JPS62163903A - Extending conductive element of insulating object to be inspected - Google Patents

Extending conductive element of insulating object to be inspected

Info

Publication number
JPS62163903A
JPS62163903A JP61005087A JP508786A JPS62163903A JP S62163903 A JPS62163903 A JP S62163903A JP 61005087 A JP61005087 A JP 61005087A JP 508786 A JP508786 A JP 508786A JP S62163903 A JPS62163903 A JP S62163903A
Authority
JP
Japan
Prior art keywords
elongated
elongation
conductive element
conductive
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61005087A
Other languages
Japanese (ja)
Inventor
Minoru Fukui
福井 実
Naoki Kataoka
直樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61005087A priority Critical patent/JPS62163903A/en
Publication of JPS62163903A publication Critical patent/JPS62163903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To eliminate electric leakage to an object to be inspected or in which an extending conductive element incorporated when in service, by forming at least one side of an extending conductive sheet in an insulation state. CONSTITUTION:This element has extending conductive sheet 3 of which electric resistance value decreases when an extension is applied in a desired direction, two electrodes 4 and 4' mounted at a specified interval in the extending direction of the extending conductive sheet 3 and at least one side thereof is formed insulated. For example, an dielectric breakdown film 2 are laminated on both sides of the extending conductive sheet 3 and a copper electrode plate 4 is mounted at both sides of the laminate by a conductive resin 5. A lead 7 is connected to the electrode plate 4 at the both ends by a soldered part 6. In addition, the extending conductive sheet 3 is wrapped by electrically insulated elastomer containing the electrode plate 4 and the lead near the electrode plate 4.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は伸長溝′越索子に関する。より詳しくは少くと
も片面が絶縁状態に形成されている伸長導電索子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an elongated groove cross rope. More specifically, the present invention relates to an elongated conductive cord having at least one side insulated.

〈従来の技術〉 人体の肘、膝等の屈曲部分のような大きな伸長変形を鬼
気的に検出することが必要な場合がある。
<Prior Art> There are cases where it is necessary to detect large elongation deformations such as bending parts of the human body, such as elbows and knees.

このような検出に際して伸長変形によって一気抵抗値が
減少する素材を用いる方法と、伸長変形によって電気抵
抗値が増大する素材を用いる方法の何れかを採用するこ
とが考えられる。
For such detection, it is conceivable to adopt either a method of using a material whose resistance value decreases at once by elongation deformation or a method of using a material whose electrical resistance value increases by elongation deformation.

しかしながら従来伸長変形によって電気抵抗値が減少す
る性質を有する素材は知られておらず、したがって伸長
変形によって生ずる電気抵抗値の減少金とらえることに
よって被検物、すなわち検査されることになる対象物の
伸長の有無、伸長の鼠、伸長・圧縮の頻匿ヲ検出するこ
とのできる素子も開発されていなかった。
However, until now, no material has been known that has the property of decreasing electrical resistance due to elongation deformation, and therefore, by capturing the decrease in electrical resistance caused by elongation deformation, the object to be inspected can be inspected. Elements capable of detecting the presence or absence of elongation, the extent of elongation, and the frequency of elongation and compression had not been developed.

そこで伸長変形によって電気抵抗値が増大する性質全利
用した素子、例えばストレーンゲージを用いて伸長変形
を検出することが考えられる。すナワチ、例えばコンス
タンクン、アドバンス、ニクローム等の細い金属縁を引
張ると電気抵抗値が増大するのでこの性質ヲ利用してス
トレーンゲージが作られる。しかしこの種の金V4線の
伸長率は極めて小さい(1%以下)ため、前記ストレー
ンゲージは被検物の微小変形にしか対応できず、例えば
人体の肘、膝等の屈曲部分のような大きな伸長変形の検
出には用いることができない。
Therefore, it is conceivable to detect elongated deformation using an element that takes full advantage of the property that the electric resistance value increases due to elongated deformation, such as a strain gauge. When a thin metal rim of a strain gauge, such as Constance, Advance, or Nichrome, is pulled, its electrical resistance increases, and this property is used to make strain gauges. However, since the elongation rate of this type of gold V4 wire is extremely small (1% or less), the strain gauge described above can only handle minute deformations of the test object. It cannot be used to detect elongation deformation.

一方被検物の変形を検知する素子として圧電素子や感圧
導電性ゴムを用いた素子が知られている。
On the other hand, piezoelectric elements and elements using pressure-sensitive conductive rubber are known as elements for detecting deformation of a test object.

しかし圧電素子は機械的歪変形を電圧変化としてとらえ
るものであるが、ストレーンデージと同様に微小変形の
用途にしか適さない。また後者の感圧導電性ゴムは圧縮
変形に対して電気抵抗値が減少するものであシ、伸長変
形に対しては電気抵抗値の低下は生じない。
However, piezoelectric elements detect mechanical strain and deformation as voltage changes, but like strainage, they are only suitable for applications that require minute deformation. Furthermore, the latter pressure-sensitive conductive rubber has an electrical resistance value that decreases when subjected to compressive deformation, but does not cause a decrease in electrical resistance value when subjected to elongated deformation.

前述の如〈従来公知の素子は微小な伸長変形にしか用い
ることができないか、あるいは圧縮変形にしか用いるこ
とができない。したがって従来公知の素子では、伸長変
形、特に相当数の伸長変形をする被検物の伸長挙動、す
なわち伸長の有無、伸長の社、伸長を伴う圧縮の頻度等
を検出することができない。
As mentioned above, conventionally known elements can only be used for minute extensional deformations or only for compressive deformations. Therefore, conventionally known elements cannot detect elongation deformation, especially the elongation behavior of a specimen undergoing a considerable amount of elongation deformation, that is, the presence or absence of elongation, the degree of elongation, the frequency of compression accompanied by elongation, etc.

〈発明が解決しようとする問題点〉 前述のように、従来公知の素子を用いては伸長変形、特
に相当量の伸長挙動を電気的に検出することができない
。そこで本発明と同一の出願人によって相当aの伸長挙
動ラミ気的に検出するのに用いることができるシート状
物が提案されている。
<Problems to be Solved by the Invention> As described above, it is not possible to electrically detect elongation deformation, especially elongation behavior to a considerable extent, using conventionally known elements. Therefore, the same applicant as the present invention has proposed a sheet-like material that can be used to visually detect the elongation behavior of the corresponding a.

例えば、その1番目のシート状物は昭和59年9月27
日に「変形導電性高分子エラストマー」の名で出願され
た特願昭59−200577号中に記載されたシートで
あって、絶縁性の高分子ニジストマーに薄片状の形状金
した導電性フィラーを入れることにより、フィラーの面
に平行な方向で伸長した際に、伸長方向の導電性が向上
するシートである。2番目のシート状物は昭和60年3
月4日に「変形導電性編織物」の名で出願された特願昭
60−41024号中に記載されたシート状物であって
、そのシート状物は構成する糸の交絡部分および交絡部
分間についての電気導通性又は通気絶縁性が下記の条件
金満たすように形成されていることによって任意の方向
に伸長を加えた場合にその電気抵抗値が変化する変形溝
′lL性鳩織物である。
For example, the first sheet was released on September 27, 1982.
This is a sheet described in Japanese Patent Application No. 59-200577 filed under the name of "Deformed Conductive Polymer Elastomer" in 1999, which is a sheet in which a conductive filler in the form of flakes is added to an insulating polymer nidistomer. This sheet improves conductivity in the stretching direction when stretched in a direction parallel to the filler surface. The second sheet-like material was produced in March 1985.
A sheet-like product described in Japanese Patent Application No. 60-41024 filed under the name of "Deformed Conductive Knitted Fabric" on May 4, 1987, which consists of intertwined parts and intertwined parts of the constituent yarns. This is a deformable grooved pigeon fabric whose electrical resistance value changes when it is stretched in any direction because it is formed so that the electrical conductivity or ventilation insulation between the parts satisfies the following conditions. .

■ 編織物の所定の面積中における全又絡部分の中で、
電気的に絶縁状態にある交絡部分の数をt!とし、電気
的に導通状態にある交絡部分の数?A2とした場合にそ
の比tlit、の値が一平方インチ当シの測定値で17
9以上であること;■ 前記編織換金構成するそれぞれ
の糸の長手方向一定長での隣り合う複数の交絡部分間に
ついて、電気的に絶縁状態である交絡部分間の数をml
とし、電気的に導通状態である交絡部分間の数t” m
 2 とした場合に、その比ml/m2の値が1インチ
当シの測定値で179以上でおること。
■ Among all the intertwined parts in a predetermined area of the knitted fabric,
The number of electrically insulated intertwined parts is t! And how many interlaced parts are electrically conducting? In the case of A2, the value of the ratio tlit is 17 as a measurement value per square inch.
9 or more; ■ Between a plurality of adjacent intertwined parts in a constant length in the longitudinal direction of each yarn constituting the knitting fabric, the number of intertwined parts that are electrically insulated is ml.
and the number of intertwined parts that are electrically conductive is t” m
2, the value of the ratio ml/m2 shall be 179 or more as measured value per inch.

前述のようなシート状物の任意の2点に電極をとシ付け
、電極間のシート状物全伸長すればシート状物の電極間
の電気抵抗が減少するので、その減少の有無および減少
の程度を2個の電極間で測定すれば被検物の伸長の有無
および伸長の程度を把握することができる。又これらシ
ート状物、特に後者の変形導電性編織物は相当量の伸長
変形をすることができるので相当量の伸長変形金する被
検物の伸長挙動、すなわち伸長の有無、伸長の鼠。
If electrodes are attached to any two points on a sheet-like object as described above and the sheet-like object between the electrodes is fully extended, the electrical resistance between the electrodes on the sheet-like object will decrease, so it is possible to determine whether or not there is a decrease in the electrical resistance. By measuring the extent between two electrodes, it is possible to determine whether or not the object under test has elongated and the degree of elongation. In addition, since these sheet-like materials, especially the latter deformed conductive knitted fabrics, can undergo a considerable amount of elongation deformation, we have investigated the elongation behavior of the specimen that undergoes a considerable amount of elongation deformation, that is, the presence or absence of elongation, and the extent of elongation.

伸長を伴う圧縮の頻度等を検出することができる。It is possible to detect the frequency of compression accompanied by expansion.

以下の説明において前記シート状物を伸長導電性シート
と称し、伸長導電性シートに電極を取シラけに素子を伸
長導電素子と称す。
In the following description, the sheet-like material is referred to as an elongated conductive sheet, and the element is referred to as an elongated conductive element since electrodes are provided on the elongated conductive sheet.

このように構成された伸長導電素子は相当量の伸長変形
をする被検物の伸長挙動の検出に際して優れた性能を発
揮するが、被検物に取付けて使用する際に下記のような
問題点2有する。すなわち前記の構成の伸長導電素子で
は電極が露出しているので、この伸長導電素子をそのま
ま被検物または伸長導電素子を組み込む物体でおってそ
れ自身が電気的絶縁処理が施されていない物体に取付け
る場合には漏電する恐れがある。漏電があると、漏電に
よる被検体への電気的刺激や伸長導電素子を組み込んだ
回路の短絡や電子部品の障害を引き起すので好ましくな
い。さらに又、漏電が発生すると被検物の伸長挙動を伸
長導電素子が正しく検出しないという問題が生ずる。
Although the elongated conductive element configured in this way exhibits excellent performance in detecting the elongation behavior of a test object that undergoes a considerable amount of elongation deformation, it has the following problems when attached to the test object and used. Has 2. In other words, since the electrodes of the elongated conductive element having the above structure are exposed, the elongated conductive element can be used as it is as a test object or an object in which the elongated conductive element is incorporated and which itself is not electrically insulated. If installed, there is a risk of electrical leakage. If there is a current leakage, it is undesirable because the current leakage causes electrical stimulation to the subject, short-circuiting of the circuit incorporating the elongated conductive element, and failure of the electronic components. Furthermore, when electric leakage occurs, a problem arises in that the elongated conductive element does not correctly detect the elongated behavior of the object to be tested.

本発明は本発明の出願人と同一の出願人によってさきに
提案された伸長導電素子の有する使用上の問題点を解決
して、使用時に被検物または伸長導電素子が組み込まれ
た物体に漏電することがなく且つ被検物の伸長挙動を正
しく検出することができる伸長導電素子を提供すること
を目的とする。
The present invention solves the problems in use of the elongated conductive element previously proposed by the same applicant as the applicant of the present invention, and leaks current to a test object or an object in which the elongated conductive element is incorporated during use. It is an object of the present invention to provide an elongated conductive element that can accurately detect the elongation behavior of a test object without causing any damage.

く問題点を解決するだめの手段〉 本発明の目的は任意の方向に伸長を加えた場合にその電
気抵抗値が減少する伸長導電性シートと、その伸長導電
性シートの伸長方向に所定の間隔をあけて取着した少く
とも2個の電極を含んで成シ、少くとも片面が絶縁状態
に形成されていることを特徴とする対被検物絶縁を伸長
導電素子によって達成される。
Means for Solving Problems> The object of the present invention is to provide a stretched conductive sheet whose electrical resistance value decreases when stretched in any direction, and a predetermined interval in the stretching direction of the stretched conductive sheet. Isolation from the specimen is achieved by means of an elongated conductive element, characterized in that it comprises at least two electrodes attached with a gap between them, and at least one side is formed in an insulating state.

前記伸長g4′gJL素子の漏電を防ぐために絶縁状態
にするための手段としては各種の手段を用いることがで
き、伸長導電素子の使用の態様に応じて植種選択して用
いることができる。例えば、電極とリードM&ヲ接続し
た伸長導電素子全体を電気的絶縁性の高分子ニジストマ
ーでコーティング、ディッピング、スプレー加工などの
手段で包埋する方式があげられる。
Various means can be used to bring the elongated g4'gJL element into an insulating state to prevent electrical leakage, and the types can be selected and used depending on the manner in which the elongated conductive element is used. For example, there is a method in which the entire elongated conductive element connected to the electrode and the leads M&W is embedded in an electrically insulating polymer nystomer by coating, dipping, spraying, or other means.

ここでいう電気的絶縁性の高分子エラストマーとは、伸
長導電素子の伸度を阻害しない程度の伸度を有するエラ
スチックなビリマーで、例えば、天然ゴム、ウレタン、
シリコーン、フッ素ゴム、ブタノエンゴムなどのあらゆ
る合成高分子エラストマーが適用されるが、伸長導電素
子を包埋した状態で実施例に述べる測定手段で得られる
電気抵抗値が106Ω以上である必要がある。したがっ
てここでいう電気絶縁性とはその電気抵抗値が上記の条
件を満たしていること全意味する。
The electrically insulating polymer elastomer herein refers to an elastic bilimer having a degree of elongation that does not inhibit the elongation of the elongated conductive element, such as natural rubber, urethane,
Any synthetic polymer elastomer such as silicone, fluororubber, butanoene rubber can be used, but it is necessary that the electrical resistance value obtained by the measuring means described in the examples in a state where the elongated conductive element is embedded is 10 6 Ω or more. Therefore, electrical insulation here means that the electrical resistance value satisfies the above conditions.

また、上記−気絶縁!l:iA分子エラストマーのフィ
ルムまたはシート状物を伸長導電素子の少なくとも片面
に接着させる方式があげられる。さらに伸縮性の電気絶
縁性布帛(例えば、捲縮糸や伸縮性繊維からなる織物や
不織布や編物〕、で伸長導電素子の少゛なくとも片面に
接Nまたは千鳥縫いなどの伸長導電素子の伸度金妨げな
い方式で縫製してもよい。
Also, above-mentioned - air insulation! One example is a method in which a film or sheet-like material of l:iA molecular elastomer is adhered to at least one side of an elongated conductive element. In addition, a stretchable electrically insulating fabric (for example, a woven, nonwoven, or knitted fabric made of crimped yarn or stretchable fibers) can be used to connect at least one side of the elongated conductive element with N or zigzag stitches. It may be sewn using a method that does not interfere with the metal.

また、片面に電気絶縁性のニジストマーシートを接合し
た伸長導電性シートに電極とリード線をとシつけた伸長
導電素子については、電極部分にのみ、天然合成高分子
系、無機物系の電気絶縁性のあらゆる粘着テープ全接合
する方式を用いてもよい。
In addition, for elongated conductive elements in which electrodes and lead wires are attached to an elongated conductive sheet with an electrically insulating nidistomer sheet bonded to one side, only the electrode part is made of natural synthetic polymer-based or inorganic material-based electrical insulation. Any type of adhesive tape may be used to fully bond the adhesive tape.

尚、上に述べたいくつかの方式を複合させて用いてもよ
い。
Note that some of the methods described above may be used in combination.

本発明による対被検物絶縁型伸長導電素子の伸長2X4
−型素子として、本発明の出願人と同一の出願人によシ
「作用伸度設定型伸長導電素子」の名で本出願と同日に
出願された伸び抑制部材全具備した伸長導電素子を用い
てもよい。この作用伸度設定型伸長導電素子は、任意の
方向に伸長を加えた場合にその′μ電気抵抗値減少する
伸長導電性シートと、その伸長4寛性シートの伸長方向
に所定の間隔をあげて取着した少くとも2個の電極と全
含んで成る伸長導電素子の作用伸度を所定伸度および/
又は所定伸度以下に設定できる伸び抑制部材が少くとも
1個併設されていることf:%徴とする。
2×4 extension of the test object-insulated elongated conductive element according to the present invention
- As a type element, an elongated conductive element equipped with all elongation suppressing members, which was filed on the same day as the present application under the name of "Elongated conductive element of action elongation setting type" by the same applicant as the applicant of the present invention, was used. It's okay. This action elongation setting type elongation conductive element consists of an elongated conductive sheet whose 'μ electrical resistance value decreases when elongated in any direction, and a predetermined interval in the elongation direction of the elongated 4-permissive sheet. The working elongation of an elongate conductive element comprising at least two electrodes attached to a predetermined elongation and/or
Alternatively, at least one elongation suppressing member that can be set to a predetermined elongation or less is provided in conjunction with f: %.

前記伸び抑制部材としては、伸長基′亀註シートよりも
引張り弾性率が高い素材か、あるいは初期の引張シ弾性
率が伸長導電性シートよシも少いが所定の伸度では高い
引張り弾性率を有する部材、例えばエステルフィラメン
トをカバリングしたウレタン糸を用いることができる。
The elongation suppressing member may be a material with a higher tensile elastic modulus than the elongated base sheet, or a material whose initial tensile elastic modulus is lower than that of the elongated conductive sheet, but which has a high tensile elastic modulus at a predetermined elongation. For example, a urethane thread covered with an ester filament can be used.

前者の伸び抑制部材を伸長導電素子に併設する場合には
前記所定伸度に対応する長さだけたるませて併設すれば
良く後者の伸び抑制部材の場合は前記たるみの鼠を内蔵
させて伸び抑制部材を作ってたるませることなく併設す
ればよい。なお前者の伸び抑制部材を後述する第1図に
示した本発明の対被検物絶縁型伸長導を素子に用いる場
合には伸び抑制部材の少くともたるみの部分は電気絶縁
性エラストマーの外側に配置する必要がある。
When the former elongation suppressing member is installed alongside the elongated conductive element, it may be installed with a length corresponding to the predetermined elongation, and in the case of the latter elongation suppressing member, the elongation can be suppressed by incorporating the slack rod. All you have to do is make the parts and install them together without any slack. In addition, when the elongation suppressing member is used in an element with the test object insulated elongated conductor of the present invention shown in FIG. need to be placed.

ここでいう所定の伸度とは、使用目的に応じて異なる。The predetermined elongation here differs depending on the purpose of use.

例えば安全スイッチや防犯スイッチなどのスイッチ素子
として伸長導電素子を用いる場合には、伸長導電素子の
抵抗値が絶縁状態のlO6Ωから減少し始める伸度の直
前に設定すると、僅かの伸長変形にも誤動作なく、応答
性の良いスイッチとなる。一方伸長導′rに素子の抵抗
値の変化から伸度などの物理的変位を検知する場合には
、伸長導電素子の伸長変形と抵抗値の対数の関係が直線
関係となる領域に伸び抑制部材を用いて伸長導電素子の
作用伸度を設定すれば精度の良い変化社測定を行うこと
ができる。さらにまた使用中に伸長導電素子に過大の伸
びが加えられて伸長導電素子の特性に変化が生じたり、
破壊が起こるのを防ぐためには、伸長導電特性が保持さ
れる限界伸度に伸び抑制部材を用いて伸長導電素子の作
用伸度の上限全設定すればよい。
For example, when using an elongated conductive element as a switch element such as a safety switch or a security switch, if the resistance value of the elongated conductive element is set just before the elongation value starts to decrease from the insulating state of 1O6Ω, a malfunction will occur even with a slight elongation deformation. This makes it a highly responsive switch. On the other hand, when detecting a physical displacement such as elongation from a change in the resistance value of the elongated conductive element, an elongation suppressing member is placed in a region where the relationship between the elongated deformation of the elongated conductive element and the logarithm of the resistance value is a linear relationship. By setting the effective elongation of the elongated conductive element using Furthermore, excessive elongation may be applied to the elongated conductive element during use, causing changes in the properties of the elongated conductive element.
In order to prevent breakage, the upper limit of the effective elongation of the elongated conductive element may be set to the limit elongation at which the elongated conductive properties are maintained using an elongation suppressing member.

前述のような作用伸度型伸長導電素子に対して、少なく
ともその片面を絶縁状態にしておけば精度の高い測定値
が得られると共に、電気漏洩に伴う間@を排除すること
ができる。
If at least one side of the above-mentioned action-stretch type elongated conductive element is insulated, highly accurate measured values can be obtained, and errors caused by electrical leakage can be eliminated.

以下本発明による被検物絶縁凰伸長導電素子の一実施例
を示す添付図面全参照して本発明を詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings, which illustrate one embodiment of a test object insulating elongated conductive element according to the present invention.

第1図に伸長導電素子を電気絶縁性高分子エラストマー
で包埋した本発明による被検物絶縁散伸長導電素子の一
例を示す。すなわち第1図に示した例では伸長導電性シ
ート3の両面に絶縁破壊フィルム2が積層され、積層物
の両端には導電性樹脂5によって銅製の電極板4が取着
されている。
FIG. 1 shows an example of an elongated conductive element insulating a test object according to the present invention, in which the elongated conductive element is embedded in an electrically insulating polymeric elastomer. That is, in the example shown in FIG. 1, dielectric breakdown films 2 are laminated on both sides of a stretched conductive sheet 3, and copper electrode plates 4 are attached to both ends of the laminate with conductive resin 5.

両端の電極板4にはそれぞれリード線7がノ・ンダ付は
部分6を経て接続されている。その上で伸長導電シート
3は電極板4および電極板4近傍のリード線を含めて電
気絶縁性エラストマーで包埋されている。
Lead wires 7 are connected to the electrode plates 4 at both ends through the soldered portions 6, respectively. Further, the elongated conductive sheet 3, including the electrode plate 4 and the lead wires near the electrode plate 4, is embedded in an electrically insulating elastomer.

第1図に示した被挟物絶縁型伸長導電素子では伸長導電
性シートとして変形導電性織物を用いている。この変形
導電性織物は前述のように任意の方向に伸長を加えた場
合にその電気抵抗が減少する織物であって、織物の所定
の面積中における全交絡部分の中で、電気的に絶縁状態
にある交絡部分の数kL1とし、電気的に導通状態にあ
る交絡部分の数tLzとした場合に、その比L1/L、
の値が一平方インチ当シの測定値で179以上であると
いう条件と、織物を構成するそれぞれの糸の長手方向一
定長での隣シ合う複数の交絡部分間について、電気的に
絶縁状態である交絡部分間の数tmt とし、電気的に
導通状態である交絡部分間の数t’ m z とした場
合に、その比m 1 /m zO値が1インチ当りの測
定値で179以上であるという条件金共に満たす織物で
ある。
In the sandwiched object insulation type elongated conductive element shown in FIG. 1, a deformed conductive fabric is used as the elongated conductive sheet. As mentioned above, this deformed conductive fabric is a fabric whose electrical resistance decreases when stretched in any direction, and is in an electrically insulated state among all intertwined parts in a predetermined area of the fabric. If the number of intertwined parts in
The value is 179 or more as measured per square inch, and the intertwined parts of adjacent yarns at a constant length in the longitudinal direction of each yarn constituting the fabric are electrically insulated. When the number of intertwined parts is tmt and the number of electrically conductive intertwined parts is t'mz, the ratio m 1 /m zO value is 179 or more as a measured value per inch. This is a fabric that satisfies both the above conditions.

ここでいう電気的に絶縁状態とは、実施例中に記載した
電気抵抗値の測定法によって、2つの針状端子間の電気
抵抗値が106Ω以上である状態を意味し、また、電気
的導通状態とは、同様に2つの針状端子間の電気抵抗値
が106Ω未満である状態を意味する。
The electrically insulated state here means a state in which the electrical resistance value between two needle terminals is 106Ω or more as determined by the electrical resistance measurement method described in the examples, and electrically conductive state. Similarly, the state means a state in which the electrical resistance value between two needle terminals is less than 106Ω.

ここでいう交絡部分とは、各県が交差している部分を示
しておシ、必ずしも接触している必要はない。織物の場
合は経糸と緯糸の交差部分であり、編物の場合は、ルー
プの交差部分を意味する。
The confounding part here refers to the part where each prefecture intersects, and does not necessarily have to be in contact. In the case of woven fabrics, it is the intersection of warp and weft yarns, and in the case of knitted fabrics, it is the intersection of loops.

ここでいう電気的に絶縁状態である交絡部分または電気
的に導通状態である交絡部分とは、交絡している2本の
糸が交絡部分を介してそれぞれ″電気的に絶縁状態であ
る部分、あるいは電気的に導通状態である部分を意味す
る。
The intertwined part that is electrically insulated or the intertwined part that is electrically conductive here refers to a part where two intertwined threads are electrically insulated through the intertwined part, Alternatively, it means a part that is electrically conductive.

また隣り合う交絡部分間とは、より正確には交絡部分中
心間部分であって、一本の糸で隣り合う交絡部分の中心
間を意味する。また電気的に絶縁状態である交絡部分間
、または電気的に導通状態である交絡部分間とは、上に
述べた隣シ合う交絡部分間が電気的に絶縁状態であるか
、導通状態であるかを意味する。
Moreover, the term "between adjacent interlaced parts" more precisely means the part between the centers of the interlaced parts, and means the area between the centers of adjacent interlaced parts of one thread. Also, between interlaced parts that are electrically insulated or electrically conductive means that the adjacent interlaced parts mentioned above are electrically insulated or electrically conductive. It means something.

ここで用いられる変形導電性織物は平織で形成されてい
る。平織は組織が密で繰り返し耐久性に優れ、また微小
の変形に対して高感度に抵抗値が変化するのでよシ好ま
しい。ただし綾織または朱子織で変形導電性織物を形成
してもよい。また編物を用いてもよい。編物の組織とし
ては、経編。
The deformed conductive fabric used here is formed of a plain weave. Plain weave is preferable because it has a dense structure and is excellent in repeated durability, and its resistance value changes with high sensitivity to minute deformations. However, the deformed conductive fabric may be formed of twill weave or satin weave. A knitted fabric may also be used. The texture of knitted fabrics is warp knitting.

緯線のどちらでも良いし、トリコット編、天竺編。Either latitude is fine, tricot knitting, or jersey knitting.

ゴム編、ノヤール編等のいずれでも良いが、特にパール
編の場合には、編組織のどの方向にもほぼ均一な変形導
電性が得られるのでより好ましい。尚、微小変形、大変
形に対する変形導電性は、それぞれ織物2編物の構成(
糸の太さ、密度、度目等、)を適切に選定することによ
り得られる。編織物の形状としては、シート状2円筒状
など編織物の組織を使ったすべての形状を含む。
Any of rubber knitting, noyal knitting, etc. may be used, but pearl knitting is particularly preferable because substantially uniform deformation conductivity can be obtained in any direction of the knitting structure. In addition, the deformation conductivity with respect to minute deformation and large deformation is determined by the structure of two knitted fabrics (
This can be achieved by appropriately selecting the thread thickness, density, thread size, etc. The shape of the knitted fabric includes all shapes that use the structure of the knitted fabric, such as sheet-like, bicylindrical, etc.

ここで用いられる変形導電性織物はエステルマルチフィ
ラメン)t−用いて形成されているが、それ以外に編織
物を溝底する糸として、通常の溶融。
The deformed conductive fabric used here is formed using ester multifilament (T-T), but in addition to that, it can also be used as a thread to groove the knitted fabric using ordinary melting.

湿式紡糸機によって紡糸されたモノフィラメントやマル
チフィラメント、短繊維からなる紡績糸やそれらの糸の
撚糸、フィルムやシーi細長くスリットした、細長い形
状物もしくはその収束物を用いることができる。その素
材としては、エステル以外にもナイロン、などのすべて
の電気絶縁性合成高分子、セルロース等の再生セルロー
ス繊維などの化繊、天然ゴムなどの電気絶縁性天然高分
子、ガラスなどの電気絶縁性無機繊維等を用いることが
できる。
Monofilaments or multifilaments spun by a wet spinning machine, spun yarns made of short fibers, twisted yarns of these yarns, films, sheets, slits, elongated objects, or aggregates thereof can be used. In addition to esters, these materials include all electrically insulating synthetic polymers such as nylon, synthetic fibers such as cellulose and other regenerated cellulose fibers, electrically insulating natural polymers such as natural rubber, and electrically insulating inorganic materials such as glass. Fibers etc. can be used.

前述の変形4電性編織物の製造は、まず電気絶縁性繊維
にメッキ、コーティング、溶射などの手段によシ、導電
性物質全付与した導電糸から作られた編織物、もしくは
電気絶縁性編織物をメッキ、コーティング、溶射などの
手段により、導を性物質を付与した温域性編織物を用意
し、この編織物に超音波、水や空気の高速噴射、流速の
差の大きい層流の生じている媒体中などで物理的応力を
加えることにより、糸の交絡部分及び交絡部分間で選択
的に導電性物質全剥離させることによって行われる。し
たがって変形導電性編織物を横取する糸の特定の部分の
み電気的絶縁状態におかれており、その他の部分は、銅
、ニッケル、銀、カーデンなどの導電性物質がメッキ、
コーティング、溶射などの導電化手段によシ導電ak付
与されている。尚、特にマルチフィラメントや紡績糸の
場合には、微小の応力で各フィラメントや短繊維が接触
するので高感度変形導電性編織物を形成するためにはよ
り好ましい。
The production of the above-mentioned modified four-conductor knitted fabric begins with a knitted fabric made from electrically insulating fibers entirely coated with a conductive substance by means such as plating, coating, or thermal spraying, or an electrically insulating knitted fabric. A temperature range knitted fabric is prepared by adding a conductive substance to the fabric by plating, coating, thermal spraying, etc., and this knitted fabric is subjected to ultrasonic waves, high-speed jetting of water or air, and laminar flow with a large difference in flow velocity. This is carried out by applying physical stress, such as in the medium in which the yarn is being formed, to selectively completely peel off the conductive material at and between the intertwined parts of the yarn. Therefore, only a specific part of the yarn that takes over the deformed conductive knitted fabric is electrically insulated, and the other parts are plated with conductive substances such as copper, nickel, silver, and carden.
Conductivity is imparted by conductive means such as coating or thermal spraying. In particular, in the case of multifilaments or spun yarns, each filament or short fiber comes into contact with each other under minute stress, which is more preferable for forming a highly sensitive deformable conductive knitted fabric.

また経糸もしくは緯糸のどちらか一方が導電糸、他方が
絶縁糸である織物を形成し、この織物をバイヤス方向に
カットすることによって得た変形導電性織物を用いても
よい。なお伸長溝′亀素子の伸長導電性シートの耐久性
等全向上させるために、変形導電性編織物の少なくも片
面にエラストマーを積層して用いてもよい。
Alternatively, a deformed conductive fabric obtained by forming a fabric in which either the warp or the weft is a conductive yarn and the other is an insulating yarn and cutting this fabric in the bias direction may be used. In order to completely improve the durability of the elongated conductive sheet of the elongated groove element, an elastomer may be laminated on at least one side of the deformed conductive knitted fabric.

第1図に示した伸長導電素子では電極として銅板が用い
られているが、これ以外にアルミ、真鍮、ステンレスな
どの通常電極として用いられる金属板をはじめ、布帛や
ニジストマーシートに金属鍍金、コーティング、溶射あ
るいは導電性フィラー混入などの手段により導電性全付
与した導電性布帛や導電性エラストマーシートを用いて
もよい。
In the elongated conductive element shown in Figure 1, a copper plate is used as an electrode, but in addition to this, metal plates such as aluminum, brass, and stainless steel, which are normally used as electrodes, as well as fabrics and nidistomer sheets, are used with metal plating and coating. Alternatively, a conductive fabric or a conductive elastomer sheet that has been completely imparted with conductivity by thermal spraying or mixing with a conductive filler may also be used.

金属板や導電性布帛や導電性エラストマーシートで作ら
れた電極と伸長導電性シートとの接続は等電性樹脂層t
−介して行うと、接触抵抗が低く、伸長くり返しに対す
る力学的強度が増大するので好ましい。ここでいう導電
性樹脂層とは、通常よく用いられるエポキシ系、アクリ
ル系、エステル系などのプラスチック系接着剤全はじめ
、ウレタン系、ラテックス系などの接着剤、または熱浴
融型のポリマー、例えばポリエステル系、ポリアミド系
樹脂などを基材とし、それに通常5〜50体積係の範囲
内で適当肘の4亀性フイラーを混入した導電性樹脂から
なる層である。ここでいう導電性フィラーとは、ニッケ
ル、銅、鉄、アルミニウム、金、銀などの金属もしくは
、それらの合金もしくは導電性カーゼンなどからなり、
形状としては粉末もしくは短繊維状である。また、導電
性樹脂層の厚みとしては、1μm以上の厚みが必要であ
シ、伸長導電素子の用途にもよるが、通常は2μm以上
50μm以下の厚みが、伸長導電性シート、電極板との
接着力、接触抵抗、コストの面で好ましいがこれに限ら
れるものではない。導電性樹脂層の厚みが1μm未満で
あると接着力が劣る。尚、導電性樹脂が熱溶融型のポリ
マーを基材としている場合には、シート状、もしくはフ
ィルム状で使用できるので操作性の面で優れ、工業的に
よシ好ましい。
The connection between the electrode made of a metal plate, conductive fabric, or conductive elastomer sheet and the stretched conductive sheet is made using an isoelectric resin layer t.
- It is preferable to do so through the contact resistance because the contact resistance is low and the mechanical strength against stretching and repetition is increased. The conductive resin layer referred to here includes all commonly used plastic adhesives such as epoxy, acrylic, and ester adhesives, urethane adhesives, latex adhesives, and hot bath melting polymers, such as This layer is made of a conductive resin having a base material such as a polyester resin or a polyamide resin, into which a suitable filler of 40% by volume is mixed. The conductive filler here is made of metals such as nickel, copper, iron, aluminum, gold, silver, alloys thereof, conductive casen, etc.
It is in the form of powder or short fibers. In addition, the thickness of the conductive resin layer must be 1 μm or more, and although it depends on the use of the elongated conductive element, it is usually 2 μm or more and 50 μm or less in thickness when used with the elongated conductive sheet and electrode plate. This is preferable in terms of adhesive strength, contact resistance, and cost, but is not limited thereto. If the thickness of the conductive resin layer is less than 1 μm, the adhesive force will be poor. In addition, when the conductive resin is based on a heat-melting type polymer, it can be used in the form of a sheet or film, which is excellent in terms of operability and is industrially preferred.

尚、金属板の表面が凹凸にエンデス加工されていると、
導電性樹脂層との接着力が高く、かつ電気的な絶縁破壊
が起りやすくなるので導電性フィラーの混入at下げる
ことができ、コスト面及び導電性樹脂層の接着力低下も
抑えられるのでよシ好ましい。
In addition, if the surface of the metal plate is finished with an uneven finish,
It has a high adhesive strength with the conductive resin layer and is more likely to cause electrical breakdown, so it is possible to reduce the amount of conductive filler mixed in, and it is also easier to use because it reduces costs and reduces the adhesive strength of the conductive resin layer. preferable.

また、電極として、4電性のホックやはとめ、圧着端子
金用いることもできるし、上記電極板や導電性布帛や導
電性エラストマーシートと組み合せて用いることもでき
る。
Further, as the electrode, a tetraelectric hook, eyelet, or crimp terminal metal can be used, and it can also be used in combination with the above-mentioned electrode plate, conductive fabric, or conductive elastomer sheet.

次に第2図以下に示す本発明による対被検物絶縁型伸長
導寛素子の他の例全説明する。第2図の例では電極板全
取付けた伸長導電性シート8の両面に2枚の電気絶縁性
高分子エラストマーフィルム1′が接合されている。第
3図の例では電極板を取付けた伸長導電性シート8′の
片面に電気絶縁性高分子エラストマーフィルム1“が接
合されている。
Next, other examples of the test object-insulating elongated conductive element according to the present invention shown in FIG. 2 and subsequent figures will be explained. In the example shown in FIG. 2, two electrically insulating polymeric elastomer films 1' are bonded to both sides of a stretched conductive sheet 8 to which all electrode plates are attached. In the example shown in FIG. 3, an electrically insulating polymeric elastomer film 1'' is bonded to one side of an elongated conductive sheet 8' to which an electrode plate is attached.

第4図の例では伸長導電性シート3′の片面に絶縁破壊
フィルム2、他の面に電気絶縁性エラストマーフィルム
9が積層され積層物の両端には導電性樹脂5′によって
銅製の電極板4′が取着されている。
In the example shown in FIG. 4, a dielectric breakdown film 2 is laminated on one side of a stretched conductive sheet 3', an electrically insulating elastomer film 9 is laminated on the other side, and copper electrode plates 4 are attached to both ends of the laminate by conductive resin 5'. ' is attached.

両端の電極板4′にはそれぞれリード線7がノ・ンダ付
は部分6′ヲ経て接続されている。この場合電極板4′
が漏出しているので電極板4の下方に図示の如く電気絶
縁性の粘着テープが接合されている。
Lead wires 7 are connected to the electrode plates 4' at both ends through the soldered portions 6'. In this case electrode plate 4'
Because of the leakage, an electrically insulating adhesive tape is bonded to the lower part of the electrode plate 4 as shown in the figure.

第5図の例では電極を取付けた伸長導電性シート8“の
両面に伸縮性金有する布帛11i配置し、電極板の部分
を上下の布帛11に番号13で示すように縫付けると共
に、伸長導電性シートの部分を上下の布帛11に番号1
2で示すよう千鳥状に縫付けである。
In the example shown in FIG. 5, fabrics 11i having stretchable gold are arranged on both sides of the stretchable conductive sheet 8'' to which electrodes are attached, and the electrode plate portions are sewn to the upper and lower fabrics 11 as indicated by number 13, and the stretchable conductive sheet 8'' is Place the number 1 on the top and bottom fabrics 11 of the sex sheet.
As shown in 2, it is sewn in a staggered pattern.

伸長導電素子に絶縁性を付与するだめの手段は前記第1
図〜第5図に例示した手段に限定されるものではなく、
要は使用時に被検物または伸長導電素子が組み込まれた
物体に漏電しないようにし、且つ伸長導電素子の伸長挙
動に影響金与えないものであればどのような態様も適用
することができる。
The means for imparting insulation to the elongated conductive element is the first
It is not limited to the means illustrated in FIGS.
In short, any embodiment can be applied as long as it prevents current leakage to the test object or the object in which the elongated conductive element is incorporated during use, and does not affect the elongation behavior of the elongated conductive element.

なお伸長導電性シートとして前述の変形導電性編織物以
外のシート状物上用いてもよい。
Note that the elongated conductive sheet may be used on a sheet-like material other than the above-mentioned deformed conductive knitted fabric.

く実施例〉 以下本発明による対被検物絶縁型伸長導′龜撫子の具体
的実施例全説明する。しかし本発明はこれら具体的実施
例に限定されるものではないことは明らかである。
Embodiments> Hereinafter, detailed embodiments of the specimen-insulating type elongated lead pin according to the present invention will be explained. However, it is clear that the invention is not limited to these specific examples.

旭化底工業(株〕製のエステルタフタ(経50d/24
f、緯75d/36f) ’t−水酸化ナトリウム水溶
液(809/l)、100℃で減駄加工(減量率20%
)し、5nC42:塩酸が3=10の重匪比の浴中で感
受性化し、水洗脱水後、 PdCl2:塩酸が重散比1
:15の浴中で活性化し、水洗脱水後NtCt2 ’ 
6H20t NaHPO2’H20、クエン酸ナトリウ
ム。
Ester taffeta (diameter 50d/24) manufactured by Asahi Kasoko Kogyo Co., Ltd.
f, latitude 75d/36f) 't-Sodium hydroxide aqueous solution (809/l), wastage processing at 100℃ (loss rate 20%
) and sensitized in a bath with a 5nC42:hydrochloric acid ratio of 3=10, and after washing and dehydration, a PdCl2:hydrochloric acid ratio of 1
: Activated in 15 baths, washed with water and dehydrated, then NtCt2'
6H20t NaHPO2'H20, sodium citrate.

NH2Cl、アンモニア水が1:1:3:2:2の重肘
比の浴中90℃×2分処理して、Niメッキエステルタ
フタを作製した。これf 10 tyn X 10口の
大きさのサンプルに切り、二重円筒形の層流発生装置(
内側の円筒が高速回転、外筒の内径25crn、内筒の
外径10 cm )に水と一緒に入れ、内筒回転速度2
00 rpmで、300分処理して伸長導電シートを得
た。
Ni-plated ester taffeta was produced by treatment at 90° C. for 2 minutes in a bath containing NH2Cl and aqueous ammonia at a ratio of 1:1:3:2:2. This was cut into f 10 tyn x 10 mouth size samples and placed in a double cylindrical laminar flow generator (
The inner cylinder rotates at high speed, the inner cylinder has an inner diameter of 25 crn, and the outer diameter of the inner cylinder is 10 cm.
00 rpm for 300 minutes to obtain an elongated conductive sheet.

次に、市販ウレタン系ニジストマー樹脂(溶媒DMF、
固形分10wt%)全90μmケ゛−ノで雛形紙にコー
テイング後100℃X3rnin乾燥させ生がわきの状
態で、このシート状の伸長導電性シートの両面に4 k
g/ cm2の圧力で110℃で熱接着転写し100℃
×30分乾燥させ、伸長導電性シート■を得た。
Next, a commercially available urethane-based nidistomer resin (solvent DMF,
After coating a template paper with a total of 90 μm (solid content: 10 wt%), it was dried at 100°C for 3 min.
Thermal adhesive transfer at 110℃ with a pressure of g/cm2 and 100℃
It was dried for 30 minutes to obtain an elongated conductive sheet (■).

同様にして、90μm、300μmのゲージでそれぞれ
作製された生がわきの2枚のウレタンフィルムを上記伸
長導電性シートの両面に張り合せ、伸長導電性シート■
全得た。
In the same way, two urethane films of raw raw material made with a gauge of 90 μm and 300 μm, respectively, were laminated on both sides of the stretched conductive sheet, and the stretched conductive sheet
I got everything.

次に伸長導電性シート■、■f 1 cm巾×5crn
長にバイアス方向に裁断し、両端から1口長の表裏に厚
さ40μmの銅板を導電性接着剤で接合し、両端にリー
ド線をはんだ付けし、20%伸長することにより2本の
リード線間の抵抗値が4.5X106Ωから60Ωに低
下する伸長導′こ素子■、■を作製した。
Next, stretch conductive sheet ■, ■f 1 cm width x 5 crn
Cut the length in the bias direction, bond a 40 μm thick copper plate to the front and back sides of one length from both ends with conductive adhesive, solder lead wires to both ends, and stretch by 20% to create two lead wires. Elongated conductive elements ① and ② in which the resistance value between the two electrodes was reduced from 4.5×10 6 Ω to 60 Ω were fabricated.

伸長導電素子■t、市販21反型シリコーンワニス(柔
軟用;固形分40wt%、溶媒トルエン)にディッピン
グ後10分〜30分風乾させ、1.30’CX 1 h
r乾x++させるサイクル全3回くり返し、本発明の伸
長導電素子である試料應1全得た。次に、同じく伸長導
電素子■の両面に、400μmゲージで離上紙にコーテ
ィングして、100 ℃X 4 min乾燥させ生がわ
きの状態の先のウレタン系フィルムを4 kg/ yn
2の圧力で110℃で熱接着転写し、120℃×1時間
乾燥させ、2cm巾×10crIt長に切り出して本発
明の伸長導電素子でちる試料&2を得た。同様にして伸
長導電性シート■の片面にのみ上記転写フィルムを張り
合せて、本発明の伸長導電素子でちる試料iK Bを得
た。次に、伸長導電素子■を、2G巾×6crn長のス
パンデックスとナイロン60交編による布帛2枚で挾み
、リード線及び電極部分の周囲tミシンで縫製し、2つ
の電極板間を伸長導電素子■にそって千鳥縫いして、本
発明の伸長導電素子である試料屋4金得た。
Elongated conductive element ■t, after dipping in commercially available 21 anti-mold silicone varnish (for flexibility; solid content 40 wt%, solvent toluene), air-dried for 10 to 30 minutes, 1.30'CX 1 h
The cycle of drying x++ was repeated a total of three times to obtain a sample 1, which is an elongated conductive element of the present invention. Next, both sides of the elongated conductive element (■) were coated with release paper using a 400 μm gauge, and dried at 100°C for 4 min.
This was thermally adhesively transferred at 110° C. under a pressure of 2, dried at 120° C. for 1 hour, and cut out into a 2 cm wide×10 crIt length to obtain a sample &2 made of the elongated conductive element of the present invention. In the same manner, the above transfer film was laminated only on one side of the elongated conductive sheet (1) to obtain a sample iK B which was made of the elongated conductive element of the present invention. Next, the elongated conductive element (■) is sandwiched between two pieces of spandex and nylon 60 cross-knit fabric with a width of 2G and a length of 6 crn, and the area around the lead wire and electrode part is sewn using a sewing machine, and the elongated conductive element is sewn between the two electrode plates. A zigzag stitch was made along the element (2) to obtain a sample of the elongated conductive element of the present invention.

さらに、伸長導電素子■の両側の電極の電気絶縁性ウレ
タンフィルム(300μmダージでコーティング)が貼
着されている側(第4図の下側)の表面に市販の電気絶
縁性のビニールテープを貼9、本発明の伸長導電素子で
ある試料A5を作製した。
Furthermore, commercially available electrically insulating vinyl tape was pasted on the surface of the electrodes on both sides of the elongated conductive element (lower side in Figure 4) to which the electrically insulating urethane film (coated with 300 μm dirge) was attached. 9. Sample A5, which is an elongated conductive element of the present invention, was prepared.

本発明物の試料屋1〜5の電気絶縁性は、東洋ボールド
ウィン裏引っ張り試験機テンシロンニ2つの寛極部分金
端刀)ら5閣だけはさみ、本発明の伸長導′屯素子全2
0係伸長させ、テンシロンの治具ではさまれていない両
端の電極部分の絶縁状態にされている側に市販のテスタ
ーの端子をあて電気抵抗値を測定した。その結果を比較
例として伸長導電素子■と一緒に表1にまとめた。表1
かられかるように1本発明の伸長導電素子は、少なくと
もその絶縁状態にされている側では電気絶縁性が保たれ
ていることがわかる。
The electrical insulation properties of samples 1 to 5 of the present invention were determined by using a Toyo Baldwin back tensile tester (Tensiron), two gentle poles (metallic tip), and five scissors, and an elongated conductive element of the present invention (all 2).
After stretching at zero tension, the electrical resistance value was measured by applying the terminal of a commercially available tester to the insulated sides of the electrode portions at both ends that were not sandwiched by the Tensilon jig. The results are summarized in Table 1 together with the elongated conductive element (2) as a comparative example. Table 1
As can be seen from the drawings, it can be seen that the elongated conductive element of the present invention maintains electrical insulation properties at least on the insulated side.

以下余白 〈発明の効果〉 本発明による対被検物絶縁型伸長導電素子は前述の如く
構成されているので、従来公知のセンサー素子音用すて
行うことのできない伸長変形、特に相当量の伸長変化を
する被検物の伸長挙動全検出することができると共に使
用時に被検物または伸長導電素子が組み込まれた物体に
漏電することがなく且つ被検物の伸長挙動金工しく検出
することができる伸長導電素子である。
Margins below <Effects of the Invention> Since the test object-insulated elongated conductive element according to the present invention is constructed as described above, elongated deformation that could not be performed using conventional sensor element sounds, especially a considerable amount of elongation, can be achieved. It is possible to detect the entire changing elongation behavior of the test object, and it is possible to accurately detect the elongation behavior of the test object without causing electrical leakage to the test object or the object in which the elongated conductive element is incorporated during use. It is an elongated conductive element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による対被検物絶縁型伸長尋電素子の一
例を模式的に示す長手軸方向断面図でちり、第2図〜第
5図は第1図に示した伸長溝′社素子の変形実施例を示
す模式図であって、第2図。 第3図および第5図は斜視図で第4図は長手軸方向断面
図で示される。 1・・・電気絶縁性エラストマー、11 、1//・・
・電気絶縁性エラストマーフィルム、2,2′・・・伸
長導電性シートに積層された絶縁破壊フィルム、3,3
′・・・伸長導電性シート、4,4′・・・電極板、5
,5′・・・導電性樹脂層、6,6′・・・はんだ付は
部分、7.7’。 7“、7“/ 、  7////  ・・・リード線、
8 、8’ 、8”・・・電櫃板を取り付けた伸長導電
素子、9・・・伸長S電性シートに接合された電気絶縁
性のエラストマーフィルム、10・・・電気絶縁性粘着
テープ、11・・・電気絶縁性の伸縮性布帛、12.1
3・・・縫い糸。
FIG. 1 is a longitudinal cross-sectional view schematically showing an example of the test object-insulated elongated conductor element according to the present invention, and FIG. 2 to FIG. FIG. 2 is a schematic diagram showing a modified example of the element. 3 and 5 are perspective views, and FIG. 4 is a longitudinal sectional view. 1... electrically insulating elastomer, 11, 1//...
・Electrically insulating elastomer film, 2,2'...Dielectric breakdown film laminated on stretched conductive sheet, 3,3
'... Stretched conductive sheet, 4, 4'... Electrode plate, 5
, 5'... Conductive resin layer, 6, 6'... Soldering part, 7.7'. 7", 7"/, 7////...Lead wire,
8, 8', 8''... Elongated electrically conductive element attached with electric box plate, 9... Electrically insulating elastomer film bonded to elongated S conductive sheet, 10... Electrically insulating adhesive tape, 11...Electrically insulating stretchable fabric, 12.1
3... Sewing thread.

Claims (1)

【特許請求の範囲】[Claims] 1、任意の方向に伸長を加えた場合にその電気抵抗値が
減少する伸長導電性シートと、該伸長導電性シートの伸
長方向に所定の間隔をあけて取着した少くとも2個の電
極を含んで成り、少なくとも片面が絶縁状態に形成され
ていることを特徴とする対被検物絶縁型伸長導電素子。
1. A stretched conductive sheet whose electrical resistance value decreases when stretched in any direction, and at least two electrodes attached at a predetermined distance in the stretching direction of the stretched conductive sheet. What is claimed is: 1. An elongated conductive element insulated from a specimen, characterized in that at least one surface is formed in an insulating state.
JP61005087A 1986-01-16 1986-01-16 Extending conductive element of insulating object to be inspected Pending JPS62163903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005087A JPS62163903A (en) 1986-01-16 1986-01-16 Extending conductive element of insulating object to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005087A JPS62163903A (en) 1986-01-16 1986-01-16 Extending conductive element of insulating object to be inspected

Publications (1)

Publication Number Publication Date
JPS62163903A true JPS62163903A (en) 1987-07-20

Family

ID=11601607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005087A Pending JPS62163903A (en) 1986-01-16 1986-01-16 Extending conductive element of insulating object to be inspected

Country Status (1)

Country Link
JP (1) JPS62163903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127772A (en) * 2008-11-27 2010-06-10 Kuraray Co Ltd Fibrous deformation sensor and cloth-like deformation sensor
JP2016080520A (en) * 2014-10-17 2016-05-16 ヤマハ株式会社 Strain sensor
JPWO2015174505A1 (en) * 2014-05-16 2017-04-20 国立研究開発法人産業技術総合研究所 Stretchable conductive circuit and manufacturing method thereof
WO2018012142A1 (en) * 2016-07-14 2018-01-18 グンゼ株式会社 Biosignal detector
JP2018010809A (en) * 2016-07-14 2018-01-18 グンゼ株式会社 Harness for conduction, harness structure for conduction, and harness fitting structure for conduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127772A (en) * 2008-11-27 2010-06-10 Kuraray Co Ltd Fibrous deformation sensor and cloth-like deformation sensor
JPWO2015174505A1 (en) * 2014-05-16 2017-04-20 国立研究開発法人産業技術総合研究所 Stretchable conductive circuit and manufacturing method thereof
JP2016080520A (en) * 2014-10-17 2016-05-16 ヤマハ株式会社 Strain sensor
WO2018012142A1 (en) * 2016-07-14 2018-01-18 グンゼ株式会社 Biosignal detector
JP2018010809A (en) * 2016-07-14 2018-01-18 グンゼ株式会社 Harness for conduction, harness structure for conduction, and harness fitting structure for conduction

Similar Documents

Publication Publication Date Title
US4715235A (en) Deformation sensitive electroconductive knitted or woven fabric and deformation sensitive electroconductive device comprising the same
JP2719090B2 (en) Wearing pressure measuring device
CN207703231U (en) Flexible capacitive sensor
CN111227812B (en) All-fiber-based flexible sensor and preparation method and application thereof
CN108085988A (en) The preparation method of condenser type stress sensing intelligent fabric
JP2009516839A (en) Pressure sensor
JP7352839B2 (en) Clothes-type electronic equipment and its manufacturing method
JP6502673B2 (en) Connection structure, wearable device and manufacturing method of connection structure
JP2018080417A (en) Conductive stretch continuous body
JPS62200701A (en) Deformed conductive knitting
JPS62163903A (en) Extending conductive element of insulating object to be inspected
JPS62163904A (en) Expanding conductive element with fixing means
CN211317588U (en) Flexible pressure sensor
JP7204089B2 (en) Tensile sensor and its manufacturing method
JPS62163902A (en) Working elongation setting type extending conductive element
WO2019205193A1 (en) Flexible stress sensor made of fully textile material
JPS6276602A (en) Elongated conductive cloth piece
JPS61201045A (en) Deformed conductive knitted cloth
JPS6276504A (en) Elongated conductive element
JPS62200203A (en) Extensible conductive element with fixing means
JPS62200204A (en) Elongating conductive element with fixing means having adjusting mechanism
CN112444330A (en) Fabric separating pressure sensor
JPS6276506A (en) Elongated conductive element
JPS6276601A (en) Elongated conductive structure
JPS6276505A (en) Elongated conductive element