JP3819755B2 - Welding method of high corrosion resistance high Mo austenitic stainless steel - Google Patents

Welding method of high corrosion resistance high Mo austenitic stainless steel Download PDF

Info

Publication number
JP3819755B2
JP3819755B2 JP2001320891A JP2001320891A JP3819755B2 JP 3819755 B2 JP3819755 B2 JP 3819755B2 JP 2001320891 A JP2001320891 A JP 2001320891A JP 2001320891 A JP2001320891 A JP 2001320891A JP 3819755 B2 JP3819755 B2 JP 3819755B2
Authority
JP
Japan
Prior art keywords
welding
mass
corrosion resistance
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001320891A
Other languages
Japanese (ja)
Other versions
JP2003126989A (en
Inventor
裕滋 井上
茂 大北
和広 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2001320891A priority Critical patent/JP3819755B2/en
Publication of JP2003126989A publication Critical patent/JP2003126989A/en
Application granted granted Critical
Publication of JP3819755B2 publication Critical patent/JP3819755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、海洋構造物、橋梁などの耐海水、耐海塩粒子性が要求される環境下で使用される溶接鋼構造物、及び化学プラント、食品製造プラントなどの耐塩化物性が要求される環境下で使用される溶接鋼構造物の組立で用いられる高耐食性高Moオーステナイト系ステンレス鋼の溶接方法に関し、特に、鋼材と同等以上の腐食環境下での耐食性を有し、かつ優れた引張強度、靭性、曲げ延性などの機械的特性及び耐高温割れ性などの溶接性を有する溶接部が経済的に得られる高耐食性高Moオーステナイト系ステンレス鋼の溶接方法に関するものである。
【0002】
【従来の技術】
近年、種々の化学プラント、食品製造プラントなどの耐塩化物性、及び海洋構造物、橋梁、石油・天然ガス輸送、あるいは海水利用技術等などの耐海水、耐海塩粒子性が要求される苛酷な腐食環境に耐えられるような耐食材料として、各種のオーステナイト系ステンレス鋼、高合金が開発・適用されつつある。
【0003】
一方、一般に、これらの耐食鋼材を溶接施工して鋼構造物を建造する場合、通常、溶接部の溶接金属は凝固組織のままで使用されるため、同組成の母材と比較してその耐食性が低くなる。したがって、耐食構造物全体の耐食性を向上する上で、構造部材だけでなく溶接部の溶接金属の耐食性を向上させることが重要な課題である。
【0004】
近年、耐海水及び耐塩化物性に優れた耐食材料として、耐食性の向上のためにMoを3.5〜8%程度含有した高耐食性の高Moオーステナイト系ステンレス鋼の適用が増加している。
【0005】
一般に、オーステナイト系ステンレス鋼を溶接する場合に、共金系の溶接材料を用いており、そのため、各種のオーステナイト系ステンレス鋼用の共金系溶接材料が開発されている。しかし、高耐食性の高Moオーステナイト系ステンレス鋼を共金系の溶接材料を用いて溶接すると、溶接金属中のMo含有量が高いために凝固偏析が起こりやすくなり、それによる耐食性の劣化が生じ、これを抑制するために、通常、溶接後の熱処理を行うことが必須となる。さらに、溶接金属中のMo含有量が高い場合には、溶接金属中にσ相などの脆弱な金属間化合物が生成し溶接金属の延性・靭性が低下するという問題も生じる。
【0006】
高耐食性の高Moオーステナイト系ステンレス鋼を溶接する場合のこのような問題を改善するために、最近、共金系の溶接材料に替えて、高Cr−高Mo含有高Ni合金の溶接材料が用いられている。この高Cr−高Mo含有高Ni合金の溶接材料は、Niベースのため、溶接金属中のMoの凝固偏析を抑制すると共に、Ni自体も耐食性を向上させる元素であるため、共金系の溶接材料を用いて溶接する場合に比べて溶接金属の耐食性は向上する。しかし、この高Cr−高Mo含有高Ni合金の溶接材料では、溶接金属がオーステナイト単体となるため、溶接時に高温割れが発生しやすく、さらに、Mo含有量も多いために、室温での機械的特性は強度は高いものの、溶接金属中にσ相などの金属間化合物が生成しやすく延性及び靭性が低い等の問題があり、高耐食性溶接構造用の溶接材料としては充分ではない。
【0007】
また、最近、特公平03−31556号公報、特開平01−293992号公報、特開平07−214374号公報、特開平08−252692号公報等に開示されているように、耐食性や靭性及び延性に有害なCr炭化物及び耐高温割れ性に有害なWまたはMo炭化物を低減するためにNbによるCの固定を用いずC含有量を低減し、耐食性及び強度向上のためにN添加、固溶させることにより、従来溶接材の耐食性、靭性、延性、強度及び耐高温割れ性を改善した高Ni合金溶接材料が開発されている。しかし、目的とする溶接金属特性を得るためには、厳しい成分規制などによる製造コストの増大の問題があり、また、溶接金属の耐食性、靭性、延性及び強度は良好ではあるものの、溶接金属がオーステナイト単相のために耐高温割れ性が発生しやすい。
【0008】
【発明が解決しようとする課題】
上述のように、耐海水及び耐塩化物性に優れた溶接構造物用材料である高耐食性高Moオーステナイト系ステンレス鋼を従来の溶接材料を用いて単に溶接する方法では、耐海水及び耐塩化物性を向上させ、かつ強度、靭性、曲げ延性等の機械的特性及び耐溶接高温割れ性などの溶接作業性を充分に確保できるだけの溶接部を溶接のままで得ることは困難であった。
【0009】
本発明は、こうした現状を鑑みて、高耐食性高Moオーステナイト系ステンレス鋼を溶接するに際に腐食環境に晒される面での耐食性に優れ、かつ機械的特性及び耐溶接高温割れ性に優れた溶接部が得られる高耐食性高Moオーステナイト系ステンレス鋼の溶接方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、その発明の要旨は以下の通りである。
【0011】
(1) 化学成分として、質量%で、C:0.005〜0.02%、Si:0.3〜0.8%、Mn:0.3〜1.0%、P:0.03%以下、S:0.015%以下、Mo:3.5〜8.0%、Cr:18〜25%、Ni:15〜22%を含有し、残部が鉄及び不可避的成分からなり、かつミクロ組織がオーステナイト単相である高耐食性高Moオーステナイト系ステンレス鋼材を多層盛り片面溶接する際に、開先底部での初層ビード溶接及び該初層ビードの上から鋼材表面の下方1〜3mmまでの厚み範囲を、化学成分として、質量%で、C:0.001〜0.1%、Si:0.01〜1.5%、Mn:0.01〜2.0%、Cr:20〜25%、Ni:10〜15%を含有し、Sを0.01%以下、Pを0.03%以下に制限し、かつ、1.14×Cr当量−Ni当量≧9.0を満たし、残部Fe及び不可避的成分からなるオーステナイト系ステンレス鋼溶接ワイヤを用いて溶接後、引き続いて、鋼材表面の下方1〜3mmから最終層までの厚み範囲を、化学成分として、質量%で、C:0.001〜0.01%、Si:0.01〜0.2%、Mn:0.01〜2%、S:0.01%以下、P:0.01%以下、Cr:14〜25%、Ni:55〜75%、Mo:6〜16%を含有し、さらに、Nb及びWのうちの1種または2種の合計量:1〜4%、Cu:0.1〜3%、Co:0.1〜5%、及びN:0.1〜0.3%のうちの1種または2種以上を含有し、残部がFe及び不可避的成分からなる高Ni合金溶接ワイヤを用いて溶接することを特徴とする高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。
但し、Cr当量=Cr(質量%)+Mo(質量%)+1.5×Si(質量%)
Ni当量=Ni(質量%)+0.5×Mn(質量%)+30×C(質量%)
【0012】
(2) 化学成分として、質量%で、C:0.005〜0.02%、Si:0.3〜0.8%、Mn:0.3〜1.0%、P:0.03%以下、S:0.015%以下、Mo:3.5〜8.0%、Cr:18〜25%、Ni:15〜22%を含有し、残部が鉄及び不可避的成分からなり、かつミクロ組織がオーステナイト単相である高耐食性高Moオーステナイト系ステンレス鋼材を多層盛り片面溶接する際に、鋼材裏面からの溶込み深さが2mm以上となるように、化学成分として、質量%で、C:0.001〜0.01%、Si:0.01〜0.2%、Mn:0.01〜2%、S:0.01%以下、P:0.01%以下、Cr:14〜25%、Ni:55〜75%、Mo:6〜16%を含有し、さらに、Nb及びWのうちの1種または2種の合計量:1〜4%、Cu:0.1〜3%、Co:0.1〜5%、及びN:0.1〜0.3%のうちの1種または2種以上を含有し、残部がFe及び不可避的成分からなる高Ni合金溶接ワイヤを用いて開先底部の初層ビード溶接を行った後、引き続き、該初層ビードの上から最終層までの厚み範囲を、化学成分として、質量%で、C:0.001〜0.1%、Si:0.01〜1.5%、Mn:0.01〜2.0%、Cr:20〜25%、Ni:10〜15%を含有し、Sを0.01%以下、Pを0.03%以下に制限し、かつ、1.14×Cr当量−Ni当量≧9.0を満たし、残部がFe及び不可避的成分からなるオーステナイト系ステンレス鋼溶接ワイヤを用いて溶接することを特徴とする高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。
但し、Cr当量=Cr(質量%)+Mo(質量%)+1.5×Si(質量%)
Ni当量=Ni(質量%)+0.5×Mn(質量%)+30×C(質量%)
【0013】
(3) 前記オーステナイト系ステンレス鋼溶接ワイヤを用いて溶接した際に得られる室温状態での溶接金属の組織は、フェライトを20%以下含有するオーステナイト主体の組織であることを特徴とする上記(1)または(2)の何れか1項に記載の高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。
【0014】
(4) 前記高耐食性高Moオーステナイト系ステンレス鋼の化学成分として、さらに、質量%でCu:0.5〜1.0%、N:0.1〜0.3%のうちの1種または2種を含有することを特徴とする上記(1)から(3)のうちの何れか1項に記載の高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。
【0015】
【発明の実施の形態】
本発明者らは、高耐食性高Moオーステナイト系ステンレス鋼を溶接する際に、溶接金属の耐食性は良好であるが、Mo含有量が多いために靭性及び延性が母材に比べて劣ることを特徴とする高Ni合金溶接ワイヤと、Moを含有しないために溶接金属の靭性及び延性は良好であるが、耐食性が母材に比べて劣ることを特徴とするオーステナイト系ステンレス鋼溶接ワイヤを種々の条件で組み合わせて溶接を行うことにより溶接継手を作製し、それらの溶接部の諸特性を詳細に調査・検討した。
【0016】
その結果、高耐食性高Moオーステナイト系ステンレス鋼の溶接において、腐食環境に晒される面の溶接部を高Ni合金溶接ワイヤを用いて所定厚みで溶接し、それ以外の溶接部の厚み範囲をMoを含有せず、かつ室温状態での溶接金属組織が20%以下のフェライトを含有したオーステナイト主体組織である溶接金属が得られる成分系のオーステナイト系ステンレス鋼溶接ワイヤで溶接することにより、腐食環境に晒される面での溶接部の耐食性を確保し、かつ、溶接部全体での引張強度、靭性、曲げ延性などの機械的特性及び耐溶接高温割れ性などの溶接作業性が良好である溶接継手が得られることが明らかとなった。
【0017】
以下に本発明の詳細について説明する。
【0018】
図1(a)及び(b)は、本発明の実施形態の一例を示す溶接継手の断面図であり、何れも下向き姿勢で多層盛り片面溶接する場合で、(a)は、腐食環境に晒される面が鋼材表面の場合、(b)は、腐食環境に晒される面が鋼材裏面の場合を示す。なお、ここでは、説明の便宜上、溶接姿勢が下向き姿勢であることを前提として説明するが、これに限定する訳ではない。
【0019】
本発明の第1の実施形態として、腐食環境1に晒される面が鋼材表面の高Moステンレス鋼2の溶接方法は、図1(a)に示すように、開先底部での初層ビード溶接及び該初層ビードの上から鋼材表面の下方1〜3mmまでの厚み範囲を、後述する強度、靭性、延性などの機械的特性が良好なステンレス鋼溶接金属3が得られるオーステナイト系ステンレス鋼ワイヤを用いて溶接後、引き続いて、鋼材表面の下方1〜3mmから最終層までの厚み範囲を、後述する耐食性が良好な高Ni合金溶接金属4が得られる高Ni合金ワイヤを用いて溶接する。これにより、腐食環境に晒される鋼板表面側の溶接部の耐食性が高Ni合金溶接金属によって鋼材並に向上できると共に、それ以外の溶接部の強度、靭性、延性などの機械的特性はオーステナイト系ステンレス鋼溶接金属によって確保することができる。
【0020】
この発明方法において、高Ni合金溶接金属及びオーステナイト系ステンレス鋼溶接金属の所要特性を確保するためには、それぞれの溶接金属の形成に用いる高Ni合金ワイヤ及びオーステナイト系ステンレス鋼ワイヤの成分組成を後述のように規定すると共に、高Ni合金溶接金属及びオーステナイト系ステンレス鋼溶接金属を形成する厚み範囲を規定する必要がある。
【0021】
高Ni合金溶接金属を形成する、つまり高Ni合金ワイヤを用いて溶接する厚み範囲が、鋼材表面の下方1mm未満の場合はオーステナイト系ステンレス鋼溶接金属による希釈の影響が大きくなって、腐食環境に晒される鋼板表面側の溶接部の耐食性が低下し、鋼材並以上の耐食性を確保できない。一方、高Ni合金溶接金属を形成する、つまり、高Ni合金ワイヤを用いて溶接する厚み範囲が、鋼材表面の下方3mmを超える場合は、溶接部全体に占める高Ni合金溶接金属の体積が大きくなり、溶接部の強度、靭性、延性などの機械的特性が低下する。
【0022】
したがって、本発明では、高Ni合金ワイヤを用いて溶接する厚み範囲を、鋼材表面の下方1〜3mmとし、それ以外の厚み範囲をオーステナイト系ステンレス鋼ワイヤを用いて溶接する。
【0023】
次に、本発明の第2の実施形態として、腐食環境1に晒される面が鋼材裏面の高Moステンレス鋼の溶接方法は、図1(b)に示すように、鋼材裏面からの溶込み深さが2mm以上となるように、後述する耐食性が良好な高Ni合金溶接金属4が得られる高Ni合金溶接ワイヤを用いて開先底部の初層ビード溶接を行った後、引き続き、この初層ビードの上から最終層までの厚み範囲を、後述する強度、靭性、延性などの機械的特性が良好なステンレス鋼溶接金属3が得られるオーステナイト系ステンレス鋼ワイヤを用いて溶接する。これにより、腐食環境に晒される鋼板裏面側の溶接部の耐食性が高Ni合金溶接金属の初層ビードによって鋼材並に向上できると共に、それ以外の溶接部の強度、靭性、延性などの機械的特性はオーステナイト系ステンレス鋼溶接金属によって確保することができる。
【0024】
高Ni合金溶接金属の初層ビードを形成する、つまり高Ni合金ワイヤを用いて初層ビード溶接する厚み範囲が、鋼材裏面からの溶込み深さで、2mm未満の場合は、初層ビード形成後のオーステナイト系ステンレス鋼ワイヤによる溶接で再溶融して、高Ni合金溶接金属とオーステナイト系ステンレス鋼溶接金属が混合した初層ビードが形成されるため、腐食環境に晒される鋼板表面側の溶接部の耐食性が低下し、鋼材並以上の耐食性を確保できない。
【0025】
したがって、本発明では、高Ni合金ワイヤを用いて初層ビード溶接する厚み範囲を、鋼材裏面からの溶込み深さで2mm以上とし、初層ビードの上から最終層までの厚み範囲をオーステナイト系ステンレス鋼ワイヤを用いて溶接する。
【0026】
以下に、本発明の被溶接鋼材である、高耐食性高Moオーステナイト系ステンレス鋼の成分及びその含有量の限定理由について説明する。なお、下記説明における「%」は、特に明記しない限り質量%を意味する。
【0027】
C:Cは鋼材の耐食性、特に溶接熱影響部の耐食性に有害であるが、強度の観点からある程度の含有が必要である。その含有量が0.005%未満では強度確保が難しく、製造コストも高くなるため、0.005%を上限とした。また、その含有量が0.02%を超えると加工性が低下すると共に、耐食性が著しく低下する。そのため、その含有量を0.005〜0.02%に限定した。
【0028】
Si:Siは脱酸剤及び強化元素として鋼材中に添加されるが、その含有量が0.3%未満ではその効果が十分ではなく、その含有量が0.8%超では延性・靭性が大きく低下する。そのため、その含有量を0.3〜0.8%に限定した。
【0029】
Mn:Mnも鋼製造時に脱酸元素として鋼中に添加するが、その含有量が0.3%未満では効果が十分ではなく、一方、その含有量が1.0%超では鋼板の加工性が劣化する。そのため、その含有量を0.3〜1.0%に限定した。
【0030】
P:Pは不可避的不純物であり、多量に存在すると鋼材の熱間加工性、延性を低下させるので少ない方が望ましく、その含有量の上限を0.03%とした。
【0031】
S:Sも不可避的不純物であり、多量に存在すると鋼材の熱間加工性、延性及び耐食性を低下させるので少ない方が望ましく、その含有量の上限を0.015%とした。
【0032】
Mo:Moは鋼中に固溶して耐食性及び強度を向上させる元素である。特に耐食性向上の効果を十分ならしめるためには3.5%以上必要であるが、一方、8%を超えて含有すると、鋼中での延性・靭性に有害な金属間化合物の生成を著しく促進する。そのため、その含有量を3.5〜8.0%に限定した。
【0033】
Cr:Crは鋼の耐食性を付与する主要元素であり、その効果を十分ならしめるためには18%以上の含有量が必要である。一方、Cr量が25%超では、延性、靭性に有害な金属間化合物の生成を促す。そのため、その含有量を18〜25%に限定した。
【0034】
Ni:Niはオーステナイト安定元素であると共に耐食性を向上する作用も有する。高Moステンレス鋼であってもその組織がフェライト単相、あるいはフェライト+オーステナイト二相からなる場合には、耐食性及び延性・靭性が必ずしも高くなく、また、組織中にフェライト相が存在すると脆弱な金属間化合物が析出しやすくなるので、本発明ではミクロ組織がオーステナイト単相となるようにその含有量を15〜22%に限定した。
【0035】
なお、ここで、ミクロ組織は、エッチングの後に直接組織観察する方法もしくはフェライトメーターのような磁気的測定により判定できる組織である。
【0036】
以上が本発明で対象とする高Moオーステナイト系ステンレス鋼の基本成分であり、他の成分は特に限定されるものではないが、必要に応じて、他の成分を含有できる。
【0037】
以上が、本発明が対象とする、高耐食性高Moオーステナイト系ステンレス鋼の基本成分であるが、必要に応じて以下の1種または2種の元素を以下の含有範囲で含有することができる。
【0038】
Cu:Cuは、鋼材の耐食性と強度を高めるのに顕著な効果があり、その含有量が0.5以上の添加が有効であるが、その含有量が1.0%超の添加では熱間加工性を低下させ、また、耐食性も害する。そのため、その含有量を0.5〜1.0%に限定した。
【0039】
N:Nも鋼材の耐食性と強度を高めるのに有効な元素であり、その効果を十分ならしめるには0.1%以上の添加が必要である。一方、その含有量が0.3%超では、鋼板の製造性が著しく低下するため、その含有量が0.1〜0.3%に限定した。
【0040】
以下に、本発明の溶接方法で用いる溶接ワイヤの成分及びその含有量の限定理由について説明する。なお、下記説明における「%」は、特に明記しない限り質量%を意味する。
【0041】
先ず、本発明の溶接方法で用いるオーステナイト系ステンレス鋼溶接ワイヤの成分及びその含有量の限定理由を述べる。
【0042】
C:Cは溶接金属の強度向上の観点から0.001%以上含有させる。一方、その含有量が0.1%超では溶接金属の加工性、靭性が著しく低下すると共に、溶接のままの状態及び再熱を受けるとCrなどと結合し、これらの領域の耐食性を著しく劣化させる。そのため、その含有量を0.001%〜0.1%に限定した。
【0043】
Si:Siは脱酸元素として添加されるが、その含有量が0.01%未満ではその効果が十分でなく、一方、その含有量が1.5%超では溶接金属のフェライト相の延性低下に伴い、靭性が大きく低下すると共に、溶接時の溶融溶込みも減少し、実用溶接上の問題になる。したがって、その含有量を0.01〜1.5%に限定した。
【0044】
Mn:Mnは脱酸元素として添加するが、その含有量が0.01%未満では効果が十分でなく、一方、その含有量が2.0%を超えて添加すると溶接金属の加工性が低下する。そのため、その含有量を0.01〜2.0%に限定した。
【0045】
Cr:Crはオーステナイト系ステンレス鋼の主要元素であり、溶接金属の強度と耐食性に寄与する。その含有量が20%未満では十分な強度が得られず、また、その含有量が25%超では延性・靭性が低下するため、その含有量を20〜25%に限定した。
【0046】
Ni:Niはオーステナイト系ステンレス鋼の主要元素であり、溶接金属のオーステナイト相を生成・安定にする。その含有量が10%未満では溶接金属のオーステナイトの安定能が下がり、冷却中にマルテンサイトへ変態して靭性が低下する。一方、その含有量が15%超ではオーステナイト単相となって溶接高温割れが発生する。そのため、その含有量を10〜15%に限定した。
【0047】
S:Sは不可避的不純物であり、多量に存在すると溶接部の耐高温割れ性、熱間加工性、延性及び耐食性を低下させるので少ない方が望ましく、その含有量を0.01%を上限として制限する。
【0048】
P:Pも不可避的不純物であり、多量に存在すると凝固時の耐高温割れ性及び靭性を低下させるので少ない方が望ましく、その含有量を0.03%を上限として制限する。
【0049】
本発明では、溶接金属の強度、靭性、曲げ延性などの機械的特性を確保するために、オーステナイト系ステンレス鋼溶接ワイヤの基本成分を以上のように規定すると共に、さらに、溶接金属の高温割れ防止の観点から室温時の溶接金属組織として、フェライトが20%以下特に11%以下含有するオーステナイト主体組織にさせることが必要である。
【0050】
本発明者らの実験の結果、室温時の溶接金属組織がオーステナイト単相とならず、フェライトが20%以下含有するオーステナイト主体の組織となるための溶接ワイヤの成分系としては、オーステナイト系ステンレス鋼溶接ワイヤの成分含有量がさらに、1.14×Cr当量−Ni当量≧9.0の関係式を満足させる必要があることが判明した。
【0051】
ここで、Cr当量及びNi当量は、以下の(1)式及び(2)式でそれぞれ規定させるものである。

Figure 0003819755
したがって、本発明で使用するオーステナイト系ステンレス鋼溶接ワイヤの成分含有量が1.14×Cr当量−Ni当量≧9.0の関係式を満足するように規定する。
【0052】
次に、本発明の溶接方法で用いる高Ni合金ワイヤの成分及びその含有量の限定理由を述べる。
【0053】
C:Cは溶接金属の強化元素として0.001%以上添加する。一方、Cは高Ni溶接金属においては、特にCrと結合しやすく、その含有量が0.01%を超えると粒界等に炭化物として析出し、耐食性や延性・靭性を阻害すると共に、Mo、Wとも結合して耐溶接高温割れ性も低下させる。
【0054】
したがって、C含有量を0.001〜0.01%に限定した。
【0055】
Si:Siは、溶製時に脱酸元素として0.01%以上含有されるが、多量に含有すると溶接熱サイクル中に高Cr−高Mo系の金属間化合物であるσ相の析出を著しく促進し、その結果、耐食性や延性・靭性が低下する。
【0056】
したがって、Siについてもできるだけ低減するため、その含有量の上限を0.2%とした。
【0057】
Mn:Mnは脱酸元素であり、同時に溶接金属中のNの固溶も促進するため、0.01%以上の含有が必要であるが、一方、多量に含有すると耐食性等に有害な金属間化合物の析出も促進するため、その含有量を0.01〜2.0%に限定した。
【0058】
S、Pはいずれも不可避的不純物元素であり、両者とも溶接高温割れ感受性を著しく阻害する元素である。また、多層溶接や補修溶接等の多重熱サイクル中に粒界脆化も促進する。また、Sは熱間加工性に著しく影響を及ぼす。したがって、両元素ともできるだけ低減する必要があり、いずれもその含有量の上限を0.01%とした。
【0059】
Cr:Crは溶接金属の耐食性を付与する主要元素であり、その効果を十分ならしめるためには14%以上が必要である。一方、多量に含有するとワイヤの製造性が著しく低下すると共に、耐食性に有害な金属間化合物の析出を促す。それらを考慮して上限を25%とし、14〜25%に限定した。
【0060】
Ni:Niは溶接金属のマトリックスを構成する主要元素である。溶接金属の耐食性の確保、凝固のまま組織中でのMo、Wの偏析の低減の観点から、少なくとも55%以上の含有が必要であるが、Cr等合金元素を表記の量含有するためには75%が上限であるため、その含有量を55〜75%に限定した。
【0061】
Mo:Moはいずれもマトリックスに固溶して、溶接金属の耐食性、強度を向上させる。その効果を十分ならしめるためには6%以上必要であるが、一方、16%を超えて含有すると、溶接金属中で耐食性、延性・靭性に有害な金属間化合物の生成を著しく促進するため、その含有量を6〜16%に限定した。
【0062】
Nb、W:Nb、Wはいずれも溶接金属の強度を向上させる。その効果を十分ならしめるためにはそれらの成分のうちの1種または2種の合計含有量として1%以上必要であるが、一方、4%を超えて含有すると、耐食性、延性・靭性に有害な金属間化合物の生成を著しく促進するため、その含有量を1〜4%に限定した。
【0063】
Cu:Cuは、硫黄環境等の非酸化性環境や中性環境での溶接金属の耐食性を改善する元素であり、0.1%以上の添加が必要であるが、多量に含有すると熱間加工性を低下させるため溶接ワイヤの製造性を害する上、塩化物含有酸化性環境での耐食性も害することから、これらを考慮して上限を3%とし、その含有量を0.1〜3%とした。
【0064】
Co:Coは通常Ni合金では不可避的に0.1%未満含有されるが、0.1%以上添加することにより、溶接金属の強度の改善が図られる。他方、5%を超えて含有すると溶接ワイヤの製造性が低下する。したがって、その含有量を0.1〜5%に限定した。
【0065】
N:Nはマトリックスに固溶して、溶接金属の耐食性、強度を向上させる。その効果を十分ならしめるにはその含有量が0.1%以上必要であるが、一方、0.3%を超えて含有させると溶接ワイヤの製造性が著しく低下し、また、窒化物等の析出により溶接金属の耐食性も低下する。そのため、その含有量を0.1〜0.3%に限定した。
【0066】
以上が本発明の主要な構成要件である。
【0067】
なお、本発明が対象とする被溶接鋼材は、溶接する場合の少なくとも何れか1方の被溶接鋼材が上記成分を有する高耐食性高Moオーステナイト系ステンレス鋼であれば良く、この高耐食性高Moオーステナイトステンレス鋼同士の溶接は勿論のこと、高耐食性高Moオーステナイトステンレス鋼とその他のオーステナイトステンレス鋼または普通鋼との異材との溶接にも適用できる。
【0068】
また、本発明の多層盛り片面溶接の溶接方法としては、特に限定する必要はなく、TIG溶接、MIG溶接、MAG溶接、プラズマ溶接、サブマージアーク溶接の何れでも良く、また、溶接が自動、半自動、手動のいずれでも本発明の効果が発揮される。
【0069】
また、本発明の多層盛り片面溶接の溶接方法に適用される溶接ワイヤは、その成分組成が本発明の範囲内であれば、ソリッドワイヤでもフラックス入りワイヤでも適用できる。
【0070】
また、溶接姿勢も下向き、立向き、横向き、上向き、のいずれでも良く、また、継手形状も突合わせ溶接、すみ肉溶接のいずれでも良く、特に限定されるものではない。
【0071】
【実施例】
以下、実施例にて本発明を説明する。
【0072】
表1に母材として用いた高耐食性高Moオーステナイト系ステンレス鋼板の化学成分及びミクロ組織を示す。この鋼板は、最終板厚:6mmでの圧延後、1150℃で溶体化熱処理が施されたものであり、臨界孔食発生温度で70℃以上の耐食性を有する。
【0073】
この高耐食性高Moオーステナイト系ステンレス鋼板の突合せ端部に、開先角度:60゜、ルートフェース:0.5mmのY開先を設け、表2に示すオーステナイト系ステンレス鋼溶接ワイヤ(S−1〜S−4)または高Ni合金溶接ワイヤ(N−1〜N−4)の成分を有する、ワイヤ径:1.2φの溶接ワイヤを用いて、腐食環境に晒される面が鋼材表面の場合の実施例として表3に示す条件で、腐食環境に晒される面が鋼材裏面の場合の実施例として表4に示す条件でそれぞれ前述の図1(a)及び(b)に示されるように溶接し、溶接継手を作製した。溶接は、2%O2+98%Arガスを用いたMIG溶接を用い、溶接電流:140〜200A、アーク電圧:16〜27V、溶接速度:20〜35cm/minの条件で行った。
【0074】
【表1】
Figure 0003819755
【0075】
【表2】
Figure 0003819755
【0076】
【表3】
Figure 0003819755
【0077】
【表4】
Figure 0003819755
【0078】
得られた溶接継手は、以下の方法で耐食性及び機械的特性を調査した。
【0079】
耐食性を評価するための試験片は、溶接継手から、いずれも溶接部を中央に含むよう30×30mmの大きさを採取後、余盛を削除して元厚(6mm)のまま用い、腐食環境としては、JIS−G0578−1981に定める6%塩化第二鉄+0.05N塩酸水溶液を用いた。耐食性の評価は、試験片を5℃間隔で管理された腐食環境に24時間浸漬し、評価面側に孔食の発生しない最高温度を塩化物環境での臨界孔食発生温度(CPT)と定義し、その臨界孔食発生温度により評価した。
【0080】
一方、溶接継手の引張強度、靭性、曲げ延性の機械的特性は、それぞれ溶接継手の引張試験、溶接金属のシャルピー衝撃試験、溶接継手の表・裏曲げ試験の結果から評価した。
【0081】
溶接部の引張強度は、溶接継手から余盛を削除した試験片(1号試験片、JIS−Z3121−1961)を採取し、引張試験を行い、その結果から引張強度を求めた。
【0082】
溶接部の靭性は、溶接方向に垂直方向から2mmVノッチ5mmサブサイズシャルピー試験片を採取し、0℃にてシャルピー衝撃試験を行い、その結果から吸収エネルギーを求めた。
【0083】
溶接部の曲げ延性は、溶接継手から溶接方向に垂直方向から余盛を削除した試験片(5t×30w×250L mm)を採取し、溶接部を表または裏からローラ曲げ(JIS−Z 3124−1960、曲げ半径:R=10mm)試験を行い、その結果から溶接継手の曲げ延性を評価した。
【0084】
また、溶接高温割れ感受性は、C型ジグ拘束突合せ溶接割れ試験(JIS−Z3155−1974)により評価した。
【0085】
表3及び表4にそれぞれの腐食試験結果、機械試験結果及び高温割れ試験の結果も示す。
【0086】
表3及び表4から明らかなように、本発明範囲内の溶接条件、つまり、本発明範囲内の成分のN−1〜3の高Ni合金ワイヤを用いて腐食環境に晒される面の溶接部に相当する最終層(試験No1〜3)または初層ビード(試験No.10〜12)を本発明範囲内の厚みで溶接し、それ以外の溶接部の厚み範囲を本発明範囲内の成分を有するS−1のオーステナイト系ステンレス鋼溶接ワイヤを用いて溶接した、試験No1〜3及び10〜12の本発明例は、全て、耐食性、引張強度、靭性及び曲げ延性の機械的特性、耐高温割れ性の要求特性を同時に満足できた。
【0087】
一方、試験No4、8、13、及び17の比較例は、本発明範囲から外れた成分のN−4の高Ni合金ワイヤを用いて腐食環境に晒される面の溶接部に相当する最終層(試験No4)または初層ビード(試験No.13)を溶接したり、本発明範囲内の成分の高Ni合金ワイヤを用いて本発明範囲から低く外れた厚みで最終層(試験No8)または初層ビード(試験No.17)を溶接したために、何れも本発明例に比較して、耐食性が低下し、目標よする母材並の耐食性が得られなかった。
【0088】
試験No5〜7及び14〜16の比較例は、本発明範囲内の成分のN−2の高Ni合金ワイヤを用いて腐食環境に晒される面の溶接部に相当する最終層または初層ビードを本発明内の厚みで溶接しているが、それ以外の溶接部の厚み範囲の溶接を本発明範囲から外れた成分のオーステナイト系ステンレス鋼溶接ワイヤ(S−2〜4)を用いて溶接したために、試験No5、14は、引張強度が低下し、試験No6、15は、引張強度及び耐溶接高温割れ性が低下し、試験No7、16は靭性、曲げ延性及び耐溶接高温割れ性が低下し、目標とする溶接金属の機械的特性及び溶接特性が得られなかった。
【0089】
また、試験No9の比較例は、本発明範囲内の成分のN−2の高Ni合金ワイヤを用いて腐食環境に晒される面の溶接部に相当する最終層を溶接しているが、その溶接の厚み範囲が本発明範囲から外れているために、それ以外の溶接部の厚み範囲に形成されたオーステナイト系ステンレス鋼溶接金属の特性が充分に発揮できず、溶接部全体の靭性、曲げ延性及び耐溶接高温割れ性が低下した。
【0090】
以上から、本発明の高耐食高Moオーステナイト系ステンレス鋼の溶接方の適用により、耐食性のみならず機械的特性、耐溶接高温割れ性にも優れた良好な溶接部が得られことが判った。
【0091】
【発明の効果】
以上の本発明によれば、高Moオーステナイト系ステンレス鋼の溶接において、腐食環境に晒される面での耐食性に優れ、かつ、耐溶接高温割れ性及び機械的特性に優れる溶接部が得られるものであり、産業の発展に貢献するところが極めて大である。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す溶接継手の断面図であり、何れも下向き姿勢で多層盛り片面溶接する場合で、(a)は、腐食環境に晒される面が鋼材表面の図であり、(b)は、腐食環境に晒される面が鋼材裏面の図である。
【符号の説明】
1 腐蝕環境
2 高Moステンレス鋼
3 ステンレス鋼溶接金属
4 高Ni合金溶接金属[0001]
BACKGROUND OF THE INVENTION
The present invention requires seawater resistance such as marine structures and bridges, welded steel structures used in environments where sea salt particle resistance is required, and chloride resistance such as chemical plants and food manufacturing plants. High corrosion resistance used in the assembly of welded steel structures used in environments High Mo austenitic stainless steel welding methods, especially with corrosion resistance in a corrosive environment equivalent to or better than steel, and excellent tensile strength The present invention relates to a method for welding high corrosion resistance high Mo austenitic stainless steel that can economically obtain welds having mechanical properties such as toughness and bending ductility and weldability such as hot crack resistance.
[0002]
[Prior art]
In recent years, chlorination resistance in various chemical plants, food production plants, etc., as well as harsh seawater, sea salt resistance such as marine structures, bridges, oil and natural gas transportation, seawater utilization technology, etc. are demanded. Various austenitic stainless steels and high alloys are being developed and applied as corrosion resistant materials that can withstand corrosive environments.
[0003]
On the other hand, generally, when constructing a steel structure by welding these corrosion-resistant steel materials, the weld metal of the welded part is usually used in its solidified structure, so its corrosion resistance compared to the base material of the same composition. Becomes lower. Therefore, in order to improve the corrosion resistance of the entire corrosion resistant structure, it is an important issue to improve the corrosion resistance of the weld metal in the welded portion as well as the structural member.
[0004]
In recent years, as a corrosion-resistant material excellent in seawater resistance and chloride resistance, application of high corrosion-resistant high Mo austenitic stainless steel containing about 3.5 to 8% of Mo in order to improve corrosion resistance is increasing.
[0005]
In general, when welding austenitic stainless steel, a common metal welding material is used, and various common metal welding materials for austenitic stainless steel have been developed. However, when high Mo austenitic stainless steel with high corrosion resistance is welded using a co-welded welding material, the Mo content in the weld metal is high, so solidification segregation tends to occur, resulting in deterioration of corrosion resistance. In order to suppress this, it is usually essential to perform heat treatment after welding. Furthermore, when the Mo content in the weld metal is high, there is a problem that brittle intermetallic compounds such as σ phase are generated in the weld metal and the ductility and toughness of the weld metal are lowered.
[0006]
In order to improve such problems when welding high corrosion resistance high Mo austenitic stainless steels, recently, welding materials of high Cr-high Mo content and high Ni alloys have been used in place of metal alloy welding materials. It has been. Since the welding material of this high Cr-high Mo content high Ni alloy is Ni-based, it suppresses solidification segregation of Mo in the weld metal, and Ni itself is an element that improves corrosion resistance. Compared to welding using materials, the corrosion resistance of the weld metal is improved. However, in this high Cr-high Mo content high Ni alloy welding material, since the weld metal is austenite alone, high temperature cracking is likely to occur during welding, and furthermore, since the Mo content is large, mechanical properties at room temperature are also required. Although the properties are high in strength, there are problems such as easy formation of intermetallic compounds such as σ phase in the weld metal and low ductility and toughness, which is not sufficient as a welding material for high corrosion resistance welded structures.
[0007]
Recently, as disclosed in Japanese Patent Publication No. 03-31556, Japanese Patent Application Laid-Open No. 01-293992, Japanese Patent Application Laid-Open No. 07-214374, Japanese Patent Application Laid-Open No. 08-252692, etc., the corrosion resistance, toughness and ductility are improved. To reduce harmful Cr carbides and W or Mo carbides that are harmful to hot cracking resistance, reduce the C content without using C fixation with Nb, and add and dissolve N to improve corrosion resistance and strength. Thus, a high Ni alloy welding material has been developed that improves the corrosion resistance, toughness, ductility, strength and hot cracking resistance of conventional welding materials. However, in order to obtain the desired weld metal characteristics, there is a problem of an increase in manufacturing cost due to strict component regulations, and the weld metal is austenite although the corrosion resistance, toughness, ductility and strength of the weld metal are good. Due to the single phase, hot cracking resistance is likely to occur.
[0008]
[Problems to be solved by the invention]
As described above, in a method of simply welding high corrosion resistance high Mo austenitic stainless steel, which is a welded structure material excellent in seawater resistance and chloride resistance, using conventional welding materials, seawater resistance and chloride resistance are improved. It has been difficult to obtain welds that can be improved and have sufficient mechanical properties such as strength, toughness, bending ductility, and welding workability such as high-temperature weld crack resistance.
[0009]
In view of such a current situation, the present invention has excellent corrosion resistance in terms of being exposed to a corrosive environment when welding high corrosion resistance high Mo austenitic stainless steel, and is excellent in mechanical properties and welding hot cracking resistance. It aims at providing the welding method of the high corrosion resistance high Mo austenitic stainless steel from which a part is obtained.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
[0011]
(1) As chemical components, in mass%, C: 0.005 to 0.02%, Si: 0.3 to 0.8%, Mn: 0.3 to 1.0%, P: 0.03% Hereinafter, S: 0.015% or less, Mo: 3.5 to 8.0%, Cr: 18 to 25%, Ni: 15 to 22%, the balance is made of iron and inevitable components, and micro When multi-layered single-sided welding of high corrosion resistance high Mo austenitic stainless steel material whose structure is an austenite single phase, the first layer bead welding at the groove bottom and the top layer bead from 1 to 3 mm below the steel surface. Thickness range as a chemical component in mass%, C: 0.001-0.1%, Si: 0.01-1.5%, Mn: 0.01-2.0%, Cr: 20-25 %, Ni: 10-15%, S is limited to 0.01% or less, P is limited to 0.03% or less, and 1.14 × Cr equivalent−Ni equivalent ≧ 9.0 is satisfied, and after welding using an austenitic stainless steel welding wire composed of the remaining Fe and inevitable components, subsequently, from the bottom 1-3 mm of the steel surface to the final layer As a chemical component, the thickness range of C: 0.001 to 0.01%, Si: 0.01 to 0.2%, Mn: 0.01 to 2%, S: 0.01% Hereinafter, P: 0.01% or less, Cr: 14-25%, Ni: 55-75%, Mo: 6-16%, and further, the total amount of one or two of Nb and W 1 to 4%, Cu: 0.1 to 3%, Co: 0.1 to 5%, and N: 0.1 to 0.3%, or 1 or 2 or more types, the balance being High corrosion resistance, high Mo alloy characterized by welding using high Ni alloy welding wire composed of Fe and inevitable components Welding method of austenitic stainless steel.
However, Cr equivalent = Cr (mass%) + Mo (mass%) + 1.5 × Si (mass%)
Ni equivalent = Ni (mass%) + 0.5 × Mn (mass%) + 30 × C (mass%)
[0012]
(2) As chemical components, by mass, C: 0.005 to 0.02%, Si: 0.3 to 0.8%, Mn: 0.3 to 1.0%, P: 0.03% Hereinafter, S: 0.015% or less, Mo: 3.5 to 8.0%, Cr: 18 to 25%, Ni: 15 to 22%, the balance is made of iron and inevitable components, and micro When multi-layered single side welding of a high corrosion resistance high Mo austenitic stainless steel material whose structure is an austenite single phase, the chemical depth is 2% or more as a chemical component in mass%, and C: 0.001 to 0.01%, Si: 0.01 to 0.2%, Mn: 0.01 to 2%, S: 0.01% or less, P: 0.01% or less, Cr: 14 to 25 %, Ni: 55 to 75%, Mo: 6 to 16%, and one or two of Nb and W 1 to 4%, Cu: 0.1 to 3%, Co: 0.1 to 5%, and N: 0.1 to 0.3%. After the first layer bead welding of the groove bottom using a high Ni alloy welding wire with the balance being Fe and inevitable components, the thickness range from the top of the first layer bead to the last layer As mass%, C: 0.001 to 0.1%, Si: 0.01 to 1.5%, Mn: 0.01 to 2.0%, Cr: 20 to 25%, Ni: 10 to 15% is contained, S is limited to 0.01% or less, P is limited to 0.03% or less, 1.14 × Cr equivalent−Ni equivalent ≧ 9.0 is satisfied, and the balance is Fe and inevitable components High corrosion resistance high Mo austenitic stainless steel characterized by welding using an austenitic stainless steel welding wire comprising Welding method of steel.
However, Cr equivalent = Cr (mass%) + Mo (mass%) + 1.5 × Si (mass%)
Ni equivalent = Ni (mass%) + 0.5 × Mn (mass%) + 30 × C (mass%)
[0013]
(3) The structure of the weld metal at room temperature obtained when welding using the austenitic stainless steel welding wire is an austenite-based structure containing 20% or less of ferrite (1) ) Or the welding method of high corrosion resistance high Mo austenitic stainless steel according to any one of (2).
[0014]
(4) As a chemical component of the high corrosion resistance high Mo austenitic stainless steel, one or two of Cu: 0.5 to 1.0% and N: 0.1 to 0.3% by mass% The method for welding high corrosion resistance high Mo austenitic stainless steel according to any one of (1) to (3) above, wherein the seed contains a seed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
When welding high corrosion resistance high Mo austenitic stainless steel, the present inventors have good corrosion resistance of the weld metal, but due to the high Mo content, the toughness and ductility are inferior to the base metal. The high Ni alloy welding wire and the austenitic stainless steel welding wire characterized in that the weld metal has good toughness and ductility because it does not contain Mo, but the corrosion resistance is inferior to that of the base metal. Welded joints were made by combining and welding, and various characteristics of those welds were investigated and examined in detail.
[0016]
As a result, in welding of high corrosion resistance high Mo austenitic stainless steel, the welded portion of the surface exposed to the corrosive environment is welded with a predetermined thickness using a high Ni alloy welding wire, and the thickness range of the other welded portions is set to Mo. It is exposed to a corrosive environment by welding with a component-based austenitic stainless steel welding wire that can obtain a weld metal that is an austenite-based structure containing 20% or less of ferrite containing no more than 20% of the weld metal structure at room temperature. A welded joint that ensures the corrosion resistance of the welded part on the surface to be welded and has good welding workability such as mechanical properties such as tensile strength, toughness, bending ductility and welding hot cracking throughout the welded part is obtained. It became clear that
[0017]
Details of the present invention will be described below.
[0018]
1 (a) and 1 (b) are cross-sectional views of a welded joint showing an example of an embodiment of the present invention, both of which are multi-layered single-sided welding in a downward posture, and (a) is exposed to a corrosive environment. (B) shows the case where the surface exposed to a corrosive environment is the steel material back surface. Here, for convenience of explanation, the description will be made on the assumption that the welding posture is a downward posture, but the present invention is not limited to this.
[0019]
As a first embodiment of the present invention, a method for welding high Mo stainless steel 2 whose surface exposed to corrosive environment 1 has a steel surface is shown in FIG. And an austenitic stainless steel wire from which the stainless steel weld metal 3 having good mechanical properties such as strength, toughness, ductility and the like, described later, can be obtained in a thickness range from 1 to 3 mm below the surface of the steel material from the top of the first layer bead. After welding using, the thickness range from 1 to 3 mm below the surface of the steel material to the final layer is subsequently welded using a high Ni alloy wire that provides a high Ni alloy weld metal 4 with good corrosion resistance, which will be described later. As a result, the corrosion resistance of the welded part on the steel sheet surface exposed to the corrosive environment can be improved to the same level as the steel material by the high Ni alloy weld metal, and the mechanical properties such as strength, toughness and ductility of the other welded parts are austenitic stainless steel. It can be ensured by steel weld metal.
[0020]
In the method of the present invention, in order to ensure the required characteristics of the high Ni alloy weld metal and the austenitic stainless steel weld metal, the composition of the components of the high Ni alloy wire and the austenitic stainless steel wire used to form each weld metal will be described later. It is necessary to define the thickness range for forming the high Ni alloy weld metal and the austenitic stainless steel weld metal.
[0021]
When the thickness range for forming a high Ni alloy weld metal, that is, welding using a high Ni alloy wire, is less than 1 mm below the steel surface, the influence of dilution by the austenitic stainless steel weld metal is increased, resulting in a corrosive environment. Corrosion resistance of the welded portion on the exposed steel sheet surface side decreases, and corrosion resistance equal to or higher than that of steel materials cannot be secured. On the other hand, when the thickness range for forming a high Ni alloy weld metal, that is, using a high Ni alloy wire exceeds 3 mm below the surface of the steel material, the volume of the high Ni alloy weld metal in the entire welded portion is large. Thus, mechanical properties such as strength, toughness, and ductility of the welded portion are deteriorated.
[0022]
Therefore, in this invention, the thickness range welded using a high Ni alloy wire shall be 1-3 mm below the steel material surface, and the other thickness range is welded using an austenitic stainless steel wire.
[0023]
Next, as a second embodiment of the present invention, as shown in FIG. 1B, the depth of penetration from the steel back surface is as shown in FIG. After the first layer bead welding of the groove bottom portion was performed using a high Ni alloy welding wire to obtain a high Ni alloy weld metal 4 having good corrosion resistance, which will be described later, so that the thickness becomes 2 mm or more, this first layer was subsequently continued. The thickness range from the top of the bead to the final layer is welded using an austenitic stainless steel wire from which a stainless steel weld metal 3 having good mechanical properties such as strength, toughness, and ductility, which will be described later, is obtained. As a result, the corrosion resistance of the welded part on the back side of the steel sheet exposed to the corrosive environment can be improved to the same level as the steel material by the first layer bead of high Ni alloy weld metal, and mechanical properties such as strength, toughness, ductility, etc. of other welded parts Can be secured by an austenitic stainless steel weld metal.
[0024]
Forming the first layer bead of the high Ni alloy weld metal, that is, when the thickness range of the first layer bead welding using the high Ni alloy wire is less than 2 mm in penetration depth from the back surface of the steel material, the first layer bead is formed. Remelted by welding with austenitic stainless steel wire later to form a first layer bead in which high Ni alloy weld metal and austenitic stainless steel weld metal are mixed, so the weld on the steel sheet surface exposed to the corrosive environment Corrosion resistance of the steel decreases, and corrosion resistance equal to or higher than steel materials cannot be secured.
[0025]
Therefore, in the present invention, the thickness range of the first layer bead welding using the high Ni alloy wire is 2 mm or more in terms of the penetration depth from the back surface of the steel material, and the thickness range from the top of the first layer bead to the last layer is an austenitic system. Weld using stainless steel wire.
[0026]
Below, the reason for limitation of the component of the high corrosion resistance high Mo austenitic stainless steel which is a to-be-welded steel material of this invention, and its content is demonstrated. In the following description, “%” means mass% unless otherwise specified.
[0027]
C: C is harmful to the corrosion resistance of the steel material, particularly the corrosion resistance of the weld heat affected zone, but needs to be contained to some extent from the viewpoint of strength. If the content is less than 0.005%, it is difficult to ensure the strength and the manufacturing cost increases, so 0.005% was made the upper limit. On the other hand, when the content exceeds 0.02%, workability is lowered and corrosion resistance is remarkably lowered. Therefore, the content is limited to 0.005 to 0.02%.
[0028]
Si: Si is added to steel as a deoxidizer and strengthening element. However, if its content is less than 0.3%, its effect is not sufficient, and if its content exceeds 0.8%, ductility and toughness are not obtained. Decrease significantly. Therefore, the content is limited to 0.3 to 0.8%.
[0029]
Mn: Mn is also added to steel as a deoxidizing element during steel production, but if its content is less than 0.3%, the effect is not sufficient, while if its content exceeds 1.0%, the workability of the steel sheet Deteriorates. Therefore, the content was limited to 0.3 to 1.0%.
[0030]
P: P is an unavoidable impurity, and if it is present in a large amount, the hot workability and ductility of the steel material are deteriorated, so it is desirable that the content be less. The upper limit of the content is 0.03%.
[0031]
S: S is also an unavoidable impurity, and if it is present in a large amount, the hot workability, ductility and corrosion resistance of the steel material are deteriorated, so the smaller one is desirable, and the upper limit of its content was made 0.015%.
[0032]
Mo: Mo is an element that dissolves in steel and improves corrosion resistance and strength. In particular, 3.5% or more is necessary to sufficiently improve the corrosion resistance. On the other hand, when it exceeds 8%, the formation of intermetallic compounds harmful to ductility and toughness in steel is significantly accelerated. To do. Therefore, the content was limited to 3.5 to 8.0%.
[0033]
Cr: Cr is a main element that imparts corrosion resistance to steel, and a content of 18% or more is necessary to fully obtain its effect. On the other hand, if the Cr content exceeds 25%, the production of intermetallic compounds harmful to ductility and toughness is promoted. Therefore, the content was limited to 18 to 25%.
[0034]
Ni: Ni is an austenite stable element and also has an effect of improving corrosion resistance. Even if it is high Mo stainless steel, if the structure is composed of a ferrite single phase or a ferrite + austenite two phase, the corrosion resistance, ductility and toughness are not necessarily high, and if a ferrite phase exists in the structure, it is a brittle metal Since intermetallic compounds are likely to precipitate, in the present invention, the content is limited to 15 to 22% so that the microstructure becomes an austenite single phase.
[0035]
Here, the microstructure is a structure that can be determined by a method of directly observing the structure after etching or magnetic measurement such as a ferrite meter.
[0036]
The above are the basic components of the high Mo austenitic stainless steel that is the subject of the present invention, and other components are not particularly limited, but other components can be contained as necessary.
[0037]
The above is the basic component of the high corrosion resistance high Mo austenitic stainless steel targeted by the present invention, and the following one or two elements can be contained in the following content ranges as necessary.
[0038]
Cu: Cu has a remarkable effect in increasing the corrosion resistance and strength of steel, and its addition is effective when its content is 0.5 or more. However, when its content exceeds 1.0%, it is hot. It degrades workability and also harms corrosion resistance. Therefore, the content was limited to 0.5 to 1.0%.
[0039]
N: N is also an element effective for enhancing the corrosion resistance and strength of steel materials, and in order to sufficiently obtain the effect, addition of 0.1% or more is necessary. On the other hand, if the content exceeds 0.3%, the manufacturability of the steel sheet is remarkably lowered, so the content is limited to 0.1 to 0.3%.
[0040]
Below, the reason for limitation of the component of the welding wire used with the welding method of this invention and its content is demonstrated. In the following description, “%” means mass% unless otherwise specified.
[0041]
First, the components of the austenitic stainless steel welding wire used in the welding method of the present invention and the reasons for limiting the content thereof will be described.
[0042]
C: C is contained by 0.001% or more from the viewpoint of improving the strength of the weld metal. On the other hand, if the content exceeds 0.1%, the workability and toughness of the weld metal are significantly lowered, and when it is in a welded state and subjected to reheating, it is combined with Cr and the like, and the corrosion resistance of these regions is significantly deteriorated. Let Therefore, the content is limited to 0.001% to 0.1%.
[0043]
Si: Si is added as a deoxidizing element, but if its content is less than 0.01%, its effect is not sufficient, while if its content exceeds 1.5%, the ductility of the ferrite phase of the weld metal is lowered. As a result, the toughness is greatly reduced and the melt penetration during welding is reduced, which becomes a problem in practical welding. Therefore, the content was limited to 0.01 to 1.5%.
[0044]
Mn: Mn is added as a deoxidizing element, but if its content is less than 0.01%, the effect is not sufficient. On the other hand, if its content exceeds 2.0%, the workability of the weld metal decreases. To do. Therefore, the content is limited to 0.01 to 2.0%.
[0045]
Cr: Cr is a main element of austenitic stainless steel and contributes to the strength and corrosion resistance of the weld metal. If the content is less than 20%, sufficient strength cannot be obtained, and if the content exceeds 25%, the ductility and toughness decrease, so the content is limited to 20 to 25%.
[0046]
Ni: Ni is a main element of austenitic stainless steel, and generates and stabilizes the austenitic phase of the weld metal. If the content is less than 10%, the stability of the austenite of the weld metal decreases, and it transforms into martensite during cooling, resulting in a decrease in toughness. On the other hand, if its content exceeds 15%, it becomes an austenite single phase and hot cracking occurs. Therefore, the content was limited to 10 to 15%.
[0047]
S: S is an unavoidable impurity, and if it is present in a large amount, the hot cracking resistance, hot workability, ductility and corrosion resistance of the weld are deteriorated, so it is desirable that its content be less than 0.01%. Restrict.
[0048]
P: P is also an inevitable impurity, and if it is present in a large amount, the hot cracking resistance and toughness at the time of solidification are deteriorated, so a smaller amount is desirable, and its content is limited to 0.03% as an upper limit.
[0049]
In the present invention, in order to ensure the mechanical properties such as strength, toughness, and bending ductility of the weld metal, the basic components of the austenitic stainless steel welding wire are defined as described above, and further, the hot metal is prevented from hot cracking. From this point of view, it is necessary that the weld metal structure at room temperature be an austenite-based structure containing 20% or less, particularly 11% or less of ferrite.
[0050]
As a result of the experiments by the present inventors, the weld metal structure at the room temperature does not become an austenite single phase, but becomes an austenite-based structure containing 20% or less of ferrite. It has been found that the component content of the welding wire further needs to satisfy the relational expression of 1.14 × Cr equivalent−Ni equivalent ≧ 9.0.
[0051]
Here, the Cr equivalent and the Ni equivalent are defined by the following formulas (1) and (2), respectively.
Figure 0003819755
Accordingly, the austenitic stainless steel welding wire used in the present invention is specified so that the component content satisfies the relational expression of 1.14 × Cr equivalent−Ni equivalent ≧ 9.0.
[0052]
Next, the reasons for limiting the components of the high Ni alloy wire used in the welding method of the present invention and the content thereof will be described.
[0053]
C: C is added by 0.001% or more as a strengthening element of the weld metal. On the other hand, C is particularly easily bonded to Cr in high Ni weld metal, and when its content exceeds 0.01%, it precipitates as a carbide at grain boundaries and the like, and inhibits corrosion resistance, ductility and toughness, and Mo, Combined with W, the weld hot crack resistance is also lowered.
[0054]
Therefore, the C content is limited to 0.001 to 0.01%.
[0055]
Si: Si is contained in an amount of 0.01% or more as a deoxidizing element at the time of melting, but if contained in a large amount, the precipitation of σ phase, which is a high Cr-high Mo intermetallic compound, is significantly accelerated during welding heat cycle. As a result, the corrosion resistance, ductility and toughness are reduced.
[0056]
Therefore, in order to reduce Si as much as possible, the upper limit of its content is set to 0.2%.
[0057]
Mn: Mn is a deoxidizing element and at the same time promotes solid solution of N in the weld metal, so it is necessary to contain 0.01% or more. On the other hand, if it is contained in a large amount, it is harmful to the corrosion resistance and the like. In order to promote precipitation of the compound, the content is limited to 0.01 to 2.0%.
[0058]
S and P are both inevitable impurity elements, both of which are elements that significantly impair the weld hot cracking susceptibility. It also promotes grain boundary embrittlement during multiple thermal cycles such as multilayer welding and repair welding. Further, S significantly affects the hot workability. Therefore, it is necessary to reduce both elements as much as possible, and the upper limit of the content of both elements is set to 0.01%.
[0059]
Cr: Cr is a main element imparting the corrosion resistance of the weld metal, and 14% or more is necessary to fully obtain the effect. On the other hand, when contained in a large amount, the manufacturability of the wire is remarkably lowered and the precipitation of intermetallic compounds harmful to corrosion resistance is promoted. Considering these, the upper limit was set to 25%, and it was limited to 14 to 25%.
[0060]
Ni: Ni is a main element constituting the matrix of the weld metal. From the viewpoint of ensuring the corrosion resistance of the weld metal and reducing the segregation of Mo and W in the structure as it is solidified, it is necessary to contain at least 55% or more. Since 75% is the upper limit, its content is limited to 55-75%.
[0061]
Mo: All of Mo dissolves in the matrix and improves the corrosion resistance and strength of the weld metal. 6% or more is necessary to make the effect sufficient, but when it exceeds 16%, the formation of intermetallic compounds harmful to corrosion resistance, ductility and toughness in weld metal is significantly promoted. Its content was limited to 6-16%.
[0062]
Nb, W: Nb and W both improve the strength of the weld metal. In order to make the effect sufficiently, the total content of one or two of these components is required to be 1% or more. On the other hand, if the content exceeds 4%, it is harmful to corrosion resistance, ductility and toughness. Content is limited to 1 to 4% in order to remarkably accelerate the formation of a complex intermetallic compound.
[0063]
Cu: Cu is an element that improves the corrosion resistance of weld metal in a non-oxidizing environment such as a sulfur environment or in a neutral environment, and needs to be added in an amount of 0.1% or more. In addition to harming the manufacturability of the welding wire in order to reduce the properties, the corrosion resistance in a chloride-containing oxidizing environment is also harmed, so in consideration of these, the upper limit is made 3%, the content is 0.1-3% did.
[0064]
Co: Co is inevitably contained in an Ni alloy in an amount of less than 0.1%. However, the addition of 0.1% or more can improve the strength of the weld metal. On the other hand, if the content exceeds 5%, the productivity of the welding wire decreases. Therefore, the content is limited to 0.1 to 5%.
[0065]
N: N is dissolved in the matrix to improve the corrosion resistance and strength of the weld metal. The content of 0.1% or more is necessary to make the effect sufficiently. On the other hand, if the content exceeds 0.3%, the weld wire manufacturability is remarkably lowered, and nitride or the like Precipitation also reduces the corrosion resistance of the weld metal. Therefore, the content was limited to 0.1 to 0.3%.
[0066]
The above is the main constituent requirement of the present invention.
[0067]
The welded steel material to which the present invention is directed may be a high corrosion resistance high Mo austenitic stainless steel in which at least one of the steel materials to be welded has the above-mentioned components. It can be applied not only to the welding of stainless steels but also to the welding of a high corrosion resistance high Mo austenitic stainless steel and a different material from other austenitic stainless steels or ordinary steels.
[0068]
Further, the welding method of the multi-layered single-sided welding of the present invention is not particularly limited, and any of TIG welding, MIG welding, MAG welding, plasma welding, and submerged arc welding may be used, and welding is automatic, semi-automatic, The effect of the present invention can be achieved by any manual operation.
[0069]
Moreover, the welding wire applied to the welding method of multi-layered single-sided welding according to the present invention can be applied to either a solid wire or a flux-cored wire as long as its component composition is within the scope of the present invention.
[0070]
Further, the welding posture may be any of downward, standing, lateral, and upward, and the joint shape may be either butt welding or fillet welding, and is not particularly limited.
[0071]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0072]
Table 1 shows the chemical composition and microstructure of the high corrosion resistance high Mo austenitic stainless steel sheet used as the base material. This steel sheet is subjected to solution heat treatment at 1150 ° C. after rolling at a final plate thickness of 6 mm, and has a corrosion resistance of 70 ° C. or more at a critical pitting corrosion occurrence temperature.
[0073]
A Y groove with a groove angle of 60 ° and a root face of 0.5 mm is provided at the butt end of the high corrosion resistance high Mo austenitic stainless steel sheet, and the austenitic stainless steel welding wires (S-1 to S-1) shown in Table 2 are provided. Implementation in the case where the surface exposed to the corrosive environment is a steel material surface using a welding wire having a diameter of Sφ) or a high Ni alloy welding wire (N-1 to N-4) and a wire diameter of 1.2φ As an example when the surface exposed to the corrosive environment is a steel material back surface under the conditions shown in Table 3, welding is performed as shown in FIGS. 1 (a) and (b), respectively, under the conditions shown in Table 4 as examples. A welded joint was produced. Welding is 2% O 2 MIG welding using + 98% Ar gas was used, and the welding current was 140 to 200 A, the arc voltage was 16 to 27 V, and the welding speed was 20 to 35 cm / min.
[0074]
[Table 1]
Figure 0003819755
[0075]
[Table 2]
Figure 0003819755
[0076]
[Table 3]
Figure 0003819755
[0077]
[Table 4]
Figure 0003819755
[0078]
The obtained welded joint was examined for corrosion resistance and mechanical properties by the following method.
[0079]
The test pieces for evaluating the corrosion resistance were taken from a welded joint with a size of 30 × 30 mm so as to include the welded portion in the center, and then the extra thickness was removed and the original thickness (6 mm) was used. As this, 6% ferric chloride + 0.05N hydrochloric acid aqueous solution defined in JIS-G0578-1981 was used. Corrosion resistance is evaluated by immersing the specimen in a corrosive environment controlled at 5 ° C intervals for 24 hours, and defining the maximum temperature at which no pitting corrosion occurs on the evaluation surface as the critical pitting corrosion temperature (CPT) in the chloride environment. The critical pitting corrosion temperature was evaluated.
[0080]
On the other hand, the mechanical properties of tensile strength, toughness, and bending ductility of the welded joint were evaluated from the results of the tensile test of the welded joint, the Charpy impact test of the weld metal, and the front / back bending test of the welded joint, respectively.
[0081]
The tensile strength of the welded portion was obtained by taking a test piece (No. 1 test piece, JIS-Z3121-1961) from which the surplus was removed from the welded joint, performing a tensile test, and obtaining the tensile strength from the result.
[0082]
As for the toughness of the welded portion, a 2 mm V notch 5 mm sub-size Charpy test piece was taken from the direction perpendicular to the welding direction, a Charpy impact test was performed at 0 ° C., and the absorbed energy was obtained from the result.
[0083]
The bending ductility of the welded portion is obtained by taking a test piece (5 t × 30 w × 250 L mm) from which a surplus is removed from the weld joint in a direction perpendicular to the welding direction and bending the welded portion from the front or the back (JIS-Z 3124-). 1960, bending radius: R = 10 mm), and the bending ductility of the welded joint was evaluated from the results.
[0084]
Moreover, the welding hot cracking susceptibility was evaluated by a C-type jig restraint butt welding cracking test (JIS-Z3155-1974).
[0085]
Tables 3 and 4 also show the respective corrosion test results, mechanical test results, and hot crack test results.
[0086]
As apparent from Tables 3 and 4, the welding conditions within the range of the present invention, that is, the welded portion of the surface exposed to the corrosive environment using the N-1 to 3 high Ni alloy wires having the components within the range of the present invention. The first layer beads (Test Nos. 1 to 3) or the first layer beads (Test Nos. 10 to 12) corresponding to the above are welded with the thickness within the range of the present invention, and the other thickness ranges of the welded parts are the components within the range of the present invention. The present invention examples of Test Nos. 1 to 3 and 10 to 12, which were welded using an austenitic stainless steel welding wire of S-1, all have mechanical properties such as corrosion resistance, tensile strength, toughness and bending ductility, and hot crack resistance. We were able to satisfy the required characteristics at the same time.
[0087]
On the other hand, the comparative examples of Test Nos. 4, 8, 13, and 17 are the final layers corresponding to the welds on the surface exposed to the corrosive environment using the N-4 high Ni alloy wire having a component outside the scope of the present invention. Test No. 4) or initial layer bead (Test No. 13) is welded, or the final layer (Test No. 8) or initial layer is formed at a thickness that is low from the scope of the present invention using a high Ni alloy wire having a component within the scope of the present invention. Since the bead (test No. 17) was welded, the corrosion resistance was lower than that of the examples of the present invention, and the target base metal corrosion resistance was not obtained.
[0088]
The comparative examples of Test Nos. 5 to 7 and 14 to 16 show the final layer or initial layer bead corresponding to the welded portion of the surface exposed to the corrosive environment using the N-2 high Ni alloy wire of the component within the scope of the present invention. Although welding is performed with the thickness within the present invention, welding in the thickness range of the other welded portions is welded using austenitic stainless steel welding wires (S-2 to 4) having components outside the scope of the present invention. Test Nos. 5 and 14 have reduced tensile strength, Test Nos. 6 and 15 have reduced tensile strength and weld hot crack resistance, Test Nos. 7 and 16 have reduced toughness, bending ductility and weld hot crack resistance, The mechanical characteristics and welding characteristics of the target weld metal could not be obtained.
[0089]
Moreover, the comparative example of test No9 welds the final layer corresponding to the weld part of the surface exposed to a corrosive environment using the N-2 high Ni alloy wire of the component within the scope of the present invention. Because the thickness range of the present invention is out of the scope of the present invention, the characteristics of the austenitic stainless steel weld metal formed in the other thickness range of the welded part cannot be fully exhibited, and the toughness of the entire welded part, bending ductility and Resistance to welding hot cracking decreased.
[0090]
From the above, it was found that by applying the welding method of the high corrosion resistance high Mo austenitic stainless steel of the present invention, a good welded portion excellent not only in corrosion resistance but also in mechanical properties and weld hot crack resistance was obtained.
[0091]
【The invention's effect】
According to the present invention as described above, in the welding of high Mo austenitic stainless steel, it is possible to obtain a welded portion having excellent corrosion resistance on the surface exposed to the corrosive environment and excellent in welding hot cracking resistance and mechanical properties. There is a tremendous contribution to industrial development.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a cross-sectional view of a welded joint showing an example of an embodiment of the present invention. (B) is a diagram of the steel material back surface exposed to the corrosive environment.
[Explanation of symbols]
1 Corrosive environment
2 High Mo stainless steel
3 Stainless steel weld metal
4 High Ni alloy weld metal

Claims (4)

化学成分として、質量%で、C:0.005〜0.02%、Si:0.3〜0.8%、Mn:0.3〜1.0%、P:0.03%以下、S:0.015%以下、Mo:3.5〜8.0%、Cr:18〜25%、Ni:15〜22%を含有し、残部が鉄及び不可避的成分からなり、かつミクロ組織がオーステナイト単相である高耐食性高Moオーステナイト系ステンレス鋼材を多層盛り片面溶接する際に、開先底部での初層ビード溶接及び該初層ビードの上から鋼材表面の下方1〜3mmまでの厚み範囲を、化学成分として、質量%で、C:0.001〜0.1%、Si:0.01〜1.5%、Mn:0.01〜2.0%、Cr:20〜25%、Ni:10〜15%を含有し、Sを0.01%以下、Pを0.03%以下に制限し、かつ、1.14×Cr当量−Ni当量≧9.0を満たし、残部Fe及び不可避的成分からなるオーステナイト系ステンレス鋼溶接ワイヤを用いて溶接後、引き続いて、鋼材表面の下方1〜3mmから最終層までの厚み範囲を、化学成分として、質量%で、C:0.001〜0.01%、Si:0.01〜0.2%、Mn:0.01〜2%、S:0.01%以下、P:0.01%以下、Cr:14〜25%、Ni:55〜75%、Mo:6〜16%を含有し、さらに、Nb及びWのうちの1種または2種の合計量:1〜4%、Cu:0.1〜3%、Co:0.1〜5%、及びN:0.1〜0.3%のうちの1種または2種以上を含有し、残部がFe及び不可避的成分からなる高Ni合金溶接ワイヤを用いて溶接することを特徴とする高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。
但し、Cr当量=Cr(質量%)+Mo(質量%)+1.5×Si(質量%)
Ni当量=Ni(質量%)+0.5×Mn(質量%)+30×C(質量%)
As chemical components, in mass%, C: 0.005 to 0.02%, Si: 0.3 to 0.8%, Mn: 0.3 to 1.0%, P: 0.03% or less, S : 0.015% or less, Mo: 3.5 to 8.0%, Cr: 18 to 25%, Ni: 15 to 22%, the balance is composed of iron and inevitable components, and the microstructure is austenite When single-phase high corrosion resistance high Mo austenitic stainless steel material is welded in multiple layers on one side, the first layer bead welding at the groove bottom and the thickness range from the top of the first layer bead to 1 to 3 mm below the steel surface As a chemical component, in mass%, C: 0.001 to 0.1%, Si: 0.01 to 1.5%, Mn: 0.01 to 2.0%, Cr: 20 to 25%, Ni : Containing 10 to 15%, limiting S to 0.01% or less, P to 0.03% or less, and 1.1 × Cr equivalent−Ni equivalent ≧ 9.0, and after welding using an austenitic stainless steel welding wire consisting of the remaining Fe and inevitable components, subsequently, the thickness range from 1 to 3 mm below the steel surface to the final layer As a chemical component in mass%, C: 0.001 to 0.01%, Si: 0.01 to 0.2%, Mn: 0.01 to 2%, S: 0.01% or less, P : 0.01% or less, Cr: 14 to 25%, Ni: 55 to 75%, Mo: 6 to 16%, and a total amount of one or two of Nb and W: 1 to 4%, Cu: 0.1 to 3%, Co: 0.1 to 5%, and N: 0.1 to 0.3% of one or more, containing the remainder Fe and unavoidable High corrosion resistance high Mo austener characterized by welding using high Ni alloy welding wire consisting of various components Welding method of Ito-based stainless steel.
However, Cr equivalent = Cr (mass%) + Mo (mass%) + 1.5 × Si (mass%)
Ni equivalent = Ni (mass%) + 0.5 × Mn (mass%) + 30 × C (mass%)
化学成分として、質量%で、C:0.005〜0.02%、Si:0.3〜0.8%、Mn:0.3〜1.0%、P:0.03%以下、S:0.015%以下、Mo:3.5〜8.0%、Cr:18〜25%、Ni:15〜22%を含有し、残部が鉄及び不可避的成分からなり、かつミクロ組織がオーステナイト単相である高耐食性高Moオーステナイト系ステンレス鋼材を多層盛り片面溶接する際に、鋼材裏面からの溶込み深さが2mm以上となるように、化学成分として、質量%で、C:0.001〜0.01%、Si:0.01〜0.2%、Mn:0.01〜2%、S:0.01%以下、P:0.01%以下、Cr:14〜25%、Ni:55〜75%、Mo:6〜16%を含有し、さらにに、Nb及びWのうちの1種または2種の合計量:1〜4%、Cu:0.1〜3%、Co:0.1〜5%、及びN:0.1〜0.3%のうちの1種または2種以上を含有し、残部がFe及び不可避的成分からなる高Ni合金溶接ワイヤを用いて開先底部の初層ビード溶接を行った後、引き続き、該初層ビードの上から最終層までの厚み範囲を、化学成分として、質量%で、C:0.001〜0.1%、Si:0.01〜1.5%、Mn:0.01〜2.0%、Cr:20〜25%、Ni:10〜15%を含有し、Sを0.01%以下、Pを0.03%以下に制限し、かつ、1.14×Cr当量−Ni当量≧9.0を満たし、残部がFe及び不可避的成分からなるオーステナイト系ステンレス鋼溶接ワイヤを用いて溶接することを特徴とする高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。
但し、Cr当量=Cr(質量%)+Mo(質量%)+1.5×Si(質量%)
Ni当量=Ni(質量%)+0.5×Mn(質量%)+30×C(質量%)
As chemical components, in mass%, C: 0.005 to 0.02%, Si: 0.3 to 0.8%, Mn: 0.3 to 1.0%, P: 0.03% or less, S : 0.015% or less, Mo: 3.5 to 8.0%, Cr: 18 to 25%, Ni: 15 to 22%, the balance is composed of iron and inevitable components, and the microstructure is austenite When a single-phase high corrosion resistance high Mo austenitic stainless steel material is welded in multiple layers on one side, the chemical depth is 2% or more as a chemical component in terms of mass%, C: 0.001. -0.01%, Si: 0.01-0.2%, Mn: 0.01-2%, S: 0.01% or less, P: 0.01% or less, Cr: 14-25%, Ni : 55 to 75%, Mo: 6 to 16%, and further, a combination of one or two of Nb and W Amount: 1 to 4%, Cu: 0.1 to 3%, Co: 0.1 to 5%, and N: 0.1 to 0.3%, containing one or more, the balance After performing the first layer bead welding of the groove bottom using a high Ni alloy welding wire composed of Fe and inevitable components, the thickness range from the top of the first layer bead to the last layer is then used as a chemical component. In mass%, C: 0.001 to 0.1%, Si: 0.01 to 1.5%, Mn: 0.01 to 2.0%, Cr: 20 to 25%, Ni: 10 to 15% In which S is limited to 0.01% or less, P is limited to 0.03% or less, 1.14 × Cr equivalent−Ni equivalent ≧ 9.0 is satisfied, and the balance is composed of Fe and inevitable components High corrosion resistance high Mo austenitic stainless steel, characterized by welding using austenitic stainless steel welding wire Welding method.
However, Cr equivalent = Cr (mass%) + Mo (mass%) + 1.5 × Si (mass%)
Ni equivalent = Ni (mass%) + 0.5 × Mn (mass%) + 30 × C (mass%)
前記オーステナイト系ステンレス鋼溶接ワイヤを用いて溶接した際に得られる室温状態での溶接金属の組織は、フェライトを20%以下含有するオーステナイト主体の組織であることを特徴とする請求項1または2の何れか1項に記載の高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。The structure of a weld metal at room temperature obtained when welding using the austenitic stainless steel welding wire is an austenite-based structure containing 20% or less of ferrite. The high corrosion resistance high Mo austenitic stainless steel welding method according to any one of the above items. 前記高耐食性高Moオーステナイト系ステンレス鋼の化学成分として、さらに、質量%でCu:0.5〜1.0%、N:0.1〜0.3%のうちの1種または2種を含有することを特徴とする請求項1から3のうちの何れか1項に記載の高耐食性高Moオーステナイト系ステンレス鋼の溶接方法。As a chemical component of the high corrosion resistance high Mo austenitic stainless steel, it further contains one or two of Cu: 0.5 to 1.0% and N: 0.1 to 0.3% by mass%. The method for welding high corrosion resistance high Mo austenitic stainless steel according to any one of claims 1 to 3, wherein:
JP2001320891A 2001-10-18 2001-10-18 Welding method of high corrosion resistance high Mo austenitic stainless steel Expired - Lifetime JP3819755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320891A JP3819755B2 (en) 2001-10-18 2001-10-18 Welding method of high corrosion resistance high Mo austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320891A JP3819755B2 (en) 2001-10-18 2001-10-18 Welding method of high corrosion resistance high Mo austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2003126989A JP2003126989A (en) 2003-05-08
JP3819755B2 true JP3819755B2 (en) 2006-09-13

Family

ID=19138206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320891A Expired - Lifetime JP3819755B2 (en) 2001-10-18 2001-10-18 Welding method of high corrosion resistance high Mo austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3819755B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527841C2 (en) * 2003-11-07 2006-06-20 Esab Ab Welding method Apparatus and software for gas metal arc welding with continuously advanced electrode
JP4724685B2 (en) 2007-03-30 2011-07-13 三井造船株式会社 High temperature corrosion resistant Ni-base alloy welded structure and heat exchanger
JP5254693B2 (en) * 2008-07-30 2013-08-07 三菱重工業株式会社 Welding material for Ni-base alloy
CN105499756A (en) * 2015-09-28 2016-04-20 浙江博凡动力装备股份有限公司 Fe-8 stainless steel welding process
CN113351966B (en) * 2021-06-30 2022-12-02 沈阳汇博热能设备有限公司 Dissimilar steel welding method for low alloy steel and austenitic stainless steel
CN114263286B (en) * 2021-12-27 2023-06-27 上海材料研究所有限公司 Core energy dissipation structure with good corrosion resistance and ductility and axial steel damper
CN114263287B (en) * 2021-12-27 2023-06-20 上海材料研究所有限公司 Core energy dissipation structure with enhanced ductility and buckling-restrained energy dissipation brace

Also Published As

Publication number Publication date
JP2003126989A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP5793283B2 (en) Ferritic stainless steel with few black spots
JP5984213B2 (en) Austenitic Fe-Ni-Cr alloy for cladding tubes with excellent weldability
JP2006289395A (en) Solid wire for gas shielded arc welding
US6042782A (en) Welding material for stainless steels
JP2006289405A (en) Gas shielded arc welding wire for steel for refractory structure
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP4519520B2 (en) High Ni-base alloy welding wire
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel
JP5137412B2 (en) Gas shielded arc welding method for galvanized steel bar and stainless steel plate
JP3815227B2 (en) Martensitic stainless steel welded joint with excellent strain aging resistance
JP2017014576A (en) Austenitic heat resistant alloy and weldment structure
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP2021049572A (en) Austenitic stainless steel weld joint
JPH08252692A (en) Coated electrode for highly corrosion resistant and high mo stainless steel
JP2021049570A (en) Austenitic stainless steel weld joint
JP2017014575A (en) Austenitic heat resistant alloy and weldment structure
JP2000015447A (en) Welding method of martensitic stainless steel
JPH07214374A (en) High ni alloy welding wire
JPH08132238A (en) Welding method of high cr steel
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP3854554B2 (en) Submerged arc welding method for austenitic stainless steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
JP4242133B2 (en) Welding method for austenitic stainless steel
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
JP4395583B2 (en) Ni-Cr-W alloy alloy filler metal for welding
JP3164978B2 (en) High Cr steel welding method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3819755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250