド側をそ
の材質同志の溶接に通常用いられる溶接材料で溶接し、
次にその合材溶接金属の上に特定成分範囲の溶接材料に
て中間層を形成し、しかる後に母材側を母材用溶接材料
で最終まで溶接するという方法によって、変形が少なく
母材と同等以上の特性を有する極めて健全な溶接部を経
済的且つ高能率に得ることを可能にしたものであって、
広範囲のステンレスクラッド鋼或はニッケル基合金クラ
ッド鋼を真に経済性のある鋼材たらしぬるものである。
[Effects of the Invention] As described above, the present invention provides 1. In welding stainless steel or nickel-based alloy clad steel, first welding the clad side with a welding material normally used for welding the materials together;
Next, an intermediate layer is formed using a welding material with a specific composition range on top of the composite weld metal, and then the base metal side is welded to the final stage with a welding material for the base metal, so that the deformation is minimal and the welding material is welded to the base metal. It makes it possible to economically and efficiently obtain extremely sound welds with the same or better properties,
This makes a wide range of stainless clad steels or nickel-based alloy clad steels truly economical steels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)(ロ)(ハ)(ニ)は本発明溶接方法の説
    ′明図、第2図(イ)(ロ)(ハ)は従来の母
材側からの溶接方法の説明図、第3図(イ)(ロ)(ハ
)は従来の合材側からの溶接方法の説明図である。 1:合材、2:母材、3:合材溶接金属、4:中間層、
5:母材側溶接金属。 特許出願人  新日本製鐵株式会社
Figures 1 (a), (b), (c), and (d) are illustrations of the welding method of the present invention, and Figures 2 (a), (b), and (c) are illustrations of the conventional welding method from the base metal side. Figures 3(a), 3(b), and 3(c) are explanatory diagrams of the conventional welding method from the composite material side. 1: Composite material, 2: Base material, 3: Composite weld metal, 4: Intermediate layer,
5: Base metal side weld metal. Patent applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 軟鋼或は低合金鋼を母材とし、ステンレス鋼或はニッケ
ル基合金を合材とするクラッド鋼の溶接において、最初
にクラッド側を合材用溶接材料で溶接し、次にその合材
溶接金属の上に、重量%にてCr20〜30%、Mo2
〜4.5%、Ni4〜13%、C0.06%以下、N0
.20%以下で且つ(Ni+30C+20N)/(Cr
+Mo)が0.20〜0.70の範囲にあり、残部Fe
及び不可避的な不純物からなる溶接材料で1層以上溶接
して中間層を形成し、しかる後母材側をその母材用溶接
材料で溶接することを特徴とするクラッド鋼の溶接方法
When welding clad steel with mild steel or low alloy steel as the base material and stainless steel or nickel-based alloy as the composite material, the cladding side is first welded with a welding material for the composite material, and then the composite weld metal is welded. On top of that, Cr20-30% in weight%, Mo2
~4.5%, Ni4~13%, C0.06% or less, N0
.. 20% or less and (Ni+30C+20N)/(Cr
+Mo) is in the range of 0.20 to 0.70, and the balance is Fe
A method for welding clad steel, characterized by forming an intermediate layer by welding one or more layers with a welding material containing unavoidable impurities, and then welding the base metal side with the welding material for the base metal.
JP6340288A 1988-03-18 1988-03-18 Welding method for clad steel Pending JPH01237079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340288A JPH01237079A (en) 1988-03-18 1988-03-18 Welding method for clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340288A JPH01237079A (en) 1988-03-18 1988-03-18 Welding method for clad steel

Publications (1)

Publication Number Publication Date
JPH01237079A true JPH01237079A (en) 1989-09-21

Family

ID=13228277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340288A Pending JPH01237079A (en) 1988-03-18 1988-03-18 Welding method for clad steel

Country Status (1)

Country Link
JP (1) JPH01237079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500886A (en) * 2011-11-11 2012-06-20 南京德邦金属装备工程有限公司 High-strength nickel-iron-chromium alloy and chromium-nickel stainless steel plate welding method and application to preparation of polysilicon cold hydrogenation reactors
CN110064816A (en) * 2018-01-24 2019-07-30 日铁住金溶接工业株式会社 Groove welding method and groove welder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500886A (en) * 2011-11-11 2012-06-20 南京德邦金属装备工程有限公司 High-strength nickel-iron-chromium alloy and chromium-nickel stainless steel plate welding method and application to preparation of polysilicon cold hydrogenation reactors
CN110064816A (en) * 2018-01-24 2019-07-30 日铁住金溶接工业株式会社 Groove welding method and groove welder

Similar Documents

Publication Publication Date Title
US6042782A (en) Welding material for stainless steels
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP2019025524A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP6418365B1 (en) Ni-base alloy wire for submerged arc welding, and method for manufacturing welded joint
JP6953931B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP6953930B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP4745900B2 (en) High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding
JP2023504438A (en) Ni-based alloy flux-cored wire
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP6829111B2 (en) Filling material for TIG welding
Maruyama Arc welding technology for dissimilar joints
JP5187833B2 (en) Welding method for zinc-based alloy plated steel
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel
JPH01237079A (en) Welding method for clad steel
JPS5937157B2 (en) Single-sided welding method for stainless steel fittings
JPH0299280A (en) Method for welding clad steel
JPH02200394A (en) Welding method for stainless steel or nickel-based alloy and carbon steel
JP4452205B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JPH01210171A (en) Method for welding stainless steel or nickel alloy and carbon steel
JPH11104885A (en) Fe-ni low thermal expansion coefficient alloy made welding structure and welding material
JP2004148347A (en) Welding material for welding austenitic stainless steel and welding method using the welding material
Zhang et al. All-positional flux cored wire with lower trace element contents and improved ambient temperature toughness for welding P91 steels
JPS63212090A (en) Welding method for high-alloy austenitic steel