JP2001107200A - Martensitic stainless steel welded joint excellent in toughness and strength - Google Patents

Martensitic stainless steel welded joint excellent in toughness and strength

Info

Publication number
JP2001107200A
JP2001107200A JP29172499A JP29172499A JP2001107200A JP 2001107200 A JP2001107200 A JP 2001107200A JP 29172499 A JP29172499 A JP 29172499A JP 29172499 A JP29172499 A JP 29172499A JP 2001107200 A JP2001107200 A JP 2001107200A
Authority
JP
Japan
Prior art keywords
welding
toughness
stainless steel
martensitic stainless
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29172499A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ogawa
和博 小川
Takahiro Kushida
隆弘 櫛田
Tomohiko Omura
朋彦 大村
Kunio Kondo
邦夫 近藤
Masahiko Hamada
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29172499A priority Critical patent/JP2001107200A/en
Publication of JP2001107200A publication Critical patent/JP2001107200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a martensitic stainless steel welded joint excellent in toughness and strength, applicable with the general melting and welding a process and also stably producible even in a wide welding condition range. SOLUTION: In this welded joint, both the base material part and the weld metal part are composed of martensitic stainless steel containing <=0.04% C, 0.01 to 1% Si, 0.1 to 1.5% Mn, <=0.02% P, <=0.005% S, 7 to 17% Cr, 0.5 to 9% Ni and 0 to 4% Mo, and the weld metal satisfies the inequality of Cr+ Mo+1.8×Ni<=30 and the inequality of -1<=Cr+Mo-1.7×Ni<=8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アーク溶接法やプ
ラズマ溶接法等の溶融溶接法によって得られる溶接構造
物や溶接管の溶接部、さらには溶接管や継目無管の突き
合わせ円周溶接部として好適な靭性と強度に優れたマル
テンサイト系ステンレス鋼溶接継手に関する。
The present invention relates to a welded portion of a welded structure or a welded pipe obtained by a fusion welding method such as an arc welding method or a plasma welding method, and a butt circumferential welded portion of a welded pipe or a seamless pipe. The present invention relates to a martensitic stainless steel welded joint having excellent toughness and strength.

【0002】[0002]

【従来の技術】マルテンサイト系ステンレス鋼は、経済
性に優れた耐食材料として近年広く用いられるようにな
っている。しかし、溶接構造を前提とする場合には、溶
接時の加熱冷却にともなう硬いマルテンサイト組織の生
成により、溶接部の靭性低下や溶接割れの発生が問題と
なりやすい。また、溶接低温割れ対策としてオーステナ
イト系溶接金属にすると、溶接金属の強度が低くなり、
いわゆるアンダーマッチングとなる。
2. Description of the Related Art Martensitic stainless steels have recently been widely used as corrosion-resistant materials having excellent economic efficiency. However, when a welded structure is presupposed, the formation of a hard martensite structure accompanying heating and cooling during welding tends to cause problems such as a decrease in toughness of a welded portion and generation of a weld crack. In addition, if austenitic weld metal is used as a countermeasure for low-temperature cracking, the strength of the weld metal will decrease,
This is so-called undermatching.

【0003】これらの問題に対しては、特開平10−1
46691号公報に示されるように、ガスシールドアー
ク溶接法においては、フェライト相の安定度とオーステ
ナイト相の安定度を化学組成のコントロールにより制御
して、溶接金属の組織をフェライト相−オーステナイト
相−マルテンサイト相の3相組織にする方法がある。具
体的には、溶接材料のフェライト相の安定度をCr等
量、オーステナイト相の安定度をNi等量でそれぞれ表
し、これらの等量を所定の範囲に規定することにより溶
接金属の組織を上記の3相組織にする方法である。
To solve these problems, Japanese Patent Laid-Open No. 10-1
As disclosed in Japanese Patent No. 46691, in the gas shielded arc welding method, the stability of the ferrite phase and the stability of the austenite phase are controlled by controlling the chemical composition to change the structure of the weld metal to the ferrite phase-austenite phase-martenite. There is a method to make a three-phase structure of the site phase. Specifically, the stability of the ferrite phase of the welding material is represented by Cr equivalents, and the stability of the austenitic phase is represented by Ni equivalents, and by defining these equivalents in a predetermined range, the structure of the weld metal is defined as above. This is a method for making a three-phase structure.

【0004】しかし、マルテンサイト系組織の場合、オ
ーステナイト相の安定度は、Ni当量で支配されるもの
ではなく、むしろCr当量側の元素であるCrやMoの
含有量が多いほど安定となる。加えて、上記の方法は、
被覆アーク溶接法、サブマージアーク溶接法等の溶接法
や、たとえガスシールドアーク溶接法であっても、広い
範囲の溶接条件に対しては十分でないという欠点を有し
ている。すなわち、溶接法や溶接条件が変わると、母材
との希釈率や冷却速度が変わり、その結果必ずしも安定
した靭性や強度が得られるとは限らなくなるためであ
る。
However, in the case of a martensitic structure, the stability of the austenite phase is not governed by the Ni equivalent, but rather becomes more stable as the Cr or Mo content on the Cr equivalent side increases. In addition, the above method
Even welding methods such as a covered arc welding method and a submerged arc welding method, and even a gas shielded arc welding method, have a disadvantage that they are not sufficient for a wide range of welding conditions. That is, when the welding method and welding conditions change, the dilution ratio with the base material and the cooling rate change, and as a result, stable toughness and strength are not always obtained.

【0005】また、特開平11−80881号公報に
は、母材が式「(Cr+1.3×Mo−Ni)≦14」
を満たす鋼、溶接金属が式「15≦{Ni+30×C+
0.5×Mn+0.8×(Cr+Mo+1.5×Si+
0.5×Nb)}≦25」と式「−5.8≦{Ni+3
0×C+0.5×Mn−0.72×(Cr+Mo+1.
5×Si+0.5×Nb)}」を満たす鋼からなり、溶
接部の靭性と耐食性に優れた溶接鋼管が示されている。
しかし、そこに示される溶接鋼管は、母材のCr含有量
が14質量%以下のものでしかない。これは、同公報に
記載されているように、母材のCr含有量が14質量%
を超える場合には、たとえ上記の式「(Cr+1.3×
Mo−Ni)≦14」を満たしても、溶接熱影響部でフ
ェライトが増加し、靭性が確保できないためである。
Japanese Patent Application Laid-Open No. H11-80881 discloses that the base material has the formula “(Cr + 1.3 × Mo—Ni) ≦ 14”.
Steel and weld metal satisfying the formula “15 ≦ ΔNi + 30 × C +
0.5 × Mn + 0.8 × (Cr + Mo + 1.5 × Si +
0.5 × Nb)} ≦ 25 ”and the formula“ −5.8 ≦ {Ni + 3
0 × C + 0.5 × Mn−0.72 × (Cr + Mo + 1.
5 × Si + 0.5 × Nb)}, and shows a welded steel pipe excellent in toughness and corrosion resistance of a welded portion.
However, the welded steel pipe shown therein has a base material having a Cr content of only 14% by mass or less. This is because, as described in the publication, the Cr content of the base material is 14% by mass.
Is exceeded, the above equation “(Cr + 1.3 ×
Mo−Ni) ≦ 14 ”, because the amount of ferrite increases in the heat affected zone of welding and toughness cannot be ensured.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
の被覆アーク溶接法やサブマージアーク溶接法に限ら
ず、ティグ溶接法、ミグ溶接法およびプラズマ溶接法等
の溶融溶接法全般が適用可能で、しかも広い溶接条件範
囲で安定して製造することができる靭性と強度に優れた
マルテンサイト系ステンレス鋼溶接継手を提供すること
にある。
The object of the present invention is not limited to the above-described covered arc welding method and submerged arc welding method, but can be applied to all fusion welding methods such as TIG welding, MIG welding and plasma welding. Another object of the present invention is to provide a martensitic stainless steel welded joint which is stable and can be manufactured stably in a wide range of welding conditions and has excellent toughness and strength.

【0007】[0007]

【課題を解決するための手段】発明者らは、上記の課題
を達成するために種々検討を重ねた。その結果、マルテ
ンサイト系ステンレス鋼の溶接金属で広い溶接条件範囲
で、溶接のままでも安定した靭性と強度を確保し、しか
も溶接高温割れを防止するためには、溶接熱サイクルに
おける冷却過程でのマルテンサイトの生成時期と凝固直
後のフェライトの量を制御すればよいことを知見した。
Means for Solving the Problems The inventors have made various studies in order to achieve the above object. As a result, in a wide range of welding conditions, martensitic stainless steel welding metal ensures stable toughness and strength as it is, and also prevents welding hot cracking during the cooling process in the welding heat cycle. It has been found that the time of martensite formation and the amount of ferrite immediately after solidification may be controlled.

【0008】すなわち、強度は、溶接熱サイクル過程に
おけるマルテンサイトの生成時期を遅くして微細なオー
ステナイト相を分散生成させると確保される。具体的に
は、溶接熱サイクル過程におけるマルテンサイトの生成
時期は、式「Cr+Mo+1.8×Ni」で求められる
値によって大きく左右され、その値を30以下にすれ
ば、マルテンサイトの生成時期が遅くなって微細なオー
ステナイト相が分散生成し、強度が確保される。しか
も、式「Cr+Mo+1.8×Ni≦30」を満たす場
合には、溶接条件が変わって冷却速度が変化してもその
効果は変わらない。
That is, the strength is ensured by delaying the generation time of martensite in the welding heat cycle process to disperse and generate a fine austenite phase. Specifically, the generation time of martensite in the welding heat cycle process largely depends on the value obtained by the equation “Cr + Mo + 1.8 × Ni”, and when the value is set to 30 or less, the generation time of martensite is delayed. As a result, a fine austenite phase is dispersed and generated, and the strength is secured. In addition, when the expression “Cr + Mo + 1.8 × Ni ≦ 30” is satisfied, the effect does not change even if the welding conditions change and the cooling rate changes.

【0009】一方、溶接高温割れの防止には、フェライ
ト相の生成が望ましいが、マルテンサイトが支配的な組
織においては、フェライト相は靭性を著しく増加させ
る。したがって、溶接高温割れ防止と靭性確保を両立さ
せるには、凝固途中ではフェライト相が存在し、凝固の
進行とともにフェライト相が減少し、その後の熱サイク
ル過程でフェライト相を消失させる必要があるが、式
「Cr+Mo−1.7×Ni」で求められる値を−1〜
8にすれば、凝固過程ではフェライト相が存在し、凝固
の後期およびその後の熱サイクル過程でフェライト相が
消失し、溶接高温割れが防止されるとともに靭性が確保
される。しかも、式「−1≦Cr+Mo−1.7×Ni
≦8」を満たす場合には、溶接条件が変わって冷却速度
が変化してもその効果は変わらない。
On the other hand, the formation of a ferrite phase is desirable to prevent welding hot cracking, but in a structure where martensite is dominant, the ferrite phase significantly increases toughness. Therefore, to achieve both high-temperature welding crack prevention and ensuring toughness, it is necessary to have a ferrite phase during solidification, reduce the ferrite phase as solidification progresses, and eliminate the ferrite phase in the subsequent heat cycle process. The value obtained by the expression “Cr + Mo−1.7 × Ni” is −1 to
With the setting of 8, the ferrite phase is present in the solidification process, and the ferrite phase disappears in the later stage of the solidification and in the subsequent heat cycle process, thereby preventing hot cracking at the time of welding and ensuring toughness. In addition, the formula “-1 ≦ Cr + Mo-1.7 × Ni
When ≦ 8 is satisfied, the effect does not change even if the welding conditions change and the cooling rate changes.

【0010】上記の知見に基づく本発明の要旨は、下記
の靭性と強度に優れたマルテンサイト系ステンレス鋼溶
接継手にある。
The gist of the present invention based on the above findings is the following martensitic stainless steel welded joint having excellent toughness and strength.

【0011】母材部が、質量%で、C:0.04%以
下、Si:0.01〜1%、Mn:0.1〜1.5%、
P:0.02%以下、S:0.005%以下、Cr:7
〜17%、Ni:0.5〜9%、Mo:0〜4%、T
i:0〜0.1%、Zr:0〜0.1%、V:0〜0.
1%、Al:0〜0.05%、N:0〜0.04%を含
有し、残部が実質的にFeからなるマルテンサイト系ス
テンレス鋼、溶接金属部が、前記の母材と同じ化学組成
を有し、Cr、NiおよびMoの関係が下記の(1)式と
(2) 式をともに満たすマルテンサイト系ステンレス鋼で
ある靭性と強度に優れたマルテンサイト系ステンレス鋼
溶接継手。
The base material portion is, in mass%, C: 0.04% or less, Si: 0.01 to 1%, Mn: 0.1 to 1.5%,
P: 0.02% or less, S: 0.005% or less, Cr: 7
-17%, Ni: 0.5-9%, Mo: 0-4%, T
i: 0 to 0.1%, Zr: 0 to 0.1%, V: 0 to 0.
1%, Al: 0 to 0.05%, N: 0 to 0.04%, martensitic stainless steel with the balance being substantially Fe, the weld metal having the same chemistry as the base metal It has a composition, and the relationship between Cr, Ni and Mo is expressed by the following equation (1).
A martensitic stainless steel welded joint with excellent toughness and strength, which is a martensitic stainless steel that satisfies both equations (2).

【0012】 Cr+Mo+1.8×Ni≦30 ・・・・・・ (1) −1≦Cr+Mo−1.7×Ni≦8 ・・・・ (2) ここで、上記(1) 式と(2) 式中の元素記号は、溶接金属
中に含まれる各元素の含有量(質量%)を意味する。
Cr + Mo + 1.8 × Ni ≦ 30 (1) −1 ≦ Cr + Mo−1.7 × Ni ≦ 8 (2) Here, the above equation (1) and (2) The symbol of the element in the formula means the content (% by mass) of each element contained in the weld metal.

【0013】[0013]

【発明の実施の形態】以下、本発明のマルテンサイト系
ステンレス鋼溶接継手を構成する母材および溶接金属の
化学組成を上記のように定めた理由について詳細に説明
する。ここで、本発明にいうマルテンサイト系ステンレ
ス鋼とは、金属組織に占めるマルテンサイトの割合が体
積%で50%以上のものをいう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons why the chemical compositions of the base metal and the weld metal constituting the martensitic stainless steel welded joint of the present invention are determined as described above will be described in detail below. Here, the martensitic stainless steel referred to in the present invention refers to a martensitic stainless steel having a metal structure in which the ratio of martensite is 50% or more by volume%.

【0014】なお、以下において、「%」は「質量%」
を意味する。また、各元素の添加目的や含有量の限定理
由は、特に断らない限り、母材および溶接金属ともに共
通である。
In the following, "%" means "% by mass".
Means The purpose of addition of each element and the reason for limiting the content are the same for both the base metal and the weld metal unless otherwise specified.

【0015】C:0.04%以下 C含有量が0.04%を超えると、溶接のままでの溶接
熱影響部(以下、単に「HAZ」という)および溶接金
属の硬度が高くなりすぎ、溶接低温割れが生じる。この
ため、C含有量は0.04%以下とした。好ましい上限
は0.035%、より好ましい上限は0.030%であ
る。なお、C含有量は低ければ低いほどよく、この場合
には溶接のままでのHAZの靭性が良好になる。
C: not more than 0.04% If the C content exceeds 0.04%, the hardness of the weld heat affected zone (hereinafter simply referred to as “HAZ”) as it is welded and the hardness of the weld metal become too high. Weld cold cracking occurs. For this reason, the C content is set to 0.04% or less. A preferred upper limit is 0.035%, and a more preferred upper limit is 0.030%. The lower the C content, the better, and in this case, the toughness of the as-welded HAZ is improved.

【0016】Si:0.01〜1.0% Siは、脱酸成分として必要な元素であり、0.01%
以上が必要である。しかし、その含有量が1.0%を超
えると、熱間加工性が劣化する。このため、Si含有量
は0.01〜1.0%とした。好ましい範囲は0.1〜
0.6%、より好ましい範囲は0.2〜0.5%であ
る。
Si: 0.01 to 1.0% Si is an element necessary as a deoxidizing component, and
The above is necessary. However, when the content exceeds 1.0%, hot workability deteriorates. For this reason, the Si content is set to 0.01 to 1.0%. The preferred range is 0.1 to
0.6%, and a more preferable range is 0.2 to 0.5%.

【0017】Mn:0.1〜1.5% Mnは、上記のSiと同様、脱酸成分として必要な元素
であり、0.1%以上が必要である。しかし、その含有
量が1.5%を超えると、熱間加工性が劣化する。この
ため、Mn含有量は0.1〜1.5%とした。好ましい
範囲は0.3〜1.0%、より好ましい範囲は0.3〜
0.8%である。
Mn: 0.1 to 1.5% Mn is an element necessary as a deoxidizing component, as in the case of Si described above, and requires 0.1% or more. However, when the content exceeds 1.5%, hot workability deteriorates. For this reason, the Mn content is set to 0.1 to 1.5%. A preferred range is 0.3 to 1.0%, and a more preferred range is 0.3 to 1.0%.
0.8%.

【0018】P:0.02%以下 Pは、鋼中に不可避的に含まれる不純物元素であり、そ
の含有量が0.02%を超えると、溶接高温割れ感受性
が増大して溶接割れが生じやすくなる。このため、P含
有量は0.02%以下とした。好ましい上限は0.01
5%、より好ましい上限は0.010%である。なお、
P含有量は低ければ低いほどよい。
P: 0.02% or less P is an impurity element inevitably contained in steel, and if its content exceeds 0.02%, the susceptibility to welding hot cracking increases and weld cracking occurs. It will be easier. Therefore, the P content is set to 0.02% or less. Preferred upper limit is 0.01
5%, and a more preferred upper limit is 0.010%. In addition,
The lower the P content, the better.

【0019】S:0.005%以下 Sは、上記のPと同様、鋼中に不可避的に含まれる不純
物元素であり、その含有量が0.005%を超えると、
溶接高温割れ感受性が増大して溶接割れが生じやすくな
る。このため、S含有量は0.005%以下とした。好
ましい上限は0.003%、より好ましい上限は0.0
02%である。なお、S含有量は低ければ低いほどよ
い。
S: 0.005% or less S is an impurity element inevitably contained in steel, as in the case of the above P, and if its content exceeds 0.005%,
Hot cracking susceptibility is increased, and welding cracks are likely to occur. For this reason, the S content is set to 0.005% or less. A preferred upper limit is 0.003%, and a more preferred upper limit is 0.03%.
02%. The lower the S content, the better.

【0020】Cr:7〜17% Crは、耐炭酸ガス腐食性を向上させる元素である。し
かし、その含有量が7%未満では十分な耐炭酸ガス腐食
性が確保できない。逆に、その含有量が17%を超える
と、HAZでの靭性確保が困難になる。このため、Cr
含有量は7〜17%とした。好ましい範囲は10〜17
%、より好ましい範囲は11〜16.5%である。
Cr: 7 to 17% Cr is an element that improves the carbon dioxide gas corrosion resistance. However, if the content is less than 7%, sufficient carbon dioxide corrosion resistance cannot be ensured. Conversely, if the content exceeds 17%, it becomes difficult to secure toughness in HAZ. For this reason, Cr
The content was 7 to 17%. The preferred range is 10-17
%, And a more preferable range is 11 to 16.5%.

【0021】Ni:0.5〜9% Niは、焼入れのままで、マルテンサイトの割合が50
体積%以上の組織を得るために含有させるが、その含有
量が0.5%未満では、マルテンサイトの割合が50体
積%以上の組織が得られない。逆に、その含有量が9%
を超えると、経済性を損なう。このため、Ni含有量は
0.5〜9%とした。好ましい範囲は2〜9%、より好
ましい範囲は4〜8%である。
Ni: 0.5 to 9% Ni, as-quenched, has a martensite ratio of 50%.
In order to obtain a structure of not less than 0.5% by volume, if the content is less than 0.5%, a structure having a martensite ratio of not less than 50% by volume cannot be obtained. Conversely, its content is 9%
If it exceeds, economic efficiency is impaired. For this reason, the Ni content is set to 0.5 to 9%. A preferred range is 2 to 9%, and a more preferred range is 4 to 8%.

【0022】Mo:0〜4% Moは添加しなくてもよいが、添加すれば、Crとの共
存下で炭酸ガス環境での局部腐食を防止する作用を有す
る元素である。このため、この効果を得たい場合には添
加することができ、その効果は0.7%以上で顕著にな
る。しかし、4%を超えて含有させてもその効果は飽和
し、逆に靭性を確保するために高価なNiの多量添加が
必要になり、経済性を損なう。したがって、添加する場
合のMo含有量は0.7〜4%とするのがよい。
Mo: 0 to 4% Mo may not be added, but if added, is an element having an effect of preventing local corrosion in a carbon dioxide gas environment in the presence of Cr. Therefore, if it is desired to obtain this effect, it can be added, and the effect becomes significant at 0.7% or more. However, even if the content exceeds 4%, the effect is saturated, and conversely, a large amount of expensive Ni must be added to secure toughness, which impairs economic efficiency. Therefore, the Mo content when added is preferably 0.7 to 4%.

【0023】Ti:0〜0.1% Tiは添加しなくてもよいが、添加すれば、Cを固定
し、焼入れ焼戻し後の靭性と強度を向上させる作用を有
する元素である。このため、この効果を得たい場合には
添加することができ、その効果は0.01%以上で顕著
になる。しかし、0.1%を超えて含有させると、溶接
高温割れ感受性を増大させ、溶接割れが生じやすくな
る。したがって、添加する場合のTi含有量は0.01
〜0.1%とするのがよい。
Ti: 0 to 0.1% Ti does not need to be added, but if added, it is an element having the effect of fixing C and improving the toughness and strength after quenching and tempering. Therefore, if this effect is desired, it can be added, and the effect becomes significant at 0.01% or more. However, if it is contained in excess of 0.1%, the susceptibility to welding hot cracking is increased, and welding cracks are likely to occur. Therefore, the Ti content when added is 0.01
It is preferable to set it to 0.1%.

【0024】Zr:0〜0.1% Zrは添加しなくてもよいが、添加すれば、上記のTi
と同様、Cを固定し、焼入れ焼戻し後の靭性と強度を向
上させる作用を有する元素である。このため、この効果
を得たい場合には添加することができ、その効果は0.
005%以上で顕著になる。しかし、0.1%を超えて
含有させると、溶接高温割れ感受性を増大させ、溶接割
れが生じやすくなる。したがって、添加する場合のZr
含有量は0.005〜0.1%とするのがよい。
Zr: 0 to 0.1% Zr may not be added, but if added, the above-mentioned Ti
Similarly to the above, it is an element having an effect of fixing C and improving the toughness and strength after quenching and tempering. Therefore, if it is desired to obtain this effect, it can be added.
It becomes significant at 005% or more. However, if it is contained in excess of 0.1%, the susceptibility to welding hot cracking is increased, and welding cracks are likely to occur. Therefore, when Zr is added,
The content is preferably set to 0.005 to 0.1%.

【0025】V:0〜0.1% Vは添加しなくてもよいが、添加すれば、Cとの析出物
を生成し、強度を向上させる作用を有する元素である。
このため、この効果を得たい場合には添加することがで
き、その効果は0.03%以上で顕著になる。しかし、
0.1%を超えて含有させると、靭性を損なう。したが
って、添加する場合のV含有量は0.03〜0.1%と
するのがよい。
V: 0 to 0.1% V may not be added, but if added, is an element having the effect of forming a precipitate with C and improving the strength.
Therefore, if it is desired to obtain this effect, it can be added, and the effect becomes significant at 0.03% or more. But,
If the content exceeds 0.1%, the toughness is impaired. Therefore, when added, the V content is preferably set to 0.03 to 0.1%.

【0026】Al:0〜0.05% Alは添加しなくてもよいが、添加すれば、強力な脱酸
作用を有する元素であるので、上記のSiやMn添加量
の低減が図れる。このため、この効果を得たい場合には
添加することができ、その効果は0.01%以上で顕著
になる。しかし、0.05%を超えて含有させると、粗
大な酸化物を生成し、靭性低下を招く。したがって、添
加する場合のAl含有量は0.01〜0.05%とする
のがよい。
Al: 0 to 0.05% Al does not have to be added, but if added, it is an element having a strong deoxidizing effect, so that the above-mentioned addition amounts of Si and Mn can be reduced. Therefore, if this effect is desired, it can be added, and the effect becomes significant at 0.01% or more. However, when the content exceeds 0.05%, a coarse oxide is generated, and the toughness is reduced. Therefore, the content of Al when added is preferably 0.01 to 0.05%.

【0027】N:0〜0.04% Nは添加しなくてもよいが、添加すれば、固溶強化に寄
与し、強度を向上させる作用を有する元素である。この
ため、この効果を得たい場合には添加することができ、
その効果は0.001%以上で顕著になる。しかし、
0.04%を超えて含有させると、脆化を招く。したが
って、添加する場合のN含有量は0.001〜0.04
%とするのがよい。
N: 0 to 0.04% N may not be added, but if added, it is an element that contributes to solid solution strengthening and has the effect of improving strength. Therefore, if you want to get this effect, you can add
The effect becomes significant at 0.001% or more. But,
If the content exceeds 0.04%, embrittlement is caused. Therefore, the N content when added is 0.001 to 0.04.
%.

【0028】ただし、本発明の溶接継手を構成する溶接
金属については、上記の範囲内において、そのCr、N
iおよびMoの含有量は下記の(1) 式と(2) 式をともに
満たす必要があり、その理由は次の通りである。
However, as for the weld metal constituting the welded joint of the present invention, the Cr, N
It is necessary that the contents of i and Mo satisfy both the following expressions (1) and (2) for the following reasons.

【0029】 Cr+Mo+1.8×Ni≦30 ・・・・・・ (1) −1≦Cr+Mo−1.7×Ni≦8 ・・・・ (2) 式「Cr+Mo+1.8×Ni」で求められる値が30
を超えると、溶接熱サイクル過程におけるマルテンサイ
ト相の生成時期が早すぎて微細なオーステナイト相が分
散生成せず、溶接のままでは所望の靭性が確保できな
い。
Cr + Mo + 1.8 × Ni ≦ 30 (1) −1 ≦ Cr + Mo−1.7 × Ni ≦ 8 (2) Value obtained by equation “Cr + Mo + 1.8 × Ni” Is 30
If it exceeds, the generation time of the martensite phase in the welding heat cycle process is too early, so that the fine austenite phase is not dispersed and generated, and the desired toughness cannot be ensured by welding.

【0030】また、式「Cr+Mo−1.7×Ni」で
求められる値が−1未満では、凝固時にフェライト相が
生成せず、溶接高温割れ感受性が高くなり、溶接高温割
れが発生する。逆に、式「Cr+Mo−1.7×Ni」
で求められる値が8を超えると、冷却後も多くのフェラ
イト相が残存し、靭性が低下する。
If the value obtained by the formula "Cr + Mo-1.7 × Ni" is less than -1, no ferrite phase is formed during solidification, the susceptibility to hot cracking is increased, and hot cracking occurs. Conversely, the formula “Cr + Mo−1.7 × Ni”
If the value determined in step (1) exceeds 8, many ferrite phases remain even after cooling, and the toughness is reduced.

【0031】したがって、本発明では溶接金属のCr、
NiおよびMoの含有量を上記の範囲内において上記の
(1) 式と(2) 式とをともに満たす量と定めた。
Therefore, in the present invention, Cr of the weld metal,
When the content of Ni and Mo is within the above range,
It is determined that the quantity satisfies both the equations (1) and (2).

【0032】なお、上記(1) 式の好ましい上限は29、
より好ましい上限は28である。また、上記(2) 式の好
ましい下限は0(ゼロ)、より好ましい下限は2であ
り、好ましい上限は7、より好ましい上限は6である。
The preferred upper limit of the above formula (1) is 29,
A more preferred upper limit is 28. The preferred lower limit of the above formula (2) is 0 (zero), the more preferred lower limit is 2, the preferred upper limit is 7, and the more preferred upper limit is 6.

【0033】溶接継手を構成する母材は、溶接時に溶接
金属中に溶融混合する。このため、本発明のオーステナ
イト系合金溶接継手の製作にあたっては、継手を構成す
る母材の化学組成と溶接法およびその溶接条件によって
決まる母材の希釈率を考慮し、溶接金属の化学組成が本
発明で規定する上記の範囲内に収まるような化学組成を
有する溶接材料を選定して用いる必要があることはいう
までもない。
The base material constituting the weld joint is melted and mixed into the weld metal during welding. Therefore, in producing the austenitic alloy welded joint of the present invention, the chemical composition of the base metal constituting the joint and the dilution ratio of the base metal determined by the welding method and the welding conditions are taken into consideration, and the chemical composition of the weld metal is determined by the following formula. It goes without saying that it is necessary to select and use a welding material having a chemical composition falling within the above range specified in the invention.

【0034】[0034]

【実施例】表1に示す化学組成を有する6種類の板厚1
7mmの母材鋼板と10種類の溶接材料を準備した。
EXAMPLES Six types of sheet thicknesses 1 having the chemical compositions shown in Table 1
A 7 mm base steel sheet and 10 types of welding materials were prepared.

【0035】[0035]

【表1】 [Table 1]

【0036】準備した母材鋼板は、開先角度60゜、ル
ートフェイス厚さ2mmのV開先を形成する開先加工を
施し、表2に示す組み合わせで突き合わせた後、表2に
示す組み合わせの溶接材料と溶接法とで溶融溶接を行
い、溶接継手を作製した。
The prepared base steel sheet was subjected to groove processing for forming a V groove having a groove angle of 60 ° and a root face thickness of 2 mm, and butted in the combinations shown in Table 2. Melt welding was performed with the welding material and the welding method to produce a welded joint.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】なお、表2の溶接法欄に示す各記号は、そ
れぞれ下記の溶接法を意味する。
Each symbol shown in the welding method column of Table 2 means the following welding method, respectively.

【0040】MAG:マグ溶接法、PAW:プラズマ溶
接法、TIG:ティグ溶接法、SAW:サブマージドア
ーク溶接法、SMAW:被覆アーク溶接法。
MAG: MAG welding, PAW: Plasma welding, TIG: TIG welding, SAW: Submerged arc welding, SMAW: Covered arc welding.

【0041】また、準備した溶接材料は、SAWとSM
AWでは外径4mm、MAG、PAWおよびTIGでは
外径1.6mmの線材に加工し、SMAW用についての
みその外周にJIS Z 3221に規定される要件を
満たす汎用ステンレス鋼被覆アーク溶接棒と同じフラッ
クスを被覆して使用した。
The welding materials prepared were SAW and SM.
For AW, 4mm outer diameter, for MAG, PAW and TIG, it is processed into a wire rod with 1.6mm outer diameter. Was used.

【0042】さらに、MAGはシールドガスに10体積
%がCO2 で、残部がArの混合ガス、PAWとTIG
はシールドガスに純Arガスを用いて行い、SAWのフ
ラックスには住金溶接工業(株)社製の商品No. LP3
を用いた。
Further, MAG is a shielding gas containing 10% by volume of CO 2 , the balance being Ar mixed gas, PAW and TIG.
Is performed using pure Ar gas as a shielding gas, and the flux of SAW is a product No. LP3 manufactured by Sumitomo Welding Industry Co., Ltd.
Was used.

【0043】また更に、各溶接法の溶接条件は、良好な
ビード形状が得られる表2に示す入熱量(kJ/cm)
=[溶接電流×溶接電圧/溶接速度]に設定した。
Further, the welding conditions of each welding method are such that the heat input (kJ / cm) shown in Table 2 at which a good bead shape is obtained.
= [Welding current x welding voltage / welding speed].

【0044】そして、得られた各溶接継手の溶接金属の
化学組成を調べる一方、次の各試験に供し、その性能を
評価した。
Then, while the chemical composition of the weld metal of each of the obtained welded joints was examined, it was subjected to the following tests to evaluate its performance.

【0045】引張試験:溶接金属部から、平行部の直径
が6mm、長さが30mmの試験片を採取して室温にて
の引張試験を行い、降伏応力が800MPa以上のもの
を合格「○」、800MPa未満のものを不合格「×」
とした。
Tensile test: A test piece having a parallel part diameter of 6 mm and a length of 30 mm was taken from the weld metal part and subjected to a tensile test at room temperature. , Those less than 800 MPa were rejected "x"
And

【0046】シャルピー衝撃試験:溶接金属中央に深さ
2mmのVノッチを設けた幅10mm、厚さ10mm、
長さ50mmの溶接金属の靭性評価用の試験片と、溶融
境界に深さ2mmのVノッチを設けた上記と同様のHA
Zの靭性評価用の試験片とを採取して試験温度−30℃
にて試験し、衝撃値が50J/cm2 以上のものを合格
「○」、50J/cm2 未満のものを不合格「×」とし
た。
Charpy impact test: 10 mm in width and 10 mm in thickness provided with a V notch having a depth of 2 mm at the center of the weld metal.
A test piece for evaluating the toughness of a weld metal having a length of 50 mm, and a HA similar to the above having a V notch having a depth of 2 mm at the fusion boundary.
A test specimen for evaluating the toughness of Z was taken, and the test temperature was -30 ° C.
Tested in impact value passed 50 J / cm 2 or more of "○", those of less than 50 J / cm 2 was unacceptable "×".

【0047】側曲げ試験:溶接金属部が長手方向の中央
に位置する厚さ17mm、幅10mm、長さ200mm
の試験片を採取して曲率半径20mmにて180度曲げ
試験を行い、溶接金属部に割れの発生が認められなかっ
たもの合格「○」、認められたものを不合格「×」とし
た。
Side bending test: thickness 17 mm, width 10 mm, length 200 mm where the weld metal part is located at the center in the longitudinal direction
And a 180 ° bending test was performed at a radius of curvature of 20 mm. A test piece with no occurrence of cracks in the weld metal was evaluated as “OK”, and a test piece with “X” was rejected.

【0048】以上の結果を、表2と表3に併せて示し
た。
The above results are shown in Tables 2 and 3.

【0049】表2と表3に示す結果からわかるように、
本発明で規定する要件を満たす試験代符A1〜A14に
見られるように、各種溶接法、溶接条件にて耐割れ性、
強度および靭性を同時に満足する溶接継手が得られてい
る。
As can be seen from the results shown in Tables 2 and 3,
As can be seen from the test marks A1 to A14 satisfying the requirements specified in the present invention, crack resistance is obtained by various welding methods and welding conditions.
A welded joint satisfying both strength and toughness has been obtained.

【0050】これに対し、試験代符B1、B2およびB
6のように、式「Cr+Mo−1.7×Ni」値が過大
な場合には靭性が劣化し、試験代符B3、B5およびB
6のように、式「Cr+Mo+1.8×Ni」値が過大
な場合には強度が低下した。また、試験代符B4のよう
に、式「Cr+Mo−1.7×Ni」値が過少な場合に
は、溶接割れが生じた。
On the other hand, test signs B1, B2 and B
When the value of the expression “Cr + Mo−1.7 × Ni” is excessive, as in the case of No. 6, the toughness deteriorates, and the test codes B3, B5 and B
As in 6, when the value of the expression “Cr + Mo + 1.8 × Ni” was excessive, the strength was reduced. When the value of the expression “Cr + Mo−1.7 × Ni” is too small, as in the test code B4, welding cracks occurred.

【0051】[0051]

【発明の効果】本発明のマルテンサイト系ステンレス鋼
溶接継手は、靭性、強度および耐割れ性のいずれにも優
れているので、例えば溶接構造物や溶接管などの安全性
が向上する。また、この溶接継手は広い溶接条件範囲で
得られるので、溶接施工性が向上する。
The martensitic stainless steel welded joint of the present invention is excellent in toughness, strength and crack resistance, so that, for example, the safety of welded structures and welded pipes is improved. In addition, since this welded joint can be obtained in a wide range of welding conditions, welding workability is improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 朋彦 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 近藤 邦夫 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 濱田 昌彦 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 Fターム(参考) 4E001 AA03 BB05 BB07 BB08 BB11 CA03 4E028 CA13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohiko Omura 4-33, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Inside Sumitomo Metal Industries, Ltd. (72) Kunio Kondo 4-chome, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture No. 5-33 Sumitomo Metal Industries, Ltd. (72) Inventor Masahiko Hamada 4-33 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture F-term in Sumitomo Metal Industries, Ltd. 4E001 AA03 BB05 BB07 BB08 BB11 CA03 4E028 CA13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】母材部が、質量%で、C:0.04%以
下、Si:0.01〜1%、Mn:0.1〜1.5%、
P:0.02%以下、S:0.005%以下、Cr:7
〜17%、Ni:0.5〜9%、Mo:0〜4%、T
i:0〜0.1%、Zr:0〜0.1%、V:0〜0.
1%、Al:0〜0.05%、N:0〜0.04%を含
有し、残部が実質的にFeからなるマルテンサイト系ス
テンレス鋼、溶接金属部が、前記の母材と同じ化学組成
を有し、Cr、NiおよびMoの関係が下記の(1)式と
(2) 式をともに満たすマルテンサイト系ステンレス鋼で
あることを特徴とする靭性と強度に優れたマルテンサイ
ト系ステンレス鋼溶接継手。 Cr+Mo+1.8×Ni≦30 ・・・・・・ (1) −1≦Cr+Mo−1.7×Ni≦8 ・・・・ (2) ここで、上記(1) 式と(2) 式中の元素記号は、溶接金属
中に含まれる各元素の含有量(質量%)を意味する。
1. The base material portion is, in mass%, C: 0.04% or less, Si: 0.01 to 1%, Mn: 0.1 to 1.5%,
P: 0.02% or less, S: 0.005% or less, Cr: 7
-17%, Ni: 0.5-9%, Mo: 0-4%, T
i: 0 to 0.1%, Zr: 0 to 0.1%, V: 0 to 0.
1%, Al: 0 to 0.05%, N: 0 to 0.04%, martensitic stainless steel with the balance being substantially Fe, the weld metal having the same chemistry as the base metal It has a composition, and the relationship between Cr, Ni and Mo is expressed by the following equation (1).
A martensitic stainless steel welded joint having excellent toughness and strength, characterized in that it is a martensitic stainless steel satisfying both equations (2). Cr + Mo + 1.8 × Ni ≦ 30 (1) −1 ≦ Cr + Mo−1.7 × Ni ≦ 8 (2) Here, in the above equations (1) and (2), The element symbol means the content (% by mass) of each element contained in the weld metal.
JP29172499A 1999-10-14 1999-10-14 Martensitic stainless steel welded joint excellent in toughness and strength Pending JP2001107200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29172499A JP2001107200A (en) 1999-10-14 1999-10-14 Martensitic stainless steel welded joint excellent in toughness and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29172499A JP2001107200A (en) 1999-10-14 1999-10-14 Martensitic stainless steel welded joint excellent in toughness and strength

Publications (1)

Publication Number Publication Date
JP2001107200A true JP2001107200A (en) 2001-04-17

Family

ID=17772583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29172499A Pending JP2001107200A (en) 1999-10-14 1999-10-14 Martensitic stainless steel welded joint excellent in toughness and strength

Country Status (1)

Country Link
JP (1) JP2001107200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339044A (en) * 2001-05-15 2002-11-27 Nkk Corp High strength martensite stainless steel strip and production method therefor
JP2003071589A (en) * 2001-08-30 2003-03-11 Kawasaki Steel Corp Manufacturing method for high strength steel pipe joint for oil well
JP2007238983A (en) * 2006-03-07 2007-09-20 Jfe Steel Kk Martensitic stainless steel having superior efficiency and stability in tempering
CN114952050A (en) * 2022-06-15 2022-08-30 南京工业大学 Composite welding method suitable for large-diameter thick-wall cylinder body with diameter of more than 8mm

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339044A (en) * 2001-05-15 2002-11-27 Nkk Corp High strength martensite stainless steel strip and production method therefor
JP2003071589A (en) * 2001-08-30 2003-03-11 Kawasaki Steel Corp Manufacturing method for high strength steel pipe joint for oil well
JP2007238983A (en) * 2006-03-07 2007-09-20 Jfe Steel Kk Martensitic stainless steel having superior efficiency and stability in tempering
CN114952050A (en) * 2022-06-15 2022-08-30 南京工业大学 Composite welding method suitable for large-diameter thick-wall cylinder body with diameter of more than 8mm
CN114952050B (en) * 2022-06-15 2023-04-14 南京工业大学 Composite welding method suitable for large-diameter thick-wall cylinder body with diameter of more than 8mm

Similar Documents

Publication Publication Date Title
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
JP2001107196A (en) Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
JP5170297B1 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
JP2006289405A (en) Gas shielded arc welding wire for steel for refractory structure
JP3454354B2 (en) Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JPH10146691A (en) Method for welding high chromium steel
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP2007119811A (en) Welded joint and its manufacturing method
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3504518B2 (en) Welding material for martensitic stainless steel, welded joint and method for producing the same
JPH10324950A (en) High-strength welded steel structure, and its manufacture
JP3815227B2 (en) Martensitic stainless steel welded joint with excellent strain aging resistance
KR100805060B1 (en) TIG WELDING METHOD TO IMPROVE PITTING CORROSION RESISTANCE OF 22%Cr DUPLEX STAINLESS STEEL WELDS
JP2001107200A (en) Martensitic stainless steel welded joint excellent in toughness and strength
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
JP2000015447A (en) Welding method of martensitic stainless steel
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JPH01215490A (en) Welding wire for cr-mo low alloy steel
JP2000312987A (en) Welding wire
JPH09225680A (en) Welding wire for ferritic stainless steel
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JP2004148347A (en) Welding material for welding austenitic stainless steel and welding method using the welding material

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A02