JPH0558835B2 - - Google Patents

Info

Publication number
JPH0558835B2
JPH0558835B2 JP1715188A JP1715188A JPH0558835B2 JP H0558835 B2 JPH0558835 B2 JP H0558835B2 JP 1715188 A JP1715188 A JP 1715188A JP 1715188 A JP1715188 A JP 1715188A JP H0558835 B2 JPH0558835 B2 JP H0558835B2
Authority
JP
Japan
Prior art keywords
welding
metal
steel
intermediate layer
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1715188A
Other languages
Japanese (ja)
Other versions
JPH01197073A (en
Inventor
Takashi Fukuda
Masaru Kanetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
NOF Corp
Original Assignee
Japan Steel Works Ltd
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, NOF Corp, Nippon Oil and Fats Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP1715188A priority Critical patent/JPH01197073A/en
Publication of JPH01197073A publication Critical patent/JPH01197073A/en
Publication of JPH0558835B2 publication Critical patent/JPH0558835B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は完全オーステナイト系ステンレス鋼あ
るいは鉄基、ニツケル基のスーパーアロイクラツ
ド鋼の継手溶接法に関する。 〔従来の技術〕 一般のステンレス鋼よりニツケル含有量を15〜
20%以上に高めたいわゆる完全オーステナイト系
ステンレス鋼あるいは鉄基、ニツケル基のスーパ
ーアロイは、高い耐食性、耐応力腐食割れ抵抗、
耐熱強度等を有しており、石油ガス生産用ライン
パイプ、ガス処理プラント、一般化学プラント、
製紙プラント等用に使用され始めている。 これら合金は一般に価格が高く、また鋼に比べ
て強度も低いため、これら合金を合材として強度
を高め且つ経済的に利用したクラツド鋼が広く利
用されるようになつてきた。これらのクラツド鋼
は通常、溶接施工され、構造物として使用され
る。クラツド鋼は性質の異なる2種以上の材料か
ら成るため溶接方法には工夫を必要とするが、今
まで経済的且つ十分な継手性能を有する溶接方法
が種々提案されており、すでに実用化されてい
る。構造物としてのクラツド鋼の継手溶接は、一
般に第3図イ,ロに示す如く行なわれている。す
なわち、第3図イにおいては、合材1側を開口部
とするV型開先を設け、開先底部より母材2と同
等組成の溶接金属3で母材2を溶接した後、母材
溶接金属3の上に合金組成が合材1と同等か、あ
るいはそれ以上の高合金組成を有する溶接材料を
用いて合材1を溶接し、合材1と同等か或はそれ
以上の性能を有する合材溶接金属4を得ていた。 また第3図ロではX型開先を設け、まず母材2
側より母材2を母材2と同等の母材溶接金属3a
により溶接し、次いで合材1側より母材2を母材
2と同等の母材溶接金属3bを溶接し、該溶接金
属3bの上に合材1と同等、あるいはそれ以上の
高合金の合材溶接金属4により溶接して良好な溶
接継手を得ていた。 このように、ステンレスクラツド鋼の継手溶接
作業が合材1側から実施可能な場合は第3図イ,
ロに基いて説明した方法で問題なく行なわれる
が、内面がスーパーアロイからなるクラツド鋼管
の管同志の周継手、密閉容器あるいは比較的面積
が広く実際上、溶接個所の反転が困難なクラツド
鋼板等の溶接においては、母材側に開いた溶接開
先を設け、溶接は母材側からのみ施工せざるを得
ない場合が多い。この様な場合の溶接法として
は、第4図に示す様な方法が従来から用いられて
いる。すなわち合材1もしくは、これと略同等の
溶接材料4′を合材1側から母材2側に至る全厚
に適用していた。 〔発明が解決しようとする課題〕 第4図に示す従来の溶接方法では、合材側に合
材相当の溶接材料で溶接した後、その上を母材相
当の溶接材料で溶接すると、母材溶接金属は合材
側溶接金属を溶融し多量のクロム、ニツケル、モ
リブデン等の合金をピツクアツプするために高温
割れ、あるいは低温割れを発生し、さらに延靭性
が著しく低下する。 又、第4図の従来の方法では、1種類の溶接材
料を使う点では簡便ではあるが、次の様な欠点を
有している。すなわち、母材側から溶接作業を行
なつて、クラツド鋼全厚をスーパーアロイ系高合
金鋼を用いて溶接すると、溶接材料費が高額とな
り、また溶接金属は全てスーパーアロイ系で構成
されるために母材によつては溶接継手部の強度が
母材強度を下回る恐れもある。さらに、スーパー
アロイクラツド鋼の構造物は、高温域又は高温と
室温との間のくり返えし温度域等の熱環境下で使
用されることが多く、この様な使用条件下では、
溶接金属の全層がスーパーアロイで構成される
と、溶接金属と母材との熱膨張係数の相違のため
に熱応力を発生して溶接継手が変形したり、母材
から溶接金属へ炭素の拡散のために母材とのボン
ド部のクリープ強度が低下するといつた問題があ
つた。 〔課題を解決するための手段〕 本発明は上記の事情に鑑みてなされたもので、
初層をスーパーアロイ系合金で溶接した後、割れ
および延靭性低下の防止を目的とした特殊な中間
層を設け、その上を母材相当の溶加材で溶接する
ことで解決することを試みた。 すなわち、本発明は、Ni含有量が重量%で15
%以上のステンレス鋼もしくは、Ni基合金を合
材とし炭素鋼もしくは低合金鋼を母材とするスー
パーアロイクラツド鋼の継手溶接において、母材
側を開口とする開先を設け、最初に合材と同等の
高合金の化学組成の溶加材により合材部を溶接
し、この合材溶接金属の上に化学組成が重量%で
Crが16%を越え、40%以下で、残部がFeならび
に不可避不純物元素からなる添加材を用いて第1
中間層を溶接した後、化学組成が重量%でC
0.02%以下、Si 0.1〜0.3%およびTi 0.3〜1.0%、
Nb 0.3〜1.0%の1種または2種を含み、残部が
Feならびに不可避不純物元素からなる溶加材を
用いて第2中間層を溶接し、さらに該第2中間層
上に母材と同等の炭素鋼もしくは低合金鋼溶加材
にて最終層まで溶接することを特徴とするスーパ
ーアロイクラツド鋼の継手溶接方法である。 〔作用〕 本発明に係るスーパーアロイクラツド鋼の継手
溶接方法の詳細を図面を参照して説明する。第1
図において、継手部の両母材2側を開口部とする
V型開先を設け、両合材1は定き合わせとしてあ
る。開先はV型以外にU型も使用できる。 まず最初に、合材1のみの溶接が行なわれ、合
材溶接金属4で接合される。この場合に合材1,
1のみを溶接させることができれば、溶加材を用
いる必要はないが、母材2,2の一部を溶融させ
る恐れのある場合には合材1よりも合金組成の高
い溶加材を用いて溶接し、合材溶接金属4の化学
組成が所定の組成範囲に入るようにする必要があ
る。次に合材溶接金属4の上に、高Cr系の溶加
材を用いて第1中間層を1層以上溶接する。この
際に得られる第1中間層溶接金属5のミクロ組織
が母材2ならびに合材溶接金属4からの溶け込み
により、フエライト相量が面積率で3%〜40%で
残部がオーステナイト相になるようにしなければ
ならない。 この様な第1中間層溶接金属5を得るためには
重量%でCr16%を越え、40%以下、残部Feなら
びに不可避不純物元素からなる溶加材を使用する
必要がある。第1中間層金属5のミクロ組織を上
記の範囲にコントロールすることにより、高温割
れあるいは強靭性の低下が防止できる。 次にこの上に母材相当の炭素鋼あるいは低合金
鋼の溶加材で溶接すると、第1中間層溶接金属5
のNi、Cr、Mo等が混入し、炭素鋼溶接層は低温
割れ、あるいは著しい強靭性の低下を招く。この
様な合金元素が混入しても、割れあるいは延靭性
の低下を防止するためには、溶加材は十分低いC
含有量で且つCを炭化物として安定化させる必要
があり、そのためにはTiあるいはNbを含有させ
る必要がある。すなわち重量%でC 0.02%以
下、Si 0.1〜0.3%およびTi 0.3〜1.0%、Nb0.3〜
1.0%の1種または2種を含み、残部をFeならび
に不可避不純物元素からなる溶加材を用いて溶接
しなければならない。 次に上記溶加材を溶接して得られた第2中間層
溶接金属6の上に母材2と同等かそれ以上の合金
元素を含有する溶加材を用いて両母材2の全厚を
母材溶接金属3によつて接合する。これに適用さ
れる溶接法、特に低炭素中間肉盛法としては、低
入熱、低希釈溶接が望ましく、パルス−TIG溶
接、パルス−MIG溶接、被覆アーク溶接が適し
ているが、被覆アーク溶接の場合は溶接棒の棒径
を4mmφ以下とする。 次に第1中間層を溶接するための溶加材の化学
組成の限定理由について述べる。 第1中間層溶接金属5を溶接する際に適用され
る溶加材のCr量は10%以下にすると、第1中間
層溶接金属5のミクロ組織がほぼ100%オーステ
ナイト相になるため高温割れが発生する。一方40
%以上のCr含有量になると第1中間層溶接金属
5が極めて高いCr含有量になり、極めて延靭性
の低いものになる。次に第2中間層溶接金属6を
溶接する際に使用される溶加材の組成の限定理由
について説明する。 Cが低いほど第2中間層溶接金属6の硬度は低
く、靭性も良好となる。しかしC 0.02%以上に
なると第2中間層溶接金属6は、母材2に含有す
る炭素の移動によつて炭素が濃化し、極めて硬度
が高くなり、第2中間層溶接金属6の性能劣化を
招く。Siは添加材の溶融時における流動性を良好
とし、且つ脱酸剤として作用する。脱酸剤として
Siは0.1%以上を必要とし、0.3%以上添加すると
靭性の著しい低下を招くのでその範囲を0.1〜0.3
%とした。TiとNbは、Cを固定するために必要
な元素であり、TiはC量の4倍以上、NbはC量
の8倍以上を必要とするが、過剰のTi、Nbの添
加による靭性の低下および経済性を考慮して、そ
れぞれ1.0%以下とした。また溶接時にTi、Nbは
空気中へ飛散し、有効量が減少するのでそれぞれ
の下限値を0.3%とした。 〔実施例〕 つぎに、本発明の実施例を説明する。供試材と
して、合材に厚さ2.5mmのインコロイ825材を母材
に厚さ19mmのAPI 5L−X60材から成るスーパー
アロイクラツド鋼板を使用した。開先形状は第2
図イに示すごとく、V型で母材2の開先角度α=
α′=30°である。まず、第2図イに示す開先形状
の合材1をインコネル625のTIG溶接棒を用いて
第2図ロに示すごとく溶接し、合材溶接金属を得
た。次いで合材溶接金属上に中間層用溶加材とし
て第1表の化学組成を有する高Cr系の溶加材を
第2表に示した溶接条件で肉盛りした(試験No.1
〜No.4)。比較のため、普通炭素鋼溶加材(試験
No.5)を用い、インコネル625層の上に被覆アー
ク溶接法により第2表の溶接条件にて母材側全厚
最終層まで溶接した(試験No.5)。
[Industrial Field of Application] The present invention relates to a method for welding joints of fully austenitic stainless steel or iron-based or nickel-based superalloy clad steel. [Conventional technology] Nickel content is 15~15% lower than that of general stainless steel.
So-called fully austenitic stainless steel or iron-based or nickel-based superalloys, which have been improved by more than 20%, have high corrosion resistance, stress corrosion cracking resistance,
It has heat resistance strength, etc., and is suitable for line pipes for oil and gas production, gas processing plants, general chemical plants,
It is beginning to be used for paper manufacturing plants, etc. Since these alloys are generally expensive and have lower strength than steel, clad steel, which is made of a mixture of these alloys to increase strength and is economically utilized, has come to be widely used. These clad steels are usually welded and used as structures. Since clad steel is made up of two or more materials with different properties, it is necessary to devise a welding method, but various welding methods that are economical and have sufficient joint performance have been proposed, and some have already been put into practical use. There is. Joint welding of clad steel for structures is generally carried out as shown in Figure 3 A and B. That is, in FIG. 3A, a V-shaped groove is provided with the opening on the composite material 1 side, and after welding the base material 2 with weld metal 3 having the same composition as the base material 2 from the bottom of the groove, Composite material 1 is welded onto weld metal 3 using a welding material whose alloy composition is equal to or higher than that of composite material 1, and the performance is equal to or higher than that of composite material 1. A composite weld metal 4 having the following properties was obtained. In addition, in Figure 3B, an X-shaped groove is created, and first the base material 2
From the side, weld base metal 3a equivalent to base metal 2.
Next, a base metal weld metal 3b that is equivalent to the base metal 2 is welded to the base metal 2 from the composite material 1 side, and a high alloy composite that is equivalent to or higher than the composite material 1 is welded onto the weld metal 3b. A good welded joint was obtained by welding with material weld metal 4. In this way, if the stainless clad steel joint welding work can be carried out from the composite material 1 side, then
However, it is possible to weld without any problem using the method explained in (b), but welding can be done in circumferential joints between clad steel pipes whose inner surfaces are made of superalloy, in closed vessels, or in clad steel plates that have a relatively large surface area and in which it is difficult to reverse the welding point. When welding, it is often necessary to provide an open weld groove on the base metal side and weld only from the base metal side. As a welding method in such a case, a method as shown in FIG. 4 has been conventionally used. That is, the composite material 1 or a welding material 4' substantially equivalent thereto was applied to the entire thickness from the composite material 1 side to the base metal 2 side. [Problems to be Solved by the Invention] In the conventional welding method shown in FIG. The weld metal melts the weld metal on the composite side and picks up a large amount of alloys such as chromium, nickel, molybdenum, etc., which causes hot cracking or cold cracking, and further reduces the ductility and toughness. Furthermore, although the conventional method shown in FIG. 4 is simple in that it uses one type of welding material, it has the following drawbacks. In other words, if welding is performed from the base metal side and the entire thickness of the clad steel is welded using super alloy high alloy steel, the welding material cost will be high, and the weld metal will be entirely composed of super alloy steel. Depending on the base metal, the strength of the welded joint may be lower than the base metal strength. Furthermore, superalloy clad steel structures are often used in thermal environments such as high temperature ranges or repeated temperature ranges between high temperatures and room temperature, and under such usage conditions,
If all the layers of the weld metal are made of superalloy, the difference in thermal expansion coefficient between the weld metal and the base metal will generate thermal stress, causing deformation of the weld joint, or carbon transfer from the base metal to the weld metal. There was a problem that the creep strength of the bond with the base metal decreased due to diffusion. [Means for Solving the Problems] The present invention has been made in view of the above circumstances, and
We attempted to solve the problem by welding the first layer with a superalloy alloy, then creating a special intermediate layer to prevent cracking and deterioration of ductility, and then welding a filler metal equivalent to the base metal on top of that. Ta. That is, in the present invention, the Ni content is 15% by weight.
When welding joints of stainless steel or superalloy clad steel made of Ni-based alloy and carbon steel or low-alloy steel as the base material, a groove with an opening on the base metal side is prepared and the joint is first welded. The composite part is welded using a filler metal with a high alloy chemical composition equivalent to that of the material, and the chemical composition is
The first step is to use additives in which Cr is more than 16% and less than 40%, and the remainder is Fe and unavoidable impurity elements.
After welding the intermediate layer, the chemical composition is C in weight%
0.02% or less, Si 0.1-0.3% and Ti 0.3-1.0%,
Contains one or two types of Nb 0.3-1.0%, with the remainder
A second intermediate layer is welded using a filler metal consisting of Fe and unavoidable impurity elements, and then a carbon steel or low alloy steel filler metal equivalent to the base metal is welded to the final layer on the second intermediate layer. This is a joint welding method for superalloy clad steel, which is characterized by the following. [Function] The details of the method for welding a superalloy clad steel joint according to the present invention will be explained with reference to the drawings. 1st
In the figure, a V-shaped groove is provided with openings on both base material 2 sides of the joint part, and both composite materials 1 are aligned. In addition to the V-shaped groove, a U-shaped groove can also be used. First, only the composite material 1 is welded and joined with the composite weld metal 4. In this case, composite material 1,
If only 1 can be welded, there is no need to use a filler metal, but if there is a risk of melting part of the base metals 2 and 2, use a filler metal with a higher alloy composition than composite material 1. It is necessary to weld the composite weld metal 4 so that the chemical composition falls within a predetermined composition range. Next, one or more first intermediate layers are welded onto the composite weld metal 4 using a high Cr filler metal. The microstructure of the first intermediate layer weld metal 5 obtained at this time is such that the amount of ferrite phase is 3% to 40% in terms of area ratio and the remainder is an austenite phase due to penetration from the base metal 2 and composite weld metal 4. must be done. In order to obtain such a first intermediate layer weld metal 5, it is necessary to use a filler metal having a weight percentage of more than 16% Cr and less than 40% Cr, with the balance being Fe and inevitable impurity elements. By controlling the microstructure of the first intermediate layer metal 5 within the above range, hot cracking or reduction in toughness can be prevented. Next, when a filler metal of carbon steel or low alloy steel equivalent to the base metal is welded onto this, the first intermediate layer weld metal 5
Ni, Cr, Mo, etc. are mixed in, causing cold cracking or a significant decrease in toughness of the carbon steel weld layer. Even if such alloying elements are mixed in, the filler metal must have a sufficiently low C to prevent cracking or a decrease in ductility.
It is necessary to stabilize the C content as a carbide, and for that purpose it is necessary to contain Ti or Nb. That is, C 0.02% or less, Si 0.1~0.3%, Ti 0.3~1.0%, Nb 0.3~
It must be welded using a filler metal containing 1.0% of type 1 or type 2, with the remainder consisting of Fe and unavoidable impurity elements. Next, on the second intermediate layer weld metal 6 obtained by welding the filler metal, a filler metal containing an alloying element equal to or higher than that of the base metal 2 is used to weld the entire thickness of both base metals 2. are joined by base metal weld metal 3. Welding methods applied to this, especially low-carbon intermediate overlay methods, are preferably low heat input and low dilution welding, and pulse-TIG welding, pulse-MIG welding, and shielded arc welding are suitable, but shielded arc welding In this case, the diameter of the welding rod should be 4 mmφ or less. Next, the reason for limiting the chemical composition of the filler metal for welding the first intermediate layer will be described. If the amount of Cr in the filler metal applied when welding the first intermediate layer weld metal 5 is 10% or less, the microstructure of the first intermediate layer weld metal 5 will be almost 100% austenite, which will prevent hot cracking. Occur. while 40
% or more, the first intermediate layer weld metal 5 has an extremely high Cr content, resulting in extremely low ductility and toughness. Next, the reasons for limiting the composition of the filler metal used when welding the second intermediate layer weld metal 6 will be explained. The lower the C, the lower the hardness of the second intermediate layer weld metal 6 and the better the toughness. However, when the C content exceeds 0.02%, the carbon in the second intermediate layer weld metal 6 becomes concentrated due to the movement of carbon contained in the base metal 2, and the hardness becomes extremely high, causing performance deterioration of the second intermediate layer weld metal 6. invite Si improves the fluidity of the additive when it is melted and also acts as a deoxidizing agent. As a deoxidizing agent
Si requires 0.1% or more, and adding more than 0.3% will cause a significant decrease in toughness, so the range should be 0.1 to 0.3.
%. Ti and Nb are elements necessary to fix C, and Ti requires at least 4 times the amount of C, and Nb requires at least 8 times the amount of C, but the addition of excessive Ti and Nb will reduce the toughness. In consideration of reduction and economic efficiency, each was set at 1.0% or less. Furthermore, since Ti and Nb are scattered into the air during welding and the effective amount decreases, the lower limit of each was set at 0.3%. [Example] Next, an example of the present invention will be described. The test materials used were superalloy clad steel plates consisting of Incoloy 825 material with a thickness of 2.5 mm as the composite material and API 5L-X60 material with a thickness of 19 mm as the base material. The groove shape is the second
As shown in Figure A, the groove angle α of the base material 2 is V-shaped.
α′=30°. First, a composite material 1 having the groove shape shown in FIG. 2A was welded using an Inconel 625 TIG welding rod as shown in FIG. 2B to obtain a composite weld metal. Next, a high Cr filler metal having the chemical composition shown in Table 1 was built up on the composite weld metal as a filler metal for the intermediate layer under the welding conditions shown in Table 2 (Test No. 1).
~No. 4). For comparison, ordinary carbon steel filler metal (test
No. 5), welding was performed on the Inconel 625 layer by the covered arc welding method under the welding conditions shown in Table 2 to the final layer of the full thickness on the base metal side (Test No. 5).

【表】【table】

【表】【table】

【表】 次いで試験試験No.1〜4では第1中間層溶接金
属の上に第2図ニに示すごとく、パルスTIG溶接
により、第2中間層溶接金属の1層溶接を行なつ
た。 さらに第2中間層溶接金属の上に第2図ホに示
すごとく軟鋼系被覆アーク溶接により母材溶接金
属を最終層まで溶接した。 なお、溶接前の予熱ならびに溶接後の熱処理は
全く行なつていない。 上記の手順により得られた中間層溶接金属の化
学組成を第3表に、また継手溶接部の機械試験の
結果を第4表に示す。 第4表に示すインコネル625溶接層の上を直接
母材相当の炭素鋼溶接材料で肉盛りしたもの(試
験No.5)は炭素鋼溶接層は著しい延性の低下を招
くとともに、溶接直後すでにインコネル625溶接
層直上の炭素鋼密接層に多数の高温割れの発生し
ているのが認められた。
[Table] Next, in test Nos. 1 to 4, one layer of second intermediate layer weld metal was welded on top of the first intermediate layer weld metal by pulse TIG welding, as shown in FIG. 2D. Furthermore, the base metal weld metal was welded to the final layer on the second intermediate layer weld metal by mild steel covered arc welding as shown in FIG. 2E. Note that no preheating before welding and no heat treatment after welding were performed. The chemical composition of the intermediate layer weld metal obtained by the above procedure is shown in Table 3, and the results of the mechanical test of the joint weld are shown in Table 4. In the case where the Inconel 625 weld layer shown in Table 4 was directly built up with carbon steel welding material equivalent to the base metal (Test No. 5), the carbon steel weld layer caused a significant decrease in ductility, and the Inconel 625 weld layer was already welded immediately after welding. It was observed that many hot cracks had occurred in the carbon steel close layer directly above the 625 weld layer.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、合材は
合材相当の、母材は母材相当の溶接材料を用いる
ことができ、溶接材料にもクラツド材の特性を与
えることが出来る。また本発明は広幅大面積のク
ラツド鋼板の場合は反転する必要がなく、密閉容
器の場合は炭素鋼側母材からのみ溶接施工できる
ため、内面合せ材を汚すことなく経済的な効果も
大きい。さらにクラツド鋼管の様に地中や海中に
埋設される場合、周継手部がスーパーアロイ系で
あると母材との腐食電位差のため腐食を生じる恐
れがあり、また一般にスーパーアロイは樹脂コー
テイング性が悪いとされており、本発明による溶
接法は耐食性、経済性両面から最適な溶接継手を
提供できるといえる。
As explained above, according to the present invention, it is possible to use a welding material equivalent to the composite material for the composite material, and a welding material equivalent to the base material for the base material, and it is possible to give the welding material also the characteristics of the clad material. In addition, the present invention does not require reversing in the case of wide and large-area clad steel plates, and in the case of closed containers, welding can be performed only from the base material on the carbon steel side, so the inner cladding material is not contaminated and has a great economic effect. Furthermore, when buried underground or under the sea like clad steel pipes, if the circumferential joint is made of superalloy, there is a risk of corrosion due to the corrosion potential difference with the base metal, and superalloys generally have poor resin coating properties. However, it can be said that the welding method according to the present invention can provide an optimal welded joint in terms of both corrosion resistance and economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による溶接継手の一実施例の断
面図、第2図イ,ロ,ハ,ニ,ホは本発明の溶接
手順の一実施例を示す断面図、第3図イ,ロおよ
び第4図はそれぞれ従来の溶接継手の断面図であ
る。 1……合材、2……母材、3……母材溶接金
属、4,4′……合材溶接金属、5……第1中間
層溶接金属、6……第2中間層溶接金属。
Fig. 1 is a cross-sectional view of an embodiment of a welded joint according to the present invention, Fig. 2 A, B, C, D, and H are cross-sectional views showing an embodiment of the welding procedure of the present invention; and FIG. 4 are sectional views of conventional welded joints, respectively. 1...Mixture material, 2...Base metal, 3...Base metal weld metal, 4, 4'...Mixture weld metal, 5...First intermediate layer weld metal, 6...Second intermediate layer weld metal .

Claims (1)

【特許請求の範囲】[Claims] 1 Ni含有量が重量%で15%以上のステンレス
鋼もしくはNi基合金を合材とし、炭素鋼もしく
は低合金鋼を母材とするスーパーアロイクラツド
鋼の継手溶接において、母材側を開口とする開先
を設け、最初に合材と同等の高合金の化学組成の
溶加材により合材部を溶接し、この合材溶接金属
の上に化学組成が重量%でCrが16%を越え、40
%以下で、残部がFeならびに不可避不純物元素
からなる溶加材を用いて第1中間層を溶接した
後、化学組成が重量%でC 0.02以下、Si 0.1〜
0.3%およびTi 0.3〜1.0%、Nb 0.3〜1.0%の1種
または2種を含み、残部がFeならびに不可避不
純物元素からなる溶加材を用いて第2中間層を溶
接し、さらにこの第2中間層上に母材と同等の炭
素鋼もしくは低合金鋼溶加材にて最終層まで溶接
することを特徴とするスーパーアロイクラツド鋼
の継手溶接方法。
1 When welding a superalloy clad steel joint with stainless steel or Ni-based alloy having a Ni content of 15% or more by weight and carbon steel or low-alloy steel as the base material, the base metal side is opened. First, the composite part is welded using a filler metal with a high alloy chemical composition equivalent to that of the composite material. , 40
After welding the first intermediate layer using a filler metal with a chemical composition of C 0.02 or less and Si 0.1 or less in weight %, the balance is Fe and unavoidable impurity elements.
The second intermediate layer is welded using a filler metal containing 0.3% Ti, 0.3% to 1.0% Ti, and 0.3% to 1.0% Nb, with the remainder consisting of Fe and unavoidable impurity elements; A joint welding method for superalloy clad steel, characterized by welding carbon steel or low alloy steel filler metal equivalent to the base metal onto the intermediate layer up to the final layer.
JP1715188A 1988-01-29 1988-01-29 Method for welding joint of super alloy clad steel Granted JPH01197073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1715188A JPH01197073A (en) 1988-01-29 1988-01-29 Method for welding joint of super alloy clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1715188A JPH01197073A (en) 1988-01-29 1988-01-29 Method for welding joint of super alloy clad steel

Publications (2)

Publication Number Publication Date
JPH01197073A JPH01197073A (en) 1989-08-08
JPH0558835B2 true JPH0558835B2 (en) 1993-08-27

Family

ID=11935984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1715188A Granted JPH01197073A (en) 1988-01-29 1988-01-29 Method for welding joint of super alloy clad steel

Country Status (1)

Country Link
JP (1) JPH01197073A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005035585B3 (en) * 2005-07-29 2006-08-10 Areva Np Gmbh Producing a welded joint between a plated ferritic part and an austenitic part comprises welding a root of austenitic material, welding an intermediate layer of nickel alloy forming a weld seam of nickel-based material

Also Published As

Publication number Publication date
JPH01197073A (en) 1989-08-08

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
CA2231985C (en) Welded high-strength steel structures and methods of manufacturing the same
Mendoza et al. Dissimilar welding of superduplex stainless steel/HSLA steel for offshore applications joined by GTAW
CN102216483A (en) High strength and toughness steel structures by friction stir welding
JPS6343462B2 (en)
JPH10146691A (en) Method for welding high chromium steel
Kotecki Welding of stainless steels
CA2017759A1 (en) Method of welding stainless steel studs
Maruyama Arc welding technology for dissimilar joints
JPH0558835B2 (en)
JP2000015447A (en) Welding method of martensitic stainless steel
JPS5937157B2 (en) Single-sided welding method for stainless steel fittings
JP2001246495A (en) Welding material and method for producing welded joint
JP3165902B2 (en) High Cr steel welding method
JPH02200394A (en) Welding method for stainless steel or nickel-based alloy and carbon steel
JPH07305140A (en) Composite steel sheet excellent in low temperature toughness and corrosion resistance
JPH0299280A (en) Method for welding clad steel
JPH06256905A (en) Clad steel plate excellent in corrosion resistance and toughness at low temperature
JPS60133997A (en) Welding material for stainless steel
JP2002309339A (en) Welded joint having heat affected zone with excellent toughness and fatigue resistance
JP4220088B2 (en) Welded joint for steel structure and method for producing the same
JPH11104885A (en) Fe-ni low thermal expansion coefficient alloy made welding structure and welding material
JPS61147990A (en) Submerged arc welding wire for high tension steel
JPH0890239A (en) Seam welding method of clad steel tube
JPS6216745B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees