JP4395583B2 - Ni-Cr-W alloy alloy filler metal for welding - Google Patents

Ni-Cr-W alloy alloy filler metal for welding Download PDF

Info

Publication number
JP4395583B2
JP4395583B2 JP14211699A JP14211699A JP4395583B2 JP 4395583 B2 JP4395583 B2 JP 4395583B2 JP 14211699 A JP14211699 A JP 14211699A JP 14211699 A JP14211699 A JP 14211699A JP 4395583 B2 JP4395583 B2 JP 4395583B2
Authority
JP
Japan
Prior art keywords
alloy
weld
welding
test
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14211699A
Other languages
Japanese (ja)
Other versions
JP2000326089A (en
Inventor
有司 倉田
宏和 辻
甫 中島
雅美 新藤
貞一郎 斎藤
玉男 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Welding Rod Co Ltd
Original Assignee
Nippon Welding Rod Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Welding Rod Co Ltd filed Critical Nippon Welding Rod Co Ltd
Priority to JP14211699A priority Critical patent/JP4395583B2/en
Priority to US09/714,981 priority patent/US6521060B1/en
Publication of JP2000326089A publication Critical patent/JP2000326089A/en
Application granted granted Critical
Publication of JP4395583B2 publication Critical patent/JP4395583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高温ガス炉高温部構造物、ガスタービンなどに用いられる高温強度、耐食性に優れたNi−Cr−W系合金の溶接用溶加材に関するものである。
【0002】
【従来の技術】
従来、高温ガス炉高温部構造物、ガスタービンなどに用いられる超耐熱材料として、Ni−Cr−W系合金、Ni−Cr−W−Mo系合金などが開発されてきた。これらの合金は1000℃付近の高温で使用されるため、高温クリープ強度、耐食性に優れていることが要求される。
【0003】
このような要求から、たとえば、特開昭51−29316、特公昭54−33212、特公平5−47612に開示されているようなWやMoで強化されたNi−Cr合金が提案されている。これらの合金を用いて、構造物を製作するためには、溶接が用いられる。さらに、このような構造物は高温で長時間使用されることから、溶接部に対しても高温クリープ強度が必要とされる。
【0004】
特開昭51−29316には、Ni−Cr−W系合金、Ni−Cr−W−Mo系合金による溶接構造物を作るための溶接用耐熱合金が開示されているが、W量が3〜20%の合金に対して、溶接割れを起こさないような組成範囲を示しているにとどまっている。NI−Cr−W系の合金は溶接割れ感受性が非常に高く、母材と全く同じ化学組成の合金を溶加材に用いた場合、溶接割れを起こし、健全な溶接構造物を作ることは困難である。また、溶接部の高温クリープ強度が母材なみに高いことが高温構造物の健全性を確保する上で重要であるが、Ni−Cr−W系の合金の場合、溶接ワイヤーに加工が可能で、溶接性に優れ、かつ溶接部の高温クリープ強度も母材と同程度に優れた溶加材を開発するには至っていない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、溶接割れ感受性の高いNi−Cr−W系合金に対して、熱間加工性に優れていてワイヤーに加工が可能であるとともに溶接性に優れ、かつ溶接部の高温クリープ強度が母材と同程度に優れた溶接用溶加材を提供することにある。
【0006】
【課題を解決するための手段】
本発明は
C:0.05%以下
Mn:0.1%以下
Si:0.1%以下
(ただし、Mn+Si=0.1%以下)
Cr:17〜20%
W :20〜23%
(ただし、Cr+W=39〜43%)
Ti:0.02〜0.1%
Zr:0.03%以下
Y :0.015%以下
B :0.0003〜0.01%
Al:0.1%以下
Mg:0.05%以下
Nb:0.06%以下
(ただし、10Zr+10B+5Nb+2Y=0.3%以下)
を含有し、残りがNiおよび不可避不純物からなる組成(以上、質量%)を有するNi−Cr−W系合金の溶接用溶加材である。
【0007】
【発明の実施の形態】
本発明の溶接用溶加材は、特公平5−47612で発明したNi−Cr−W系超耐熱合金のうち、Ni−18.5%Cr−21%W合金を骨格組成とした母材合金に対し、合金中に含まれる微量元素の量を調整することにより、溶接用ワイヤーに加工可能であるとともに溶接性が優れ、かつ溶接部の高温クリープ強度を母材なみとすることができる。以下に、本発明の溶接用溶加材の各成分添加理由および組成限定理由について述べる。
【0008】
Cは合金を製造する上で熱間加工性を向上させる元素であり、一般的には高温クリープ強度を向上させる元素である。しかしながら、Ni−Cr−W系合金では、使用温度が高温であるため、クリープ強度はCの量にはあまり依存せず、また使用中にCの合金外への移行が起こる場合がある。さらに、C量が多いと、脆い炭化物の析出により、時効脆化感受性が高くなる。そのため、C量は低く抑えることとし、0.05%以下を含有することとした。好ましい含有量は0.01〜0.04%である。
【0009】
Mn及びSiは合金の溶製時に脱酸作用があり、さらに耐食性向上に有効であるが、熱間加工性、クリープ強度を低下させる。Ni−Cr−W系合金において熱間加工性及びクリープ強度を確保するため、Mn、Si単独ではともに0.1%以下に、両元素が同時に存在する場合には、その和を0.1%以下に限定した。
【0010】
Crは溶接金属の耐食性、高温クリープ強度の確保のために必要であるが、過剰に添加すると溶接ワイヤーへの加工性を損なう。本発明では、特公平5−47612で発明したCr量16〜28%の母材合金のうち、耐食性、高温クリープ強度、加工性を満足するNi−18.5%Cr−21%Wを骨格組成とすることとし、Crの含有量の範囲を17〜20%とした。
【0011】
WはNi−Cr−W系合金において、固溶強化とα2相の析出によりクリープ強度を高める重要な元素である。そのため、CrとWの和はα2相析出領域である39〜43%に限定した。Wは上記のCrの組成範囲とα2相析出領域を考慮し、その含有量を20〜23%とした。
【0012】
TiはNi−Cr−W系合金において、溶接割れ感受性を低くする有益な元素である。上記効果を得るためには、0.02%以上の添加が必要である。しかし、過剰添加は溶接割れ感受性の低減効果を少なくし、耐食性を劣化させるため、上限を0.1%とし、Tiの含有量を0.02〜0.1%と定めた。
【0013】
Zrは熱間加工性を向上させる元素であり、高温クリープ強度の向上に寄与する元素である。しかしながら、Zrは溶接高温割れを助長する元素であり、
0.03%を超えて添加すると溶接割れ感受性が高まり、溶接金属において割れの原因とされるZr富化相が検出された。よってZrは0.03%以下を含有することとした。このZr含有量の上限値は、後に述べる溶接割れ感受性指数からの制限(10Zr+10B+5Nb+2Y≦0.3%)を他の元素が共存しないとして、Zrのみにあてはめた場合の値でもある。
【0014】
Yは耐食性を向上させる上で重要な元素であり、熱間加工性の向上にも役立つが、添加量が0.015%を超えるとクリープ強度及び溶接性を低下させる。そのため、Yは0.015%以下を含有することとした。
【0015】
BはZrと同様に熱間加工性を向上させる元素であり、高温クリープ強度の向上にも寄与する元素である。上記効果はB量0.0002%ではやや不十分で、0.0003%以上Bを含有することで効果が大きい。しかしながら、Bは低融点の化合物を作るため、Bを0.01%以上添加すると溶接割れを助長する。そのため、Bの含有量を0.0003〜0.01%と定めた。
【0016】
Mgは脱酸、脱硫作用があり、溶加材に微量含有することにより、溶接割れ感受性が低下するが、溶接金属中に0.05%を超えて過剰に含有すると溶接割れ感受性は著しく高くなる。よって、Mgは0.05%以下を含有することとした。好ましい含有量は0.0001〜0.05%である。
【0017】
Alは合金の溶製時に脱酸作用があるが、粒界酸化によって耐食性を低下させる。そのため、Alの含有量は母材と同様の0.1%以下とした。
Nbは溶接割れ感受性を高める元素であり、耐食性も低下させる。このため、その含有量を0.06%以下とした。このNb合有量の上限値は、以下に述べる溶接割れ感受性指数からの制限(10Zr+10B+5Nb+2Y≦0.3%)を他の元素が共存しないとして、Nbのみにあてはめた場合の値である。
【0018】
本発明の特徴は、この合金系において、溶接割れ感受性を著しく高めるZr、B、Nb、Yについて、溶接割れ感受性指数を定めたことにある。すなわち、
Zr、B、Nb、Yについては、それらの元素の割れ感受性を高める程度により係数を決め、複合効果を考慮して、溶接割れ感受性指数を10Zr+10B+5Nb+2Yと定めた。この溶接割れ感受性指数の値が0.3%以下となるようにすることにより、この合金系について、溶接性の優れた溶加材を製造することができる。
【0019】
【実施例】
以下、本発明の実施例を比較例と対比させて説明する。表1は、供試材の化学成分を示す。A1〜A6は本発明合金、B1〜B15は比較例である。これらの合金を用いて、表2および表3に示す溶接条件でタングステン・イナートガス(TIG)の溶接による溶接性試験を行った。表2は手動TIGの場合の条件、表3は自動TIG溶接の場合の条件である。
【0020】
【表1】
(その1)

Figure 0004395583
【0021】
【表1】
(その2)
Figure 0004395583
【0022】
【表2】
Figure 0004395583
【0023】
【表3】
Figure 0004395583
【0024】
A1、A2、B1〜B13については、断面が3(mm)×3(mm)の角材を溶加材に用い、手動TIG溶接によって、残りのA3〜A6、B14、B15については、φ1.2(mm)までに加工した溶接用ワイヤーを溶加材に用い、自動TIG溶接によって溶接性試験を実施した。
【0025】
溶加材の溶接性は、C型ジグ拘束突き合わせ溶接割れ試験(以下、FISCO試験)、肉盛溶接による溶接割れ感受性試験、溶接継手の曲げ試験および溶接金属のミクロ組織試験により総合的に評価した。肉盛溶接による溶接割れ感受性試験では、肉盛溶接後に溶接金属部の表面を約4mm切除し、再熱を受けた肉盛溶接部を液体浸透試験により、溶接割れの有無を調べた。
【0026】
A1合金は、溶接性試験および溶接部のクリープ試験片を作製するときの母材としても使用した。溶接性の優れていた合金のうち、A2〜A6、B14を溶加材に用いて、TIG溶接により、A1合金を母材として、溶接継手を作製し、クリープ試験用の試験片を作製した。クリープ試験には、直径6mm、標点間距離30mmの試験片を用いた。A2合金は標点間に母材と溶接金属両方を含む溶接継手試験片、A3合金では溶接継手試験片と試験片が溶接金属のみからなる溶接金属試験片、A4、A5、A6、B14合金では溶接金属試験片を使用した。クリープ試験では、1000℃、29.4MPaの条件で試験を行った。評価の判断は、母材の破断時間の80%以上を合格とし、これに達しないものをクリープ強度不足とした。
【0027】
表4は溶接性および溶接部のクリープ強度の評価結果である。溶接性試験の〇印は溶接性良好、×印は溶接性不良を示す。クリープ強度の評価結果では、〇印を強度十分、×印を強度不足で表し、溶接部の破断時間の母材に対する比も示した。
【0028】
【表4】
Figure 0004395583
【0029】
表1で、比較例において、成分組成および溶接割れ感受性指数で本発明の範囲外の値は*印で示した。溶接割れ感受性指数の算出において、含有量の少ない元素で分析値が検出感度未満となっているものについては、検出感度の値を用いて計算した。表4の評価結果に示したように、本発明の合金は、溶接性試験において溶接割れが発生せず溶接性が良好であり、溶接部のクリープ強度は溶接継手、溶接金属とも十分である。これに対し、比較例の合金は溶接性不良あるいはクリープ強度不足である。
【0030】
図1に本発明合金A6のFISCO試験の結果を示す。本発明合金A6はクレーター割れのみであり、ビード割れは発生していないため、溶接割れ感受性は低い。図2は比較例の溶接合金B2のFISCO試験の結果であり、著しいビード割れが発生している。図3に本発明合金A6の肉盛溶接後の液体浸透試験の結果を示す。本発明合金A6の液体浸透試験では溶接割れは観察されない。これに対して、比較例の溶接合金B2の結果である図4では、著しい溶接高温割れが観察される。図5は本発明合金A1の溶接継手の曲げ試験の結果であり、この合金の溶接継手は180°まで曲げることができ、溶接性は優れている。図6に示した比較合金B13の溶接継手の曲げ試験では、溶接継手は180°まで曲がることなく溶接部で破断した。図7は本発明合金A1の溶接金属のミクロ組織試験の結果であり、割れは観察されない。これに対して、図8に示した比較合金B4の結果では、溶接金属の粒界部に著しい割れが認められる。
【0031】
溶接性が不良であった表4の比較例B1〜B13は、表1に示すように、溶接割れ感受性の指標である10Zr+10B+5Nb+2Yの値が0.3%を越えている。さらに、B1は溶接高温割れを抑えるTiの量が0.002%と低く、B2は溶接割れ感受性を高めるZrが0.041%と高い。B3はTiの量が0.2%と高く、B9はZrの量が0.04%と高く、溶接割れを起こしている。B1〜B13の合金については、溶接性が劣り、溶接割れが発生したため、溶接部のクリープ強度評価ができなかった。
【0032】
比較例のB14およびB15については、溶接割れ感受性の指標である10Zr+10B+5Nb+2Yの値が0.3%以下であり、溶接高温割れも発生しなかった。B14は溶接性は良好であったが、B量が0.0002%と低く、クリープ強度を高めるZr量も低めであることから、クリープ試験における溶接部の破断時間の母材に対する比が0.68と低下した。
【0033】
【発明の効果】
本発明のNi−Cr−W系合金の溶接用溶加材は、特公平5−47612で発明したNi−Cr−W系超耐熱合金のうち、Cr量17〜20%、W量20〜23%の母材合金に対して、溶接ワイヤーに加工が可能で溶接性に優れ、かつ母材に匹敵する優れた高温クリープ強度を有する溶接部を作製することを可能とする。従って、1000℃付近の高温で使用される溶接構造物に適用される。
【図面の簡単な説明】
【図1】本発明合金A6のFISCO試験の結果である。
【図2】比較合金B2のFISOO試験の結果である。
【図3】本発明合金A6の肉盛溶接後の液体浸透試験の結果である。
【図4】比較合金B2の肉盛溶接後の液体浸透試験の結果である。
【図5】本発明合金A1の溶接継手の曲げ試験の結果である。
【図6】比較合金B13の溶接継手の曲げ試験の結果である。
【図7】本発明合金A1の溶接金属のミクロ組織試験の結果である。
【図8】比較合金B4の溶接金属のミクロ組織試験の結果である。[0001]
[Industrial application fields]
The present invention relates to a filler metal for welding of a Ni—Cr—W alloy having excellent high temperature strength and corrosion resistance used in a high temperature gas furnace high temperature structure, a gas turbine, and the like.
[0002]
[Prior art]
Conventionally, Ni—Cr—W alloys, Ni—Cr—W—Mo alloys, and the like have been developed as super heat resistant materials used in high temperature gas furnace high temperature structures, gas turbines, and the like. Since these alloys are used at a high temperature around 1000 ° C., they are required to have excellent high-temperature creep strength and corrosion resistance.
[0003]
In view of such demands, for example, Ni—Cr alloys reinforced with W or Mo have been proposed as disclosed in JP-A-51-29316, JP-B-54-33212, and JP-B-5-47612. In order to manufacture a structure using these alloys, welding is used. Further, since such a structure is used at a high temperature for a long time, a high temperature creep strength is also required for the welded portion.
[0004]
Japanese Patent Application Laid-Open No. 51-29316 discloses a heat-resistant alloy for welding for making a welded structure made of a Ni—Cr—W alloy or a Ni—Cr—W—Mo alloy. For 20% of the alloy, the composition range is kept so as not to cause weld cracking. NI-Cr-W alloys are very susceptible to weld cracking, and when an alloy with the exact same chemical composition as the base metal is used as the filler metal, it is difficult to create a welded structure with weld cracking. It is. In addition, it is important to ensure the high-temperature structure soundness that the high-temperature creep strength of the welded part is as high as that of the base metal, but in the case of Ni-Cr-W alloy, it can be processed into a welding wire However, it has not yet been possible to develop a filler metal having excellent weldability and high-temperature creep strength of the welded portion as well as that of the base material.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide excellent hot workability to a Ni-Cr-W alloy with high weld crack sensitivity, and can be processed into a wire, and also has excellent weldability and high temperature creep strength of a welded portion. Is to provide a welding filler metal that is as excellent as the base metal.
[0006]
[Means for Solving the Problems]
In the present invention, C: 0.05% or less, Mn: 0.1% or less, Si: 0.1% or less (provided that Mn + Si = 0.1% or less)
Cr: 17-20%
W: 20-23%
(However, Cr + W = 39-43%)
Ti: 0.02 to 0.1%
Zr: 0.03% or less Y: 0.015% or less B: 0.0003 to 0.01%
Al: 0.1% or less Mg: 0.05% or less Nb: 0.06% or less (however, 10Zr + 10B + 5Nb + 2Y = 0.3% or less)
Is a filler material for welding a Ni—Cr—W alloy having a composition (more than mass%) consisting of Ni and inevitable impurities.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The filler metal for welding of the present invention is a base metal alloy having a Ni-18.5% Cr-21% W alloy as a skeleton composition among the Ni-Cr-W based superalloys invented in Japanese Patent Publication No. 5-47612. On the other hand, by adjusting the amount of the trace element contained in the alloy, it can be processed into a welding wire and has excellent weldability, and the high temperature creep strength of the welded portion can be made comparable to that of the base material. The reasons for adding each component and the reasons for limiting the composition of the filler metal for welding of the present invention will be described below.
[0008]
C is an element that improves hot workability in producing an alloy, and is generally an element that improves high-temperature creep strength. However, since the use temperature is high in the Ni—Cr—W alloy, the creep strength does not depend much on the amount of C, and the C may move out of the alloy during use. Further, when the amount of C is large, aging embrittlement sensitivity is increased due to precipitation of brittle carbides. Therefore, the amount of C is kept low and 0.05% or less is contained. A preferable content is 0.01 to 0.04%.
[0009]
Mn and Si have a deoxidizing action when the alloy is melted, and are effective in improving corrosion resistance, but reduce hot workability and creep strength. In order to ensure hot workability and creep strength in Ni—Cr—W alloys, both Mn and Si alone are 0.1% or less, and if both elements are present simultaneously, the sum is 0.1%. Limited to:
[0010]
Cr is necessary for securing the corrosion resistance and high temperature creep strength of the weld metal, but if added excessively, the workability to the welding wire is impaired. In the present invention, among the base metal alloy having a Cr amount of 16 to 28% invented in Japanese Patent Publication No. 5-47612, Ni-18.5% Cr-21% W satisfying corrosion resistance, high temperature creep strength and workability is used as a skeleton composition. And the Cr content range was 17 to 20%.
[0011]
W is an important element for increasing the creep strength by solid solution strengthening and precipitation of α 2 phase in the Ni—Cr—W alloy. Therefore, the sum of Cr and W is limited to 39 to 43%, which is the α 2 phase precipitation region. Considering the Cr composition range and the α 2 phase precipitation region, the content of W is set to 20 to 23%.
[0012]
Ti is a beneficial element that lowers weld cracking susceptibility in Ni—Cr—W alloys. In order to acquire the said effect, 0.02% or more needs to be added. However, excessive addition reduces the weld crack sensitivity reduction effect and degrades the corrosion resistance. Therefore, the upper limit was set to 0.1%, and the Ti content was determined to be 0.02 to 0.1%.
[0013]
Zr is an element that improves hot workability and is an element that contributes to the improvement of high-temperature creep strength. However, Zr is an element that promotes weld hot cracking,
When added over 0.03%, the sensitivity to weld cracking increased, and a Zr-enriched phase, which is the cause of cracking in the weld metal, was detected. Therefore, Zr is determined to contain 0.03% or less. This upper limit of the Zr content is also a value when the limit from the weld crack sensitivity index described later (10Zr + 10B + 5Nb + 2Y ≦ 0.3%) is applied only to Zr, assuming that other elements do not coexist.
[0014]
Y is an important element for improving the corrosion resistance and helps to improve the hot workability. However, if the added amount exceeds 0.015%, the creep strength and weldability are lowered. Therefore, Y is determined to contain 0.015% or less.
[0015]
B, like Zr, is an element that improves hot workability, and is an element that also contributes to improvement of high temperature creep strength. The above effect is somewhat insufficient when the B amount is 0.0002%, and the effect is large when B is contained by 0.0003% or more. However, since B forms a low melting point compound, the addition of 0.01% or more of B promotes weld cracking. Therefore, the B content is determined to be 0.0003 to 0.01%.
[0016]
Mg has a deoxidation and desulfurization action, and if contained in a small amount in the filler metal, the weld cracking sensitivity decreases, but if it exceeds 0.05% in the weld metal, the weld cracking sensitivity becomes remarkably high. . Therefore, Mg is determined to contain 0.05% or less. A preferable content is 0.0001 to 0.05%.
[0017]
Al has a deoxidizing action when the alloy is melted, but reduces the corrosion resistance by grain boundary oxidation. Therefore, the Al content is set to 0.1% or less, which is the same as that of the base material.
Nb is an element that increases the sensitivity to weld cracking, and also reduces corrosion resistance. For this reason, the content was made 0.06% or less. This upper limit value of the Nb content is a value obtained when the following limit (10Zr + 10B + 5Nb + 2Y ≦ 0.3%) from the weld crack sensitivity index is applied only to Nb, assuming that other elements do not coexist.
[0018]
The feature of the present invention is that a weld cracking sensitivity index is determined for Zr, B, Nb, and Y that remarkably increase the weld cracking sensitivity in this alloy system. That is,
For Zr, B, Nb, and Y, coefficients were determined depending on the degree to which the crack susceptibility of these elements was increased, and the weld crack susceptibility index was determined to be 10Zr + 10B + 5Nb + 2Y in consideration of the composite effect. By making the value of this weld crack susceptibility index to be 0.3% or less, a filler material having excellent weldability can be produced for this alloy system.
[0019]
【Example】
Examples of the present invention will be described below in comparison with comparative examples. Table 1 shows the chemical components of the test materials. A1 to A6 are the alloys of the present invention, and B1 to B15 are comparative examples. Using these alloys, a weldability test by welding with tungsten inert gas (TIG) was performed under the welding conditions shown in Tables 2 and 3. Table 2 shows conditions for manual TIG, and Table 3 shows conditions for automatic TIG welding.
[0020]
[Table 1]
(Part 1)
Figure 0004395583
[0021]
[Table 1]
(Part 2)
Figure 0004395583
[0022]
[Table 2]
Figure 0004395583
[0023]
[Table 3]
Figure 0004395583
[0024]
For A1, A2, B1 to B13, a cross section of 3 (mm) × 3 (mm) is used as the filler metal, and the remaining A3 to A6, B14, and B15 are φ1.2 by manual TIG welding. A welding wire processed by (mm) was used as a filler metal, and a weldability test was performed by automatic TIG welding.
[0025]
The weldability of the filler metal was comprehensively evaluated by a C-type jig restraint butt welding crack test (hereinafter referred to as FISCO test), weld crack sensitivity test by overlay welding, bending test of welded joint, and microstructure test of weld metal. . In the weld crack susceptibility test by overlay welding, the surface of the weld metal part was excised by about 4 mm after overlay welding, and the weld weld part subjected to reheating was examined for the presence of weld cracks by a liquid penetration test.
[0026]
The A1 alloy was also used as a base material for producing a weldability test and a creep test piece of a weld. Among the alloys having excellent weldability, A2 to A6 and B14 were used as filler materials, and TIG welding was used to produce a welded joint using A1 alloy as a base material, thereby producing a specimen for a creep test. For the creep test, a test piece having a diameter of 6 mm and a distance between gauge points of 30 mm was used. A2 alloy is a welded joint test piece including both the base metal and the weld metal between the gauge marks, A3 alloy is a welded joint test piece and the weld metal test piece is composed of only weld metal, and A4, A5, A6, B14 alloy A weld metal specimen was used. In the creep test, the test was performed at 1000 ° C. and 29.4 MPa. In the judgment of evaluation, 80% or more of the fracture time of the base material was regarded as acceptable, and those not reaching this were regarded as insufficient creep strength.
[0027]
Table 4 shows the evaluation results of weldability and creep strength of the weld. In the weldability test, ◯ indicates good weldability, and x indicates poor weldability. In the evaluation results of the creep strength, the symbol “◯” indicates that the strength is sufficient, the symbol “×” indicates that the strength is insufficient, and the ratio of the fracture time of the weld to the base material is also shown.
[0028]
[Table 4]
Figure 0004395583
[0029]
In Table 1, in the comparative examples, values outside the range of the present invention in terms of component composition and weld cracking sensitivity index are indicated by *. In the calculation of the weld crack sensitivity index, an element having a small content and an analytical value less than the detection sensitivity was calculated using the value of the detection sensitivity. As shown in the evaluation results of Table 4, the alloy of the present invention does not generate weld cracks in the weldability test and has good weldability, and the weld joint has sufficient creep strength for both the welded joint and the weld metal. In contrast, the alloy of the comparative example has poor weldability or insufficient creep strength.
[0030]
FIG. 1 shows the result of the FISCO test of the alloy A6 of the present invention. The alloy A6 of the present invention has only crater cracks and no bead cracks, so the weld crack sensitivity is low. FIG. 2 shows the result of the FISCO test of the welding alloy B2 of the comparative example, and significant bead cracking occurs. FIG. 3 shows the result of the liquid penetration test after overlay welding of the alloy A6 of the present invention. No weld cracking is observed in the liquid penetration test of the alloy A6 of the present invention. On the other hand, remarkable welding hot cracking is observed in FIG. 4 which is the result of the welding alloy B2 of the comparative example. FIG. 5 shows the results of a bending test of the welded joint of the alloy A1 of the present invention. The welded joint of this alloy can be bent up to 180 °, and the weldability is excellent. In the bending test of the welded joint of comparative alloy B13 shown in FIG. 6, the welded joint was broken at the welded portion without bending up to 180 °. FIG. 7 shows the result of the microstructure test of the weld metal of the alloy A1 of the present invention, and no cracks are observed. On the other hand, in the result of the comparative alloy B4 shown in FIG. 8, remarkable cracks are observed in the grain boundary part of the weld metal.
[0031]
As shown in Table 1, in Comparative Examples B1 to B13 in Table 4 in which the weldability was poor, the value of 10Zr + 10B + 5Nb + 2Y, which is an index of weld crack sensitivity, exceeded 0.3%. Further, B1 has a low amount of Ti that suppresses weld hot cracking as low as 0.002%, and B2 has a high Zr of 0.041% that enhances weld crack sensitivity. B3 has a high Ti content of 0.2%, and B9 has a high Zr content of 0.04%, causing weld cracking. Regarding the alloys B1 to B13, weldability was poor and weld cracking occurred, so that the creep strength of the welded portion could not be evaluated.
[0032]
For Comparative Examples B14 and B15, the value of 10Zr + 10B + 5Nb + 2Y, which is an index of weld cracking sensitivity, was 0.3% or less, and no weld hot cracking occurred. Although the weldability of B14 was good, the B content was as low as 0.0002%, and the Zr content that increases the creep strength was also low, so the ratio of the fracture time of the welded portion in the creep test to the base metal was 0. It decreased to 68.
[0033]
【The invention's effect】
The welding material for welding of the Ni—Cr—W alloy of the present invention is a Cr amount of 17-20% and a W amount of 20-23 of the Ni—Cr—W super heat resistant alloy invented in Japanese Patent Publication No. 5-47612. % Of the base metal alloy can be processed into a welding wire, has excellent weldability, and can produce a weld having excellent high temperature creep strength comparable to that of the base metal. Therefore, it is applied to a welded structure used at a high temperature around 1000 ° C.
[Brief description of the drawings]
FIG. 1 is a result of a FISCO test of an alloy A6 of the present invention.
FIG. 2 is a result of FISOO test of comparative alloy B2.
FIG. 3 is a result of a liquid penetration test after overlay welding of an alloy A6 of the present invention.
FIG. 4 is a result of a liquid penetration test after build-up welding of comparative alloy B2.
FIG. 5 is a result of a bending test of a welded joint of the alloy A1 of the present invention.
FIG. 6 is a result of a bending test of a welded joint of comparative alloy B13.
FIG. 7 is a result of a microstructure test of a weld metal of the alloy A1 of the present invention.
FIG. 8 is a result of a microstructure test of a weld metal of comparative alloy B4.

Claims (1)

C:0.05%以下
Mn:0.1%以下
Si:0.1%以下
(ただし、Mn+Si=0.1%以下)
Cr:17〜20%
W :20〜23%
(ただし、Cr+W=39〜43%)
Ti:0.02〜0.1%
Zr:0.03%以下
Y :0.015%以下
B :0.0003〜0.01%
Al:0.1%以下
Mg:0.05%以下
Nb:0.06%以下
(ただし、10Zr+10B+5Nb+2Y=0.3%以下)
を含有し、残りがNiおよび不可避不純物からなる組成(以上、質量%)を有するNi−Cr−W系合金の溶接用溶加材。
C: 0.05% or less Mn: 0.1% or less Si: 0.1% or less (however, Mn + Si = 0.1% or less)
Cr: 17-20%
W: 20-23%
(However, Cr + W = 39-43%)
Ti: 0.02 to 0.1%
Zr: 0.03% or less Y: 0.015% or less B: 0.0003 to 0.01%
Al: 0.1% or less Mg: 0.05% or less Nb: 0.06% or less (however, 10Zr + 10B + 5Nb + 2Y = 0.3% or less)
A filler material for welding of a Ni—Cr—W alloy having a composition (more than mass%) consisting of Ni and the remainder consisting of Ni and inevitable impurities.
JP14211699A 1999-05-21 1999-05-21 Ni-Cr-W alloy alloy filler metal for welding Expired - Fee Related JP4395583B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14211699A JP4395583B2 (en) 1999-05-21 1999-05-21 Ni-Cr-W alloy alloy filler metal for welding
US09/714,981 US6521060B1 (en) 1999-05-21 2000-11-20 Filler metal for use in welding of Ni-Cr-W alloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14211699A JP4395583B2 (en) 1999-05-21 1999-05-21 Ni-Cr-W alloy alloy filler metal for welding
US09/714,981 US6521060B1 (en) 1999-05-21 2000-11-20 Filler metal for use in welding of Ni-Cr-W alloys

Publications (2)

Publication Number Publication Date
JP2000326089A JP2000326089A (en) 2000-11-28
JP4395583B2 true JP4395583B2 (en) 2010-01-13

Family

ID=26474222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14211699A Expired - Fee Related JP4395583B2 (en) 1999-05-21 1999-05-21 Ni-Cr-W alloy alloy filler metal for welding

Country Status (2)

Country Link
US (1) US6521060B1 (en)
JP (1) JP4395583B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669491B2 (en) * 2006-02-16 2014-03-11 Ravi Menon Hard-facing alloys having improved crack resistance
US20100101780A1 (en) * 2006-02-16 2010-04-29 Michael Drew Ballew Process of applying hard-facing alloys having improved crack resistance and tools manufactured therefrom
KR101197990B1 (en) 2010-11-12 2012-11-05 가부시키가이샤 고베 세이코쇼 Ni BASE ALLOY SOLID WIRE FOR WELDING
US8765052B2 (en) 2012-03-27 2014-07-01 Stoody Company Abrasion and corrosion resistant alloy and hardfacing/cladding applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129316A (en) 1974-09-06 1976-03-12 Nippon Steel Corp
JPS5433212A (en) 1977-08-19 1979-03-10 Kawasaki Heavy Ind Ltd Preventing apparatus for dew condensation in exhaust gas from industrial furnace
US5449490A (en) * 1988-12-27 1995-09-12 Japan Atomic Energy Research Institute Nickel-chromium-tungsten base superalloy
JP3135072B2 (en) 1991-08-12 2001-02-13 日本カーリット株式会社 Method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2000326089A (en) 2000-11-28
US6521060B1 (en) 2003-02-18

Similar Documents

Publication Publication Date Title
KR101172953B1 (en) Austenitic heat resisting alloy
JP5270043B2 (en) Ni-based high Cr alloy welding wire, coated arc welding rod, and coated arc weld metal
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP4672555B2 (en) Ni-base high Cr alloy filler metal and welding rod for coated arc welding
JP6519007B2 (en) Method of manufacturing Ni-based heat resistant alloy welded joint
CA2988556C (en) Austenitic heat-resistant alloy and welded structure
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
WO2014119189A1 (en) Coated electrode
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP4395583B2 (en) Ni-Cr-W alloy alloy filler metal for welding
KR20210124464A (en) Covered arc welding rod for high-Cr ferritic heat-resistant steel
JPH044079B2 (en)
JP2021049570A (en) Austenitic stainless steel weld joint
JP3382834B2 (en) Filler for Ni-base high Cr alloy
JPH06142980A (en) Welding material for austenitic stainless steel having excellent high-temperature strength
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JP5138639B2 (en) Welding material for overlaying turbine rotor bearings made of high Cr steel
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
JPH07214374A (en) High ni alloy welding wire
WO2020170928A1 (en) Welding material for high-cr ferritic heat-resistant steels
JP6638551B2 (en) Austenitic heat-resistant steel weld metal and welded joint having the same
JP4040824B2 (en) Weld metal
JP6483540B2 (en) Gas shielded arc welding wire

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees