JP2004148347A - Welding material for welding austenitic stainless steel and welding method using the welding material - Google Patents

Welding material for welding austenitic stainless steel and welding method using the welding material Download PDF

Info

Publication number
JP2004148347A
JP2004148347A JP2002315479A JP2002315479A JP2004148347A JP 2004148347 A JP2004148347 A JP 2004148347A JP 2002315479 A JP2002315479 A JP 2002315479A JP 2002315479 A JP2002315479 A JP 2002315479A JP 2004148347 A JP2004148347 A JP 2004148347A
Authority
JP
Japan
Prior art keywords
welding
corrosion resistance
less
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002315479A
Other languages
Japanese (ja)
Other versions
JP4242133B2 (en
Inventor
Jun Watanabe
純 渡辺
Kon O
昆 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2002315479A priority Critical patent/JP4242133B2/en
Publication of JP2004148347A publication Critical patent/JP2004148347A/en
Application granted granted Critical
Publication of JP4242133B2 publication Critical patent/JP4242133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding material and welding method excellent in soundness of a welded portion and structural stability since the corrosion resistance of the welded portion is the same as or better than a base metal of a high corrosion resistant austenitic stainless steel representing SUS836L and the welding material is inexpensive compared with traditional Ni-based alloy welding materials. <P>SOLUTION: The welding material for welding the austenitic stainless steel contains, by weight, 0.05% or less C, 0.05-1.0% Si, 0.05-0.8% Mn, 0.04% or less P, 0.003% or less S, 30.0-45.0% Ni, 20.0-28.0% Cr, 5.5-10.5% Mo, 0.18-0.30% N, 0.1% or less Al and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海洋構造物や化学プラント等の塩素イオンが多く存在する環境下で使用されるオーステナイト系ステンレス鋼を溶接するための溶接材料とその溶接方法に係り、特に、耐食性に優れるとともに非常に安価であり、かつ溶接部健全性および組織安定性に優れた溶接材料の開発技術に関するものである。
【0002】
【従来の技術】
ステンレス鋼は、その優れた耐食性と加工性とから様々な分野で利用されており、その使用範囲は台所用品等の一般耐久消費材から化学プラント等の工業材料に至るまで広範囲に及んでいる。これに伴い、使用環境の多様化やコスト低減といった市場の需要が増大し、これに応えるべく鋼種の多様化や用途拡大が進んでいる。特に、工業製品においては、塩化物を高濃度に含む環境下での使用が多く、SUS304やSUS316等の汎用ステンレス鋼では腐食が発生するため、より優れた耐食性を有する材料が指向される。具体的には、CrやMoの含有量を増加させ、またはNを添加することにより、耐食性を向上させた各種ステンレス鋼が開発、適用されている。中でも、SUS836LやASTM−A240−UNS31254に代表される高耐食性オーステナイト系ステンレス鋼は、各種化学プラントや海洋構造物等の耐海水用途として、その適用が増加している。
【0003】
これらの材料を構造物または配管として使用する場合には、その多くは溶接によって施工される。かかる溶接方法としては、TIG溶接、プラズマ溶接および被覆アーク溶接等のアーク溶接法が多く用いられている。これらの溶接方法を実施する際には、溶接部の耐食性を確保するために、溶接材料に高耐食性のNi基合金を使用するのが一般的である。具体的には、JISZ3344に規定されているYNiCrMo−3やYNiCrMo−4等の溶接材料が用いられている。しかしながら、いずれの溶接材料もNi基合金であるために非常に高価であること、また湯流れが悪く作業性に劣る等の問題があった。かかる溶接材料のコスト削減や作業性の改善は、近年における構造物の大型化、適用領域の拡大に伴い、ますます重要な問題となっている。
【0004】
上記したNi基合金としては、Niを重量%で15〜19%含有させて耐隙間耐食性を向上させたワイヤが提案されている(例えば、特許文献1参照。)。また、Niを55〜75%含有させて溶接金属の耐食性、機械特性および溶接作業性を向上させた被覆アーク溶接棒も提案されている(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開2000−288780号公報(第2頁)
【特許文献2】
特開平8−252692号公報(第2〜6頁)
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載されたワイヤは、Ni量が15〜19重量%と低いためにσ相などの金属間化合物が析出することから、優れた組織安定性を実現することができない。また特許文献2に記載された被覆アーク溶接棒は、Ni量が55〜75%と高いために、コストが割高となる。また、これらのNi基合金はいずれもフラックス入りの溶接材料であるため、食品プラント等の溶接部健全性が求められる構造物に使用することは望ましくない。そこで、今日においては、溶接部の耐食性がSUS836Lに代表される高耐食性を有するオーステナイト系ステンレス鋼の母材と同等以上であることを前提とし、安価であって、かつ溶接部健全性および組織安定性に優れた溶接材料およびその溶接方法の技術開発が要請されていた。
【0007】
本発明は、このような要請に鑑みてなされたものであり、溶接部の耐食性がSUS836Lを代表とする高耐食性オーステナイト系ステンレス鋼の母材と同等以上であり、上記した特許文献1,2に記載したNi基合金溶接材料に比べて安価であり、かつ溶接部健全性および組織安定性に優れた溶接材料およびその溶接方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、耐食性に優れ、安価であり、かつ溶接部健全性および組織安定性に優れる高耐食性オーステナイト系ステンレス鋼を溶接するための溶接材料を開発すべく、鋭意研究を重ねた結果、以下の知見を得た。すなわち、溶接金属に関し、優れた耐食性を実現するためには、Cr,Mo,Nの含有量を一定量以上とすることが必要であるが、優れた組織安定性を実現すべく溶接中への金属間化合物の析出を抑制するためには一定量以下とすることが肝要である。さらに、Ni,Si,Mn,Cの含有量を適正化することにより、上記Ni基合金溶接材料に比べて非常に安価であり、かつ溶接部健全性および組織安定性に優れた溶接材料を得ることができる。
【0009】
本発明のオーステナイト系ステンレス鋼を溶接するための溶接材料は、以上の知見に基づいてなされたものであり、重量%で、C:0.05%以下、Si:0.05〜1.0%、Mn:0.05〜0.8%、P:0.04%以下、S:0.003%以下、Ni:30.0〜45.0%、Cr:20.0〜28.0%、Mo:5.5〜10.5%、N:0.18〜0.30%、Al:0.1%以下であり、残部がFeおよび不可避的不純物からなることを特徴とするものである。
【0010】
本発明のオーステナイト系ステンレス鋼を溶接するための溶接材料は、Cr,Mo,Nの含有量の適正化により、SUS836Lを代表とする高耐食性オーステナイト系ステンレス鋼の母材と同等以上の溶接部の耐食性と組織安定性とを実現することができる。また、Ni,Si,Mn,Cの含有量の適正化により、上記Ni基合金溶接材料に比べて非常に安価であり、かつ溶接部健全性および組織安定性に優れた溶接材料を得ることができる。
【0011】
このようなオーステナイト系ステンレス鋼を溶接するための溶接材料においては、重量%で、前記残部成分の一部にかわり、Nb:0.50%以下、Cu:0.01〜1.5%、B:0.0001〜0.0050%のうち、いずれか1種以上をさらに含有することが望ましい。かかる場合には、Nbによるクリープ強度の改善と、Cuによる耐食性の向上と、Bによる熱間加工性の向上とを別途実現することができる。
【0012】
また、本発明の溶接方法は、上述した本発明に係る溶接材料を使用して好適に溶接を実施する方法であって、希釈率Dを以下の式で定義した場合に、希釈率Dが20〜70%となるように溶接することを特徴とするものである。
【0013】
【数2】
希釈率D(%)=((母材溶融部断面積) / (溶接金属断面積)) × 100
【0014】
ここで希釈率を定義する母材溶融部断面積と溶接金属断面積とについて述べる。図1(a)は、溶接前の母材1,2を示す側面図である。これに対し、図1(b)は、溶接後の母材1,2と溶接金属3との関係を示す図である。上記母材溶融部断面積とは、溶接後に断面のマクロ組織をエッチングにより現出し、観察されるビード断面形状と溶接前の開先形状(図1(a))との比較により算出される面積であり、図1(b)における「1a+2a」が該当する。また、溶接金属断面積とは、観察されるビード断面形状そのものであり、図1(b)における紙面内の点線で囲まれた部分3aをいう。ここで、希釈率は、図1(b)における(1a+2a)/3aとして算出される。
【0015】
本発明の溶接方法では、このような母材溶融部断面積および溶接金属断面積で定義される希釈率Dの適正化により、溶接部の耐食性を母材と同等以上に確保することができるとともに、優れた接合部強度を得て、好適な組織安定性を実現することができる。すなわち、希釈率を20%以上とすることで、母材溶融量が極小となることを防止して十分な接合部強度を得ることができる。一方、希釈率Dを70%以下とすることで、溶接材料の添加量に比べ母材溶融量が過多となることを防止して、当該溶接材料による優れた耐食性確保の効果を十分に得ることができる。
【0016】
以下に、溶接材料中の各含有元素の含有量の限定理由について述べる。なお、各元素の含有量はすべて重量%表示である。
C:0.05%以下
Cは溶接時に炭化物として析出すると粒界腐食や孔食の発生を招き、耐食性を劣化させる。したがって、Cの含有量はできるだけ少量とすることが好ましいことから、0.05%以下に限定した。
【0017】
Si:0.05〜1.0%
Siは溶製時に脱酸元素として添加され、溶融金属の湯流れを向上させる効果を有することから、Siの含有量の下限値は0.05%とした。しかしながら、多量に含有すると溶接熱サイクル中にσ相やχ相といった金属化合物の析出を促進し、溶接金属の耐食性および靭性を損なうため、含有量の上限値は1.0%とした。
【0018】
Mn:0.05〜0.8%
Mnは脱酸元素であると同時にオーステナイト相の安定度とNの溶解度とを高めるため、0.05%以上含有させる必要がある。一方、その含有量が0.8%を超えると金属間化合物の析出を助長するため、優れた耐食性および靭性の実現の観点から好ましくない。したがって、Mnの含有量は0.05〜0.8%に限定した。
【0019】
P:0.04%以下
Pは不純物として不可避的に混入される元素であり、溶接時の高温割れ防止や溶接金属の優れた耐食性確保の観点から、その含有量は少量とすることが好ましい。しかしながら、Pの含有量を極端に低減させることは製造コストの増加を招くため、許容できる範囲として、その含有量は0.04%以下に限定した。
【0020】
S:0.003%以下
Sも前記Pと同様に原料から不可避的に混入される不純物元素であり、その含有量が0.003%を超えると高温割れ感受性を著しく高める。したがって、Sの含有量はできるだけ少ない方が望ましいことから、0.003%以下に限定した。
【0021】
Ni:30.0〜45.0%
Niはオーステナイト安定化元素であると共に、溶接時におけるσ相やχ相などの金属間化合物の析出を抑制する上で有効な元素であるため、少なくとも30.0%含有させる必要がある。しかしながら、過剰なNiの添加は、溶接材料の価格上昇を招き、上記特許文献2に記載されたNi基溶接材料との価格差が少なくなる。一方、45.0%を超えて添加しても上記金属間化合物の析出抑制効果が頭打ちとなる。そこで、Niの含有量は30.0%〜45.0%に限定した。
【0022】
Cr:20.0〜28.0%
Crは溶接金属に耐食性を付与する主要元素であり、溶接部の耐食性を母材同等以上に確保するためには、20.0%以上の含有が必要である。一方、含有量が28.0%を超えると、溶接時にσ相などの金属間化合物の析出を促進させ、耐食性および靭性を著しく損なうため、含有量の上限値は28.0%とした。
【0023】
Mo:5.5〜10.5%
Moも上記Crと同様に、溶接金属に耐食性を付与する元素であり、塩化物環境下での耐孔食性、耐隙間腐食性を向上させるためには5.5%以上の含有量が必要である。しかしながら、その含有量が10.5%を超えると、溶接時にσ相などの金属間化合物の析出を促進させ、耐食性および靭性を著しく損なため、含有量の上限値は10.5%とした。
【0024】
N:0.18〜0.30%
Nはマトリックスに固溶した状態で、耐食性および強度を高めると共に、金属間化合物の析出を抑制するのに有効な元素である。それらの効果を十分得るためには、Nの含有量を0.18%以上とすることが必要である。一方、Nの過剰な含有は、溶接時にブローホールなどの溶接欠陥を生じ易くなり、溶接金属の溶接部健全性を損なうと共に、窒化物の析出により溶接金属の耐食性が劣化するので、含有量の上限値は0.30%とした。
【0025】
Al:0.1%以下
Alは脱酸元素として添加されるが、0.1%を超えて含有すると、金属間化合物および窒化物の析出を促進して耐食性を劣化させるので、含有量の上限値は0.1%とした。
【0026】
次に、本発明のオーステナイト系ステンレス鋼を溶接するための溶接材料において、必須元素ではないが、適宜含有させることにより、溶接材料のクリープ強度の改善、耐食性の向上、または熱間加工性の向上等が実現される各元素の含有量の限定理由を述べる。
Nb:0.50%以下
Nbは0.5%以下の添加により、溶接金属の強度の上昇およびクリープ強度の改善を図ることができる。一方、0.5%を越えて含有させると製造性の悪化を招くと共に、窒化物の析出を促進させ、靭性ならびに耐食性を劣化させるので、含有量の上限値は0.5%とするのが好ましい。
【0027】
Cu:0.01〜1.5%
Cuは、耐食性、特に硫酸などの酸に対する耐食性を向上させる元素であり、かかる効果は、Cuの含有量が0.01%以上の場合に得ることができる。一方、その含有量が1.5%を超えた場合には、溶接金属の靭性を低下させるので、含有させる場合でも当該含有量は1.5%以下とすることが好ましい。
【0028】
B:0.0001〜0.0050%
Bは熱間加工性の向上にきわめて有効な元素であり、0.0001%以上の含有によって製造時の歩留りの向上に寄与する。しかしながら、0.0050%を超えて含有させると、溶接時の高温割れ感受性を著しく高めるため、当該含有量の上限値は0.0050%とすることが好ましい。
【0029】
【実施例】
次に、本発明の実施例について詳細に説明する。母材として用いた高耐食性オーステナイト系ステンレス鋼の含有元素の成分組成を表1に示す。これは、JISG4305で規定するところのSUS836Lに相当する。この材料を板厚6mmとした後、開先角度60゜、ルートギャップ3〜4mm、ルートフェイス0.5mmのV開先を設け、TIG溶接により片面3パスの溶接を実施した。一方、溶接材料については、実験室的に溶製し、鍛造、熱間圧延、伸線工程(適宜焼鈍)を経て、表2に示す含有元素の成分組成を有するφ2.0mmのTIG溶接棒を作製した。なお、表1および表2に示したように、母材についてはすべて同じ材料を用意し、溶接材料については、各実施例および各比較例として示す異なる成分組成を有する15種類の材料を用意した。
【0030】
【表1】

Figure 2004148347
【0031】
【表2】
Figure 2004148347
【0032】
溶接条件は、初層を80A、2〜3パス目を140Aとし、溶接速度はいずれのパスにおいても70〜100mm/minとした。なお、シールドガスは100%Arを使用し、流量は12L/minとした。この際の希釈率Dは、いずれのパスにおいても、35〜50%であった。
【0033】
作製した溶接継手においては、耐食性、組織安定性、溶接部健全性および溶接棒の製造コストをそれぞれ調査した。また、溶接中の溶接作業性についても評価を加えた。これらの評価については、以下に示す方法によるものとした。
【0034】
・耐食性
本発明の主たる目的である優れた耐食性の実現について調査した。かかる耐食性については、JISG0577に準拠した孔食電位測定により評価した。試験溶液には、20重量%NaCl溶液 (Ar脱気) を使用し、溶液温度は70〜80℃とした。
【0035】
・組織安定性
組織安定性については、種々の機械的特性を調査することにより評価した。これは、上記した特許文献1に記載されたワイヤのように、組織安定の低いNi基合金については、金属間化合物が析出して、特に優れた延性等が実現されないからである。かかる溶接継手の機械的特性は、溶接継手の引張り試験、溶接金属のシャルピー衝撃試験および溶接継手の表・裏曲げ試験により評価した。溶接継手引張り試験は、JIS1号試験片を作製して引張り強度を測定した。溶接金属のシャルピー衝撃試験は、溶接方向垂直方向からサブサイズ(5×10×55mm)のVノッチシャルピー試験片を作製し、20℃における吸収エネルギーを測定した。また、曲げ試験は、余盛りを除去した後曲げ半径R=12mm (R=2t、tは板厚) にて曲げを付加し、その際の割れの有無を調査した。
【0036】
・溶接部健全性
溶接健全性については、溶接割れ感受性とブローホールの発生とについて評価した。溶接割れ感受性については、各パス溶接後カラーチェックにより割れの有無を確認して評価した。中でも、最も割れが発生しやすいとされる溶接終端部のクレータ割れの有無により、その感受性を評価した。また、ブローホールについては、溶接ビードの任意の断面を5箇所観察し、1箇所でもブローホールが認めらたものに対して、ブローホールの発生を「有」とした。
【0037】
・製造コスト
製造コストについては、YNiCrMo−3、通称インコネル625といわれるTIG用溶接棒を使用して実施した場合のコストとの相対的な比較により評価した。すなわち、溶接に関する製造コストがインコネル625TIG用溶接棒を使用した場合の2/3以下となる場合を「○」、2/3を超える場合を「×」とした。
【0038】
・溶接作業性
優れた溶接作業性の実現は、本発明の直接の目的ではないが、従来から操業上非常に重要な特性であることから、ここでは、副次的特性として調査した。かかる溶接作業性は、湯流れ、スラグの発生頻度から総合的に評価した。具体的な評価基準は、YNiCrMo−4、通称ハステロイ276といわれる溶接材料を使用して実施した場合の溶接作業性との相対的な比較により評価した。すなわち、ハステロイ276を使用した場合よりも優れていたるものを「〇」、同等もしくはそれ以下のものを「×」とした。以上に示した耐食性、組織安定性、溶接部健全性、製造コストおよび溶接作業性についての結果を表3に示す。
【0039】
【表3】
Figure 2004148347
【0040】
表3から明らかなように、実施例1〜7は、上記したすべての要求特性を同時に満足することが判明した。すなわち、各実施例は、いずれも母材と同等以上の耐食性を有するのみならず、組織安定性や溶接作業性にも優れており、かつ従来のNi基溶接材料よりも非常に安価に製造可能である。これに対し、比較例1は、Niの含有量が高すぎるため、製造コストが割高となり、かつ溶接作業性が若干劣る。比較例2および4は、それぞれ耐食性を確保するのに有効なCr、Nの含有量が少ないために、孔食が発生し、優れた耐食性が実現できない。また、比較例3は、Moの含有量が多すぎるために溶接中に金属間化合物が析出し、優れた靭性および耐食性を実現することができない。比較例5は、N含有量が多すぎるためにブローホールが発生しため、優れた溶接部健全性が実現されない。さらに、比較例6および7に関しては、それぞれNbおよびCuの含有量が多すぎるために靭性が低下し、比較例6は裏曲げについても割れが発生しており、組織安定性に劣る。比較例8は、Bの含有量が多すぎるために、凝固割れ感受性が増大し、これによりクレータ割れが観察されたことから、溶接部健全性に劣る。
【0041】
次に、表1に示す母材と表2に示す実施例1の溶接材料とを使用するとともに、上記した溶接方法を採用することを前提に、希釈率Dを18〜100%に変化させた場合の実施例8〜10および比較例9〜11に関する溶接を行った。これらの各実施例および比較例に関する溶接部の耐食性および継手強度の調査結果を表4に示す。なお、ここでの耐食性は、上記した手段、すなわちJISG0577に準拠した孔食電位測定により評価した。試験溶液には、20重量%NaCl溶液 (Ar脱気) を使用し、溶液温度は70〜80℃とした。また、継手強度についても上記した手段、すなわちJIS1号試験片を作製して引張り強度を測定することにより評価した。さらに、希釈率を変化させるにあたっては、開先角度を0〜70゜とし、ルートギャップを0〜4mmの範囲で変化させた。
【0042】
【表4】
Figure 2004148347
【0043】
表4から明らかなように、希釈率Dが本発明の範囲内にある実施例8〜10については、耐食性および継手引張り試験の双方について優れた特性が確認された。これに対し、希釈率Dが小さい比較例9は、母材と溶接材料との混合が十分に行われないために、融合不良等の溶接欠陥が発生し易く、十分な接合強度を得ることができない。また、希釈率Dが大きい比較例10,11は、本発明の溶接材料を使用する効果が少なくなり、耐食性が低下する。
【0044】
【発明の効果】
以上説明した通り、本発明のオーステナイト系ステンレス鋼を溶接するための溶接材料は、溶接部の耐食性がSUS836Lを代表とする高耐食性オーステナイト系ステンレス鋼の母材と同等以上であり、従来のNi基合金溶接材料に比べて安価であり、かつ溶接部健全性および組織安定性に優れた溶接材料である。したがって、本発明の溶接材料は、塩化物を高濃度に含む使用環境、例えば各種化学プラントや海洋構造物等へ適用することができる点で有望である。
【図面の簡単な説明】
【図1】(a)は、溶接前の両母材を示す側面図であり、(b)は、溶接後の両母材と溶接金属との関係を示す図である。
【符号の説明】
1,2…母材、1a,2a…母材溶融部断面積、3…溶接金属、3a…溶接金属断面積。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a welding material and a welding method for welding austenitic stainless steel used in an environment where a large amount of chloride ions are present, such as in marine structures and chemical plants, and in particular, it has excellent corrosion resistance and is extremely excellent. The present invention relates to a technology for developing a welding material that is inexpensive and has excellent weld integrity and structural stability.
[0002]
[Prior art]
Stainless steel is used in various fields because of its excellent corrosion resistance and workability, and its use range is wide ranging from general durable consumer materials such as kitchenware to industrial materials such as chemical plants. Along with this, market demand such as diversification of use environment and cost reduction has increased, and in order to respond to this, diversification of steel types and application expansion have been progressing. In particular, industrial products are often used in an environment containing a high concentration of chloride, and general-purpose stainless steel such as SUS304 or SUS316 corrodes. Therefore, a material having more excellent corrosion resistance is used. Specifically, various stainless steels having improved corrosion resistance by increasing the content of Cr or Mo or adding N have been developed and applied. Above all, high corrosion resistant austenitic stainless steels represented by SUS836L and ASTM-A240-UNS31254 are increasingly used for seawater applications in various chemical plants and marine structures.
[0003]
When these materials are used as structures or piping, many of them are applied by welding. As such welding methods, arc welding methods such as TIG welding, plasma welding, and covered arc welding are often used. When these welding methods are performed, it is common to use a highly corrosion-resistant Ni-based alloy as a welding material in order to secure the corrosion resistance of the welded portion. Specifically, a welding material such as YNiCrMo-3 or YNiCrMo-4 specified in JISZ3344 is used. However, all of the welding materials are very expensive because they are Ni-based alloys, and there are problems such as poor flow of molten metal and poor workability. Such cost reduction and improvement in workability of welding materials have become more and more important problems in recent years with the enlargement of structures and the expansion of application areas.
[0004]
As the above-mentioned Ni-based alloy, a wire containing 15 to 19% by weight of Ni to improve crevice corrosion resistance has been proposed (for example, see Patent Document 1). Further, a coated arc welding rod containing 55 to 75% of Ni to improve the corrosion resistance, mechanical properties and welding workability of a weld metal has been proposed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-2000-288780 (page 2)
[Patent Document 2]
JP-A-8-252892 (pages 2 to 6)
[0006]
[Problems to be solved by the invention]
However, in the wire described in Patent Document 1, since the amount of Ni is as low as 15 to 19% by weight, an intermetallic compound such as a σ phase is precipitated, so that excellent structure stability cannot be realized. Further, the coated arc welding rod described in Patent Document 2 has a high Ni content of 55 to 75%, so that the cost is relatively high. In addition, since all of these Ni-based alloys are flux-containing welding materials, it is not desirable to use them in a structure requiring a welded part such as a food plant. Therefore, today, it is assumed that the corrosion resistance of the welded portion is equal to or higher than that of a base material of austenitic stainless steel having high corrosion resistance typified by SUS836L. There has been a demand for technological development of welding materials having excellent weldability and welding methods.
[0007]
The present invention has been made in view of such a demand, and the corrosion resistance of a welded portion is equal to or more than that of a base material of a high corrosion-resistant austenitic stainless steel represented by SUS836L. It is an object of the present invention to provide a welding material which is less expensive than the described Ni-based alloy welding material and which is excellent in welded part soundness and structural stability, and a welding method thereof.
[0008]
[Means for Solving the Problems]
The present inventors are excellent in corrosion resistance, inexpensive, and, as a result of intensive research, to develop a welding material for welding a high corrosion resistant austenitic stainless steel excellent in weld integrity and structural stability, The following findings were obtained. That is, in order to realize excellent corrosion resistance of the weld metal, it is necessary to make the contents of Cr, Mo, and N equal to or more than a certain amount. In order to suppress the precipitation of the intermetallic compound, it is important that the amount is not more than a certain amount. Further, by optimizing the contents of Ni, Si, Mn, and C, a welding material that is very inexpensive as compared with the above-mentioned Ni-based alloy welding material and that has excellent weld integrity and structural stability can be obtained. be able to.
[0009]
The welding material for welding the austenitic stainless steel of the present invention has been made based on the above findings, and in terms of% by weight, C: 0.05% or less, Si: 0.05 to 1.0%. , Mn: 0.05 to 0.8%, P: 0.04% or less, S: 0.003% or less, Ni: 30.0 to 45.0%, Cr: 20.0 to 28.0%, Mo: 5.5 to 10.5%, N: 0.18 to 0.30%, Al: 0.1% or less, with the balance being Fe and unavoidable impurities.
[0010]
The welding material for welding the austenitic stainless steel of the present invention has a welded portion equal to or more than the base material of the high corrosion resistant austenitic stainless steel represented by SUS836L by optimizing the contents of Cr, Mo, and N. Corrosion resistance and tissue stability can be realized. In addition, by optimizing the contents of Ni, Si, Mn, and C, it is possible to obtain a welding material that is extremely inexpensive as compared with the above-mentioned Ni-based alloy welding material and that has excellent weld integrity and structural stability. it can.
[0011]
In such a welding material for welding austenitic stainless steel, Nb: 0.50% or less, Cu: 0.01 to 1.5%, B: : 0.0001 to 0.0050%, it is desirable to further contain any one or more of them. In such a case, the improvement of creep strength by Nb, the improvement of corrosion resistance by Cu, and the improvement of hot workability by B can be separately realized.
[0012]
Further, the welding method of the present invention is a method for suitably performing welding using the above-described welding material according to the present invention. When the dilution rate D is defined by the following equation, the dilution rate D is 20. It is characterized in that welding is performed so as to be 70%.
[0013]
(Equation 2)
Dilution ratio D (%) = ((base metal fusion zone cross-section) / (weld metal cross-section)) × 100
[0014]
Here, the cross-sectional area of the base metal fusion zone and the cross-sectional area of the weld metal that define the dilution ratio will be described. FIG. 1A is a side view showing the base materials 1 and 2 before welding. On the other hand, FIG. 1B is a diagram showing a relationship between the base metals 1 and 2 and the weld metal 3 after welding. The above-mentioned base material fusion zone cross-sectional area is an area calculated by comparing the observed cross-sectional shape of the bead with the groove shape before welding (FIG. 1 (a)) by revealing the macrostructure of the cross-section by welding after welding. This corresponds to “1a + 2a” in FIG. The weld metal cross-sectional area is the observed bead cross-sectional shape itself, and refers to a portion 3a surrounded by a dotted line in the paper of FIG. 1 (b). Here, the dilution ratio is calculated as (1a + 2a) / 3a in FIG.
[0015]
In the welding method of the present invention, by appropriately adjusting the dilution ratio D defined by the cross-sectional area of the base metal fusion zone and the cross-sectional area of the weld metal, it is possible to ensure the corrosion resistance of the welded portion equal to or higher than that of the base metal. , Excellent joint strength can be obtained, and suitable tissue stability can be realized. That is, by setting the dilution ratio to 20% or more, it is possible to prevent the melting amount of the base material from being minimized and to obtain a sufficient joint strength. On the other hand, by setting the dilution ratio D to 70% or less, it is possible to prevent the base material melting amount from becoming excessive as compared with the amount of the welding material added, and to sufficiently obtain the effect of ensuring excellent corrosion resistance by the welding material. Can be.
[0016]
The reasons for limiting the content of each element contained in the welding material will be described below. In addition, the contents of each element are all expressed in weight%.
C: 0.05% or less If C precipitates as carbide during welding, it causes intergranular corrosion or pitting corrosion and deteriorates corrosion resistance. Therefore, it is preferable that the content of C is as small as possible, so that the content is limited to 0.05% or less.
[0017]
Si: 0.05 to 1.0%
Since Si is added as a deoxidizing element during smelting and has the effect of improving the flow of molten metal, the lower limit of the Si content is set to 0.05%. However, when contained in a large amount, the precipitation of metal compounds such as σ phase and χ phase is promoted during the welding heat cycle, and the corrosion resistance and toughness of the weld metal are impaired. Therefore, the upper limit of the content is set to 1.0%.
[0018]
Mn: 0.05-0.8%
Mn is a deoxidizing element and must be contained in an amount of 0.05% or more in order to increase the stability of the austenite phase and the solubility of N at the same time. On the other hand, if the content exceeds 0.8%, precipitation of intermetallic compounds is promoted, which is not preferable from the viewpoint of realizing excellent corrosion resistance and toughness. Therefore, the content of Mn is limited to 0.05 to 0.8%.
[0019]
P: 0.04% or less P is an element inevitably mixed as an impurity. From the viewpoint of preventing hot cracking during welding and ensuring excellent corrosion resistance of the weld metal, its content is preferably small. However, if the content of P is extremely reduced, the production cost is increased. Therefore, the content is limited to 0.04% or less as an acceptable range.
[0020]
S: not more than 0.003% S is an impurity element inevitably mixed from the raw material like P, and if its content exceeds 0.003%, the sensitivity to hot cracking is significantly increased. Therefore, the content of S is desirably as small as possible, so that it is limited to 0.003% or less.
[0021]
Ni: 30.0 to 45.0%
Ni is an element that stabilizes austenite and is an element effective in suppressing precipitation of intermetallic compounds such as σ phase and χ phase at the time of welding, so it is necessary to contain at least 30.0%. However, excessive addition of Ni causes an increase in the price of the welding material, and the price difference from the Ni-based welding material described in Patent Document 2 is reduced. On the other hand, even if it exceeds 45.0%, the effect of suppressing the precipitation of the intermetallic compound will level off. Therefore, the content of Ni is limited to 30.0% to 45.0%.
[0022]
Cr: 20.0 to 28.0%
Cr is a main element that imparts corrosion resistance to the weld metal. In order to ensure that the corrosion resistance of the welded portion is equal to or higher than that of the base metal, the content of Cr must be 20.0% or more. On the other hand, if the content exceeds 28.0%, the precipitation of intermetallic compounds such as the σ phase is promoted during welding, and the corrosion resistance and toughness are significantly impaired. Therefore, the upper limit of the content is set to 28.0%.
[0023]
Mo: 5.5 to 10.5%
Mo is an element imparting corrosion resistance to the weld metal, similarly to the above Cr, and a content of 5.5% or more is required to improve pitting corrosion resistance and crevice corrosion resistance in a chloride environment. is there. However, if the content exceeds 10.5%, the precipitation of intermetallic compounds such as the σ phase is promoted during welding, and the corrosion resistance and toughness are significantly impaired. Therefore, the upper limit of the content is set to 10.5%. .
[0024]
N: 0.18 to 0.30%
N is an element which is effective in increasing the corrosion resistance and strength in a state of being dissolved in the matrix and suppressing the precipitation of intermetallic compounds. In order to obtain these effects sufficiently, the N content needs to be 0.18% or more. On the other hand, excessive N content tends to cause welding defects such as blowholes at the time of welding, impairing the integrity of the weld metal at the weld, and deteriorating the corrosion resistance of the weld metal due to precipitation of nitrides. The upper limit was set to 0.30%.
[0025]
Al: 0.1% or less Al is added as a deoxidizing element. If the content exceeds 0.1%, the precipitation of intermetallic compounds and nitrides is promoted to deteriorate the corrosion resistance. The value was 0.1%.
[0026]
Next, in the welding material for welding the austenitic stainless steel of the present invention, although not an essential element, by appropriately containing, the creep strength of the welding material is improved, the corrosion resistance is improved, or the hot workability is improved. The reasons for limiting the content of each element that realizes the above are described.
Nb: 0.50% or less By adding 0.5% or less of Nb, the strength of the weld metal can be increased and the creep strength can be improved. On the other hand, if the content exceeds 0.5%, the productivity is deteriorated, the precipitation of nitrides is promoted, and the toughness and corrosion resistance are deteriorated. Therefore, the upper limit of the content is set to 0.5%. preferable.
[0027]
Cu: 0.01-1.5%
Cu is an element that improves the corrosion resistance, particularly the resistance to acids such as sulfuric acid, and such an effect can be obtained when the Cu content is 0.01% or more. On the other hand, if the content exceeds 1.5%, the toughness of the weld metal is reduced. Therefore, even when the content is contained, the content is preferably 1.5% or less.
[0028]
B: 0.0001-0.0050%
B is an element that is extremely effective for improving hot workability, and contributes to an improvement in the production yield when contained at 0.0001% or more. However, when the content exceeds 0.0050%, the sensitivity to hot cracking during welding is significantly increased, so the upper limit of the content is preferably set to 0.0050%.
[0029]
【Example】
Next, embodiments of the present invention will be described in detail. Table 1 shows the composition of the elements contained in the high corrosion resistant austenitic stainless steel used as the base material. This corresponds to SUS836L defined by JISG4305. After this material was made 6 mm in thickness, a V groove having a groove angle of 60 °, a root gap of 3 to 4 mm and a root face of 0.5 mm was provided, and one-side three-pass welding was performed by TIG welding. On the other hand, for the welding material, a TIG welding rod of φ2.0 mm having the component composition of the contained elements shown in Table 2 was obtained through laboratory melting, forging, hot rolling, and wire drawing processes (annealing as appropriate). Produced. In addition, as shown in Table 1 and Table 2, the same material was prepared for all the base materials, and 15 kinds of materials having different component compositions shown in Examples and Comparative Examples were prepared for the welding materials. .
[0030]
[Table 1]
Figure 2004148347
[0031]
[Table 2]
Figure 2004148347
[0032]
The welding conditions were 80 A for the first layer and 140 A for the second and third passes, and the welding speed was 70 to 100 mm / min in any pass. The shielding gas used was 100% Ar, and the flow rate was 12 L / min. The dilution ratio D at this time was 35 to 50% in each pass.
[0033]
For the fabricated welded joints, the corrosion resistance, the structural stability, the integrity of the weld, and the manufacturing cost of the welding rod were investigated. The welding workability during welding was also evaluated. These evaluations were based on the following methods.
[0034]
-Corrosion resistance It investigated about realization of the excellent corrosion resistance which is the main objective of this invention. Such corrosion resistance was evaluated by pitting potential measurement according to JIS G0577. As a test solution, a 20 wt% NaCl solution (Ar degassing) was used, and the solution temperature was 70 to 80 ° C.
[0035]
-Tissue stability Tissue stability was evaluated by investigating various mechanical properties. This is because, for a Ni-based alloy having a low structure stability, such as the wire described in Patent Document 1, an intermetallic compound is precipitated, and particularly excellent ductility and the like are not realized. The mechanical properties of the welded joint were evaluated by a tensile test of the welded joint, a Charpy impact test of the weld metal, and a front / back bending test of the welded joint. In the weld joint tensile test, a JIS No. 1 test piece was prepared, and the tensile strength was measured. In the Charpy impact test of the weld metal, a V-notch Charpy test specimen having a subsize (5 × 10 × 55 mm) was prepared from a direction perpendicular to the welding direction, and the absorbed energy at 20 ° C. was measured. In addition, in the bending test, after removing the excess, a bending was performed at a bending radius of R = 12 mm (R = 2t, where t is a plate thickness), and the presence or absence of cracks at that time was examined.
[0036]
-Weld joint integrity Weld integrity was evaluated for weld crack susceptibility and occurrence of blowholes. Weld crack susceptibility was evaluated by checking the presence or absence of cracks by a color check after each pass welding. In particular, the susceptibility was evaluated based on the presence or absence of crater cracks at the weld terminal end, which is considered to be most likely to cause cracks. Regarding blowholes, five arbitrary cross-sections of the weld bead were observed, and the occurrence of blowholes was determined to be “present” for any one where a blowhole was recognized even at one place.
[0037]
-Manufacturing cost The manufacturing cost was evaluated by a relative comparison with the cost when using a TIG welding rod called YNiCrMo-3, commonly known as Inconel 625. That is, the case where the manufacturing cost related to welding was 2/3 or less of the case where the welding rod for Inconel 625TIG was used was evaluated as "○", and the case where the manufacturing cost exceeded 2/3 was evaluated as "x".
[0038]
-Welding workability Although the realization of excellent welding workability is not a direct object of the present invention, since it has been a very important characteristic in operation conventionally, it was investigated here as a secondary characteristic. Such welding workability was comprehensively evaluated from the flow of molten metal and the frequency of slag generation. Specific evaluation criteria were evaluated by relative comparison with welding workability when the welding was performed using a welding material called YNiCrMo-4, commonly called Hastelloy 276. That is, those that were superior to those using Hastelloy 276 were marked with “〇”, and those that were equivalent or less were marked with “x”. Table 3 shows the results of the above-described corrosion resistance, structural stability, soundness of the welded portion, manufacturing cost, and welding workability.
[0039]
[Table 3]
Figure 2004148347
[0040]
As is clear from Table 3, it was found that Examples 1 to 7 simultaneously satisfied all the above-mentioned required characteristics. That is, each of the examples has not only corrosion resistance equal to or higher than that of the base material, but also excellent structural stability and welding workability, and can be manufactured at a much lower cost than conventional Ni-based welding materials. It is. On the other hand, in Comparative Example 1, since the Ni content was too high, the production cost was relatively high, and the welding workability was slightly inferior. In Comparative Examples 2 and 4, since the contents of Cr and N effective for securing the corrosion resistance are small, pitting occurs, and excellent corrosion resistance cannot be realized. In Comparative Example 3, since the content of Mo was too large, an intermetallic compound was precipitated during welding, and excellent toughness and corrosion resistance could not be realized. In Comparative Example 5, blowholes were generated because the N content was too large, so that excellent weld integrity was not realized. Furthermore, in Comparative Examples 6 and 7, the contents of Nb and Cu were too large, respectively, so that the toughness was lowered. In Comparative Example 6, cracks occurred also in the back bending, and the structural stability was poor. In Comparative Example 8, since the content of B was too large, the susceptibility to solidification cracking was increased, and crater cracking was observed.
[0041]
Next, while using the base material shown in Table 1 and the welding material of Example 1 shown in Table 2, the dilution ratio D was changed to 18 to 100% on the assumption that the above-described welding method was adopted. In Examples 8 to 10 and Comparative Examples 9 to 11, welding was performed. Table 4 shows the results of investigations on the corrosion resistance and joint strength of the welds in each of these examples and comparative examples. Here, the corrosion resistance was evaluated by the above-mentioned means, that is, by measuring the pitting potential in accordance with JIS G0577. As a test solution, a 20 wt% NaCl solution (Ar degassing) was used, and the solution temperature was 70 to 80 ° C. The joint strength was also evaluated by the above-mentioned means, that is, by preparing a JIS No. 1 test piece and measuring the tensile strength. Further, in changing the dilution ratio, the groove angle was set to 0 to 70 ° and the root gap was changed in the range of 0 to 4 mm.
[0042]
[Table 4]
Figure 2004148347
[0043]
As is clear from Table 4, in Examples 8 to 10 in which the dilution ratio D was within the range of the present invention, excellent characteristics were confirmed in both the corrosion resistance and the joint tensile test. On the other hand, in Comparative Example 9 in which the dilution ratio D is small, since the base material and the welding material are not sufficiently mixed, welding defects such as poor fusion are likely to occur, and sufficient bonding strength can be obtained. Can not. In Comparative Examples 10 and 11 in which the dilution ratio D is large, the effect of using the welding material of the present invention is reduced, and the corrosion resistance is reduced.
[0044]
【The invention's effect】
As described above, the welding material for welding the austenitic stainless steel of the present invention has a corrosion resistance of the welded portion equal to or higher than that of the base material of the high corrosion-resistant austenitic stainless steel represented by SUS836L, and the conventional Ni-based material. It is a welding material that is inexpensive compared to alloy welding materials and has excellent weld integrity and structural stability. Therefore, the welding material of the present invention is promising in that it can be applied to a use environment containing a high concentration of chloride, for example, various chemical plants and marine structures.
[Brief description of the drawings]
FIG. 1A is a side view showing both base materials before welding, and FIG. 1B is a diagram showing a relationship between both base materials after welding and a weld metal.
[Explanation of symbols]
1, 2 ... base material, 1a, 2a ... cross section area of base material fusion zone, 3 ... weld metal, 3a ... weld metal cross section.

Claims (3)

重量%で、C:0.05%以下、Si:0.05〜1.0%、Mn:0.05〜0.8%、P:0.04%以下、S:0.003%以下、Ni:30.0〜45.0%、Cr:20.0〜28.0%、Mo:5.5〜10.5%、N:0.18〜0.30%、Al:0.1%以下であり、残部がFeおよび不可避的不純物からなることを特徴とするオーステナイト系ステンレス鋼を溶接するための溶接材料。By weight%, C: 0.05% or less, Si: 0.05 to 1.0%, Mn: 0.05 to 0.8%, P: 0.04% or less, S: 0.003% or less, Ni: 30.0 to 45.0%, Cr: 20.0 to 28.0%, Mo: 5.5 to 10.5%, N: 0.18 to 0.30%, Al: 0.1% A welding material for welding austenitic stainless steel, wherein the balance is Fe and inevitable impurities. 重量%で、前記残部成分の一部にかわり、Nb:0.50%以下、Cu:0.01〜1.5%、B:0.0001〜0.0050%のうち、いずれか1種以上をさらに含有してなる請求項1に記載のオーステナイト系ステンレス鋼を溶接するための溶接材料。By weight%, instead of part of the remaining components, one or more of Nb: 0.50% or less, Cu: 0.01 to 1.5%, and B: 0.0001 to 0.0050% The welding material for welding austenitic stainless steel according to claim 1, further comprising: 請求項1または請求項2に記載の溶接材料を使用する溶接方法において、希釈率Dを以下の式で定義した場合に、希釈率Dが20〜70%となるように溶接することを特徴とする溶接方法。
Figure 2004148347
In the welding method using the welding material according to claim 1 or 2, when the dilution ratio D is defined by the following equation, welding is performed so that the dilution ratio D is 20 to 70%. To welding method.
Figure 2004148347
JP2002315479A 2002-10-30 2002-10-30 Welding method for austenitic stainless steel Expired - Lifetime JP4242133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315479A JP4242133B2 (en) 2002-10-30 2002-10-30 Welding method for austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315479A JP4242133B2 (en) 2002-10-30 2002-10-30 Welding method for austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2004148347A true JP2004148347A (en) 2004-05-27
JP4242133B2 JP4242133B2 (en) 2009-03-18

Family

ID=32459461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315479A Expired - Lifetime JP4242133B2 (en) 2002-10-30 2002-10-30 Welding method for austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP4242133B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207242A (en) * 2007-02-28 2008-09-11 Sumitomo Metal Ind Ltd Welding material for austenitic stainless steel, and weld metal constituted by using the same and welded joint
WO2015129631A1 (en) * 2014-02-26 2015-09-03 新日鐵住金株式会社 Welded joint
CN108031956A (en) * 2017-11-06 2018-05-15 山西太钢不锈钢股份有限公司 The welding method of austenitic stainless steel
KR20180083694A (en) * 2017-01-13 2018-07-23 에스케이이노베이션 주식회사 Welding metal for dissimilar base material joint and welding method using the same
KR20210079818A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Austenitic stainless steel plate having excellent corrosion resistance and manufacturing method for the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207242A (en) * 2007-02-28 2008-09-11 Sumitomo Metal Ind Ltd Welding material for austenitic stainless steel, and weld metal constituted by using the same and welded joint
US10378091B2 (en) 2014-02-26 2019-08-13 Nippon Steel Corporation Welded joint
CN106061671A (en) * 2014-02-26 2016-10-26 新日铁住金株式会社 Welded joint
US20160355911A1 (en) * 2014-02-26 2016-12-08 Nippon Steel & Sumitomo Metal Corporation Welded joint
JPWO2015129631A1 (en) * 2014-02-26 2017-03-30 新日鐵住金株式会社 Welded joint
EP3112081A4 (en) * 2014-02-26 2017-08-23 Nippon Steel & Sumitomo Metal Corporation Welded joint
KR101874218B1 (en) * 2014-02-26 2018-07-03 신닛테츠스미킨 카부시키카이샤 Welded joint
WO2015129631A1 (en) * 2014-02-26 2015-09-03 新日鐵住金株式会社 Welded joint
KR20180083694A (en) * 2017-01-13 2018-07-23 에스케이이노베이션 주식회사 Welding metal for dissimilar base material joint and welding method using the same
KR102645013B1 (en) 2017-01-13 2024-03-06 에스케이이노베이션 주식회사 Welding metal for dissimilar base material joint and welding method using the same
CN108031956A (en) * 2017-11-06 2018-05-15 山西太钢不锈钢股份有限公司 The welding method of austenitic stainless steel
KR20210079818A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Austenitic stainless steel plate having excellent corrosion resistance and manufacturing method for the same
KR102321299B1 (en) 2019-12-20 2021-11-02 주식회사 포스코 Austenitic stainless steel plate having excellent corrosion resistance and manufacturing method for the same

Also Published As

Publication number Publication date
JP4242133B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4780189B2 (en) Austenitic heat-resistant alloy
KR101443480B1 (en) Ni-based alloy welding metal, ni-based alloy-coated arc welding rod
US9415460B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
WO2012018074A1 (en) Ferritic stainless steel
JPS5941505B2 (en) Ferrite corrosion resistant chromium ↓ - molybdenum ↓ - nickel steel
EP0084588B1 (en) Heat-resistant and corrosion-resistant weld metal alloy and welded structure
JP2006289405A (en) Gas shielded arc welding wire for steel for refractory structure
WO2013065521A1 (en) Welding material for ni-based heat-resistant alloys, and welded metal and melded joint each using same
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
US9808877B2 (en) Alloy, overlay, and methods thereof
JP4519520B2 (en) High Ni-base alloy welding wire
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP2013095949A (en) Austenitic heat resistant alloy
JP4242133B2 (en) Welding method for austenitic stainless steel
JPH08252692A (en) Coated electrode for highly corrosion resistant and high mo stainless steel
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel
JP2017014575A (en) Austenitic heat resistant alloy and weldment structure
JPH07214374A (en) High ni alloy welding wire
JP2000015447A (en) Welding method of martensitic stainless steel
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JPH0760481A (en) Welding material for high-cr and high-n austenitic steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4242133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term