JPS6276506A - Elongated conductive element - Google Patents

Elongated conductive element

Info

Publication number
JPS6276506A
JPS6276506A JP21466385A JP21466385A JPS6276506A JP S6276506 A JPS6276506 A JP S6276506A JP 21466385 A JP21466385 A JP 21466385A JP 21466385 A JP21466385 A JP 21466385A JP S6276506 A JPS6276506 A JP S6276506A
Authority
JP
Japan
Prior art keywords
conductive
sheet
elongated
elongated conductive
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21466385A
Other languages
Japanese (ja)
Inventor
福井 実
直樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21466385A priority Critical patent/JPS6276506A/en
Publication of JPS6276506A publication Critical patent/JPS6276506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Adjustable Resistors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は任意の方向に伸長を加えた場合に、その電気抵
抗値が1桁以上変化する伸長導電素子に関する。より詳
しくは伸長導電性シートに取着されるリード線接続用端
子として電極板が用いられる伸長導電素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an elongated conductive element whose electrical resistance value changes by one order of magnitude or more when elongated in any direction. More specifically, the present invention relates to an elongated conductive element in which an electrode plate is used as a lead wire connection terminal attached to an elongated conductive sheet.

〔将来の技術〕[Future technology]

従来伸長変形によって電気抵抗値がσ友少する素材は広
く知られておらず、したがって伸長変形によって生ずる
電気抵抗値の減少をとらえることによって被測定物の伸
長の有無、伸長の量、伸長圧縮の頻度を検出することの
できる素子も開発されていなかった。
Conventionally, materials whose electrical resistance value decreases by σ due to elongation deformation are not widely known. Therefore, by capturing the decrease in electrical resistance value caused by elongation deformation, it is possible to determine whether or not the measured object is elongated, the amount of elongation, and the extent of elongation/compression. Elements capable of detecting frequency had also not been developed.

一方、伸長変形によって電気抵抗値が増大する性質と利
用した素子としてストレーンゲージが知られている。す
なわち、例えばコンスタンクン、アドバンス、ニクロー
ム等の細い金属綿を引張ると電気抵抗値が増大する。し
かし、この種の金属線伸長率は極めて小さい(1%以下
)ため、前記ストレーンゲージは判定対象物の微小変形
にしか対応できず、例えば人体の肘、膝等の屈曲部分の
ような大きな伸長変形の検出には不向きである。
On the other hand, strain gauges are known as elements that take advantage of the property that electrical resistance increases with elongation and deformation. That is, for example, when thin metal cotton such as Constankun, Advance, Nichrome, etc. is pulled, the electrical resistance value increases. However, since the elongation rate of this type of metal wire is extremely small (1% or less), the strain gauge described above can only handle minute deformations of the object to be determined. It is not suitable for detecting deformation.

また圧電素子や感圧導電性ゴムを用いた素子がある。圧
電素子は、機械的な歪変形を電圧変化としてとらえるも
のであるが、ストレーンゲージと同様に微小変形の用途
にしか適さない。一方、後者の感圧導電性ゴムは圧縮変
形に対して電気抵抗値が減少するものであり、伸長変形
に対しては電気抵抗値の低下は生じない。
There are also elements using piezoelectric elements and pressure-sensitive conductive rubber. Piezoelectric elements detect mechanical strain deformation as voltage changes, but like strain gauges, they are only suitable for applications involving minute deformations. On the other hand, in the latter type of pressure-sensitive conductive rubber, the electrical resistance value decreases when subjected to compressive deformation, but does not decrease when subjected to elongated deformation.

上iホの如〈従来公知の素子は、微小な伸長変形にしか
用いることができないか、あるいは圧縮変形にしか用い
ることができない。したがって伸長変形、特に相当量の
伸長変形をする対象物の伸長挙動、すなわち伸長の有無
、伸長の量、伸長を伴う圧縮の頻度等を検出することの
できる素子があれば、広範囲の応用分野があることが期
待されながら現在はそれを満足するものが出現していな
いのが現状である。
As mentioned above, conventionally known elements can only be used for minute extensional deformations or only for compressive deformations. Therefore, if there is an element that can detect elongation deformation, especially the elongation behavior of an object that undergoes a considerable amount of elongation deformation, such as the presence or absence of elongation, the amount of elongation, and the frequency of compression accompanied by elongation, it could be applied in a wide range of fields. The current situation is that although certain things are expected, nothing that satisfies them has yet appeared.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来公知の素子を用いては行うことができない
伸長変形、特に相当量の伸長挙動を電気的に検出するこ
とのできる伸長導電性素子を提供するごとを目的とする
SUMMARY OF THE INVENTION It is an object of the present invention to provide an elongated conductive element that can electrically detect elongated deformation, particularly a considerable amount of elongated behavior, which cannot be performed using conventionally known elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、伸長導電性シートと該シートに間隔を
あけて取着された電極板を含んで成る伸長導電素子であ
って、その電極板が導電性樹脂層を介して前記伸長導電
性シートに接合されていることを特徴とする伸長専電性
シートによって達成される。
An object of the present invention is to provide an elongated conductive element comprising an elongated conductive sheet and an electrode plate attached to the sheet at intervals, the electrode plate being connected to the elongated conductive element through a conductive resin layer. This is achieved by means of an extensible electrically conductive sheet, which is characterized in that it is joined to the sheet.

ここでいう伸長導電性シートとは、伸長変形作用を加え
ると、もしくは伸長変形を伴う屈曲、圧縮などの変形作
用を加えると、その変形方向のシートの電気抵抗値が1
桁以上減少するシートを意味する。例えば絶縁性の高分
子エラストマーに、薄片状の形状をした導電性フィラー
を入れることにより、フィラーの面に平行な方向で伸長
した際に、伸長方向の導電性が向上するシートであって
、本発明と同一出願人によって昭和59年9月27日に
特願昭59−20057号として出願された「変形導電
性高分子エラストマー」中に含まれるシートである。ま
た、伸長導電性シートとして本発明と同一出願人によっ
て昭和60年3月4日に特願昭60−41024として
出願された「変形導電性編織物」かは電気絶縁性が下記
の条件を満たし、それによって任意の方向に伸長又は圧
縮を加えた場合にその電気抵抗値が変化する編織物であ
る。
The elongated conductive sheet here means that when an elongated deformation action is applied, or when a deformation action such as bending or compression accompanied by elongation deformation is applied, the electrical resistance value of the sheet in the deformation direction becomes 1.
It means a sheet that decreases by more than an order of magnitude. For example, by adding a flaky conductive filler to an insulating polymer elastomer, the sheet improves conductivity in the stretching direction when stretched in a direction parallel to the plane of the filler. This sheet is included in "Deformed Conductive Polymer Elastomer" filed as Japanese Patent Application No. 59-20057 on September 27, 1982 by the same applicant as the inventor. In addition, the "deformed conductive knitted fabric" filed as Japanese Patent Application No. 60-41024 on March 4, 1985 by the same applicant as the present invention as a stretched conductive sheet has electrical insulation properties that meet the following conditions. , a knitted fabric whose electrical resistance value changes when stretched or compressed in any direction.

■ 該編織物の所定の面積中における全交絡部分の中で
、電気的に絶縁状態にある交絡部分の数をρ1とし、電
気的に導通状態にある交絡部分の数を12とした場合に
その比X+/l、の値が一平方インチ当りの測定値で1
79以上であること。
■ Among all the intertwined parts in a predetermined area of the knitted fabric, if the number of intertwined parts that are electrically insulated is ρ1, and the number of intertwined parts that are electrically conductive is 12, then The value of the ratio X+/l, measured per square inch, is 1
Must be 79 or above.

をm2とした場合に、その比m、/m2の値子織のいず
れでも良いが、特に平織は組織が密で繰り返し耐久性に
優れ、また微小の変形に対して高感度に抵抗値が変化す
るのでより好ましい。また、編物の組織としては、経編
1緯編のどちらでも良いし、トリコント編、天竺編、ゴ
ム編、パール編等のいずれでも良いが、特にパール編の
場合には、編Mi織のどの方向にもほぼ均一な変形導電
性が得られるのでより好ましい。尚、微小変形、大変形
に対する変形導電性は、それぞれ織物1編物のlJi織
を適切に選定することにより得られる。
When is m2, any type of weave with the ratio m or /m2 may be used, but plain weave in particular has a dense structure and is excellent in repeated durability, and its resistance value changes with high sensitivity to minute deformation. Therefore, it is more preferable. In addition, the structure of the knitted fabric may be either warp knitting, single weft knitting, triconte knitting, jersey knitting, rubber knitting, purl knitting, etc., but especially in the case of purl knitting, any of the knitting Mi weaves may be used. This is more preferable since substantially uniform deformation conductivity can be obtained also in the direction. Incidentally, the deformation conductivity with respect to minute deformation and large deformation can be obtained by appropriately selecting the lJi weave of one knitted woven fabric.

編織物の形状としては、シート状1円筒状など編織物の
[jを使ったすべての形状を含む。
The shape of the knitted fabric includes all shapes using [j] of the knitted fabric, such as sheet, cylinder, etc.

また該編織物を構成する糸としては、通常の溶融、湿式
紡糸機によって紡糸されたモノフィラメントやマルチフ
ィラメント、短繊維からなる紡績糸やそれらの糸の撚糸
、フィルムやシートを細長くスリットした、細長い形状
物もしくはその収束物を用いることができる。その素材
としては、ナイロン、エステルなどのすべての電気絶縁
性合成高分子、セルロース等の再生セルロース繊維など
の化繊、天然ゴムなどの電気絶縁性天然高分子、ガラス
などの電気絶縁性無機繊維等を用い、これら糸の特定の
部分のみ電気的絶縁状態におかれており、その他の部分
は、銅、ニッケル、銀、カーボンなどの導電性物質がメ
ッキ、コーティング。
In addition, the yarns constituting the knitted fabric include monofilaments and multifilaments spun by ordinary melting or wet spinning machines, spun yarns made of staple fibers, twisted yarns of these yarns, and elongated shapes obtained by slitting films and sheets. An object or its convergence can be used. The materials include all electrically insulating synthetic polymers such as nylon and esters, synthetic fibers such as cellulose and other regenerated cellulose fibers, electrically insulating natural polymers such as natural rubber, and electrically insulating inorganic fibers such as glass. Only certain parts of these threads are electrically insulated, and other parts are plated or coated with conductive substances such as copper, nickel, silver, and carbon.

溶射などの導電化手段により導電性を付与されている。Conductivity is imparted by conductive means such as thermal spraying.

尚、特にマルチフィラメントや紡績糸の場合には、微小
の応力で各フィラメントや短繊維が接触するので高感度
変形導電性に、Q織物を形成するためにはより好ましい
In particular, in the case of multifilaments or spun yarns, each filament or short fiber comes into contact with each other under minute stress, which is more preferable for forming a Q-woven fabric with high sensitivity deformation conductivity.

尚、ここでいう電気的に絶縁状態とは、本発明と同一の
出願人による特願昭60−41024号に記載した電気
抵抗値の測定法によって、2つの針状端子間の電気抵抗
値が106Ω以上である状態を意味し、また、電気的導
通状態とは、同様に2つの針状端子間の電気抵抗値が1
06Ω未満である状態を意味する。
Note that the electrically insulated state here refers to the state in which the electrical resistance value between two needle terminals is determined by the method for measuring electrical resistance value described in Japanese Patent Application No. 60-41024 filed by the same applicant as the present invention. It means a state where the electrical resistance is 106Ω or more, and an electrically conductive state also means a state where the electrical resistance value between two needle terminals is 1.
This means a state where the resistance is less than 0.6Ω.

ここでいう交絡部分とは、各県が交差している部分を示
しており、必ずしも接触している必要はない。織物の場
合は経糸と緯糸の交差部分であり、編物の場合は、ルー
プの交差部分を意味する。
The intertwined area here refers to the area where each prefecture intersects, and does not necessarily need to be in contact. In the case of woven fabrics, it is the intersection of warp and weft yarns, and in the case of knitted fabrics, it is the intersection of loops.

ここでいう電気的に絶縁状態である交絡部分または電気
的に導通状態である交絡部分とは、交絡している2木の
糸が交絡部分を介してそれぞれ電気的に絶縁状態である
部分、あるいは電気的に導通状態である部分を意味する
The intertwined part that is electrically insulated or the intertwined part that is electrically conductive here refers to the part where two intertwined threads are electrically insulated through the intertwined part, or It means a part that is electrically conductive.

また、隣り合う交絡分間とは、より正確には交絡部分中
心間部分であって、一本の糸で隣り合う交絡部分の中心
間を意味する。また、電気的に絶縁状態である交絡部分
間、または電気的に導通状態である交絡部分間とは、上
で述べた隣り合う交絡部分間が電気的に絶縁状態である
か、導通状態であるかを意味する。尚、伸長W電性シー
トは、耐久性等が向上するので、伸長導電性編織物の少
なくとも片面にエラストマーを積層してなる伸長導電性
構造体であってもよい。
Further, the term "adjacent interlaced sections" refers more precisely to the center-to-center portions of interlaced portions, and means the center-to-center portions of adjacent interlaced portions of one thread. Also, between interlaced parts that are electrically insulated or electrically conductive means that the adjacent interlaced parts mentioned above are electrically insulated or electrically conductive. It means something. Note that the elongated W conductive sheet may be an elongated conductive structure formed by laminating an elastomer on at least one side of an elongated conductive knitted fabric, since durability and the like are improved.

本発明でいう導電性樹脂層とは、通常よく用いられるエ
ポキシ系、アクリル系、エステル系などのプラスチック
系接着剤をはじめ、ウレタン系、ラテックス系などの接
着剤、または熱溶融形のポリマー、例えばポリエステル
系、ポリアミド系樹脂などを基材とし、それに通常5〜
50体積%の範囲内で適当量の導電性フィラーを混入し
た導電性樹脂からなる層である。ここでいう導電性フィ
ラーとは、ニッケル、銅、鉄、アルミニウム、金、銀な
どの金属もしくはそれらの合金もしくは導電性カーボン
などからなり、形状としては粉末もしくは短繊維状であ
る。また、導電性樹脂層の厚みとしては、1μm以上の
厚みが必要であり、伸長導電素子の用途にもよるが、通
常は2μm以上5(lIim以下の厚みが、伸長導電性
シート、電極板との接着力、接触抵抗、コストの面で好
ましいがこれに限られるものではない。導電性樹脂層の
厚みが1μm未満であると、接着力が劣る。尚、導電性
樹脂が、熱溶融型のポリマーを基材としている場合には
、シート状、もしくはフィルム状で使用できるので操作
性の面で優れ、より好ましい。
The conductive resin layer in the present invention includes commonly used plastic adhesives such as epoxy, acrylic, and ester adhesives, urethane adhesives, latex adhesives, and hot-melt polymers, such as The base material is polyester or polyamide resin, and usually 5~
This layer is made of a conductive resin mixed with an appropriate amount of conductive filler within a range of 50% by volume. The conductive filler herein is made of metals such as nickel, copper, iron, aluminum, gold, and silver, or alloys thereof, or conductive carbon, and is in the form of powder or short fibers. The thickness of the conductive resin layer is required to be 1 μm or more, and although it depends on the purpose of the elongated conductive element, the thickness is usually 2 μm or more and 5 (lIim or less) for the elongated conductive sheet, electrode plate, etc. This is preferable in terms of adhesive strength, contact resistance, and cost, but is not limited to this. If the thickness of the conductive resin layer is less than 1 μm, the adhesive strength will be poor. When the base material is a polymer, it is more preferable because it can be used in the form of a sheet or film, which is excellent in terms of operability.

次に、本発明′でいう電極板とは、銅、アルミ。Next, the electrode plate referred to in the present invention' is made of copper or aluminum.

真鍮、ステンレスなどの通常電極として用いられる金属
板をはじめ、布帛やエラストマーシートに金属ノブキや
コーティング、5客射、導電性フィラーの混入などの手
段により導電性を付与した導電性布帛や導電性エラスト
マーシートがあげられる。
Conductive fabrics and conductive elastomers that are made of metal plates such as brass and stainless steel that are normally used as electrodes, as well as fabrics and elastomer sheets that have been given conductivity through methods such as metal knobs, coatings, five-point radiation, and the inclusion of conductive fillers. A sheet will be provided.

尚、金属板の表面が凹凸にエンボス加工されていると、
導電性樹脂層との接着力が高くかつ電気的な絶縁破壊が
起りやすくなるので導電性フィラーの混入量を下げるこ
とができ、コスト面及び導電性樹脂層の接着力低下も押
えられるのでより好ましい。
In addition, if the surface of the metal plate is embossed with unevenness,
It is more preferable because it has a high adhesive strength with the conductive resin layer and is more likely to cause electrical breakdown, so the amount of conductive filler mixed can be reduced, and the cost and decrease in adhesive strength of the conductive resin layer can be suppressed. .

第1図〜第4図に本発明による伸長導電素子の複数の実
施例の構造を正面図で示す。
1 to 4 show in front view the structure of several embodiments of elongated conductive elements according to the invention.

図においてla 、 Ib 、 lc 、 ldは、伸
長導電性シートを、2a 、 2b 、 2c 、 2
dは導電性樹脂層を、3a 、 3b。
In the figure, la, Ib, lc, ld are stretched conductive sheets, 2a, 2b, 2c, 2
d is a conductive resin layer, 3a, 3b.

3c 、 3dは電極板を表わす。第1図は電極板とし
て金属板を用いた伸長導電素子を表わす。第2図は、電
極板としてエンボス加工をされた金属板を用いた伸長導
電素子を表わす。第3図は電極板として導電性布帛を用
い伸長導電素子を表わす。第4図は伸長専電性シートの
両端の両面に電極板を上りつけた伸長導電素子を表わす
3c and 3d represent electrode plates. FIG. 1 shows an elongated conductive element using a metal plate as an electrode plate. FIG. 2 represents an elongated conductive element using an embossed metal plate as the electrode plate. FIG. 3 shows an elongated conductive element using conductive fabric as the electrode plate. FIG. 4 shows an elongated conductive element in which electrode plates are mounted on both ends of an elongated electrically conductive sheet.

以下、本発明の伸長導電素子について実施例を挙げてさ
らに詳しく説明するが、本発明の伸長導電素子は、これ
ら実施例や先の模式図に示すもののみに限定されるもの
ではない。
Hereinafter, the elongated conductive element of the present invention will be described in more detail with reference to Examples, but the elongated conductive element of the present invention is not limited to those shown in these Examples or the previous schematic diagram.

C′ム施例〕 X刃1例−上 ポリウレタンに薄片状のNiメッキマイカ(面内径と[
Vめの比が10対1)を15容楢%混入されている厚み
220μmのシートを作る。なおここでいう面内径の面
とは、Niメッキマイカの最大面積を有する面のことで
あり、また面内径はその最大面積を有する面の、面内長
径の最大値(面内最長径)Xo、9で定義される。さら
に厚みとは、Ni メノキマイツJの面を、平行な2枚
の平板ではさんだ際の平行平板間の間隔である。このシ
ートを1個巾×5cm長に截断し、15%伸長すること
による電気抵抗値が4X10”Ωから40Ωに減少した
C'm example] 1 example of X blade - flaky Ni-plated mica on upper polyurethane (inner diameter and [
A 220 μm thick sheet containing 15% oak (V ratio of 10:1) was prepared. Note that the surface with the inner diameter here refers to the surface with the maximum area of Ni-plated mica, and the inner diameter is the maximum value of the long axis in the surface (the longest diameter in the surface) of the surface with the maximum area. , 9. Furthermore, the thickness is the distance between two parallel plates when the surface of Ni Menoki Mite J is sandwiched between two parallel plates. This sheet was cut into pieces with a width of 5 cm and a length of 5 cm, and when stretched by 15%, the electrical resistance value decreased from 4 x 10''Ω to 40Ω.

このシートの両端に、銅粉(粒径5〜10μm)を20
体積%混入したポリアミド系熱融着樹脂シート(厚さ2
0μm)を介して銅板(40μm)を130’C13気
圧の条件下で熱融着して本発明による伸長導電素子の試
料歯1を作製した。
Copper powder (particle size 5 to 10 μm) is placed on both ends of this sheet.
Polyamide heat-sealing resin sheet (thickness 2
A sample tooth 1 of an elongated conductive element according to the present invention was prepared by heat-sealing a copper plate (40 μm) through a copper plate (0 μm) under the condition of 130°C and 13 atmospheres.

尖り溺ユ 旭化成工業側製のエステルタフタ(経50d/24f、
緯75d/36f)を水酸化ナトリウム水溶液(80g
/j’)、100℃で減量加工(減量率20%)し、S
nC#!z:塩酸が3=10の重量比の浴中で感受性化
し、水洗脱水後、PdCl2  :塩酸が重量比1:1
5の浴中で活性化し、水洗脱水後NiC12・6HzO
、HaHPOz ・HtO、クエン酸すトリウム、NH
4(J、アンモニア水が1:1:3:2:2の重量比の
浴中90℃×2分処理して、Niメッキエステルタフタ
を作製した。これを10cmx10cmの大きさのサン
プルに切り、二重円筒形の層流発生装置(内側の円筒が
高速回転、外筒の内径25cm、内筒の外径10cm)
に水と一緒に入れ、内筒回転速度20Orpmで、20
0分処理して伸長導電性シートを得た。このシートをl
 cm巾×5crQ長に截断し、15%伸長することに
より電気抵抗値が1.3X10’ Ωから30Ωに減少
した。
Ester taffeta made by Asahi Kasei Industries (50d/24f,
75d/36f) in sodium hydroxide aqueous solution (80g
/j'), subjected to weight loss processing at 100℃ (loss rate 20%), S
nC#! z: Sensitized in a bath with hydrochloric acid in a weight ratio of 3=10, and after washing and dehydration, PdCl2:hydrochloric acid in a weight ratio of 1:1
NiC12.6HzO
, HaHPOz ・HtO, sodium citrate, NH
4 (J, Ni-plated ester taffeta was prepared by treating it at 90°C for 2 minutes in a bath with ammonia water at a weight ratio of 1:1:3:2:2. This was cut into samples of 10 cm x 10 cm in size. Double cylindrical laminar flow generator (inner cylinder rotates at high speed, outer cylinder inner diameter 25cm, inner cylinder outer diameter 10cm)
with water, and the inner cylinder rotation speed was 20 Orpm.
After processing for 0 minutes, a stretched conductive sheet was obtained. This sheet
The electrical resistance value decreased from 1.3 x 10' Ω to 30 Ω by cutting it into cm width x 5 cr Q length and elongating it by 15%.

このシートの両端に、銅粉(粒径5〜10μm)を20
体積%混入したポリエステル系熱融着樹脂シート (厚
さ20μm)を介してi同手反(厚さ40μm)凹もし
くは凸部の形状が円形で、直径0.3龍、高さ10μm
、−平方C11!当り15%の面積化を占める、エンボ
ス加工された銅板(平均厚さ40μm)、あるいは銅メ
ッキされた布帛を13’0゛C13気圧の条件下で熱融
着して本発明による伸長導電素子の3種類の試料1h2
 、3 、4をそれぞれ得た。
Copper powder (particle size 5 to 10 μm) is placed on both ends of this sheet.
A polyester heat-sealing resin sheet (thickness: 20 μm) mixed with vol.
, - square C11! An elongated conductive element according to the present invention is made by heat-sealing an embossed copper plate (average thickness 40 μm) or a copper-plated fabric at 13'0°C and 13 atm, which occupies 15% of the area. 3 types of samples 1h2
, 3 and 4 were obtained, respectively.

去遣遣ユ 旭化成工業■製のエステルタフタ(経50d/24f、
緯75d/36f)を水酸化ナトリウム溶液(80g/
/)、100°C7:NFfl加工(減量率20%)し
、5nCj!z;塩酸が3:10の重量比の浴中で感受
性化し、水洗脱水後、PdCffz:塩酸が重量比1:
15の浴中で活性化し、水洗脱水後NiCに ・611
20 、 HallPOz H)IzO、クエン酸ナト
リウム、 NH,Cβ、アンモニア水が1:1:3:2
:2の重量比の浴中90°cx2分処理して、N1メッ
キエステルタフタを作製した。これを10cmx]Oc
mの大きさのサンプルに切り、二重円筒形の層流発生装
置(内側の円筒が高速回転、外筒の内径25cm、内筒
の外径10Cffl)に水と一緒に入れ、内筒回転速度
200rpmで、200分処理して伸長導電性シートを
得た。次に市販ウレタン系エラストマー樹脂(溶媒DM
F、固形分10evt%)を130 μmのゲージで離
型紙にコーテイング後100”c X 3 龍乾燥させ
生がわきの状態で、このシート状の伸長導電性編織物の
片面に4 kg / c+Aの圧力で110°Cで熱接
着転写した。その後、100℃×30分乾そうさせ補強
用エラストマーシートの厚さが10μmの伸長導電性シ
ートを作製した。このシートを1cIn巾X5cm長に
バイアス方向に截断し、15%伸長することにより抵抗
値が4.5X106Ωから3×102Ωに低下した。こ
のシートの両端に、銅粉(粒径5〜10μm)を20体
積%混入したポリアミド系熱融着樹脂シート(厚さ20
μm)を介して、銅板(40μm)を130°C13気
圧の条件下で熱融着して本発明による伸長導電素子の試
料N115を作製した。
Ester taffeta manufactured by Asahi Kasei Kogyo ■ (50d/24f,
75d/36f) in sodium hydroxide solution (80g/
/), 100°C7: NFfl processing (reduction rate 20%), 5nCj! z: Sensitized in a bath with hydrochloric acid in a weight ratio of 3:10, and after washing and dehydration, PdCffz:hydrochloric acid in a weight ratio of 1:
Activated in a bath of 15, washed with water and dehydrated to NiC ・611
20, HallPOz H) IzO, sodium citrate, NH, Cβ, aqueous ammonia in a ratio of 1:1:3:2
N1-plated ester taffeta was prepared by treating in a bath with a weight ratio of :2 at 90°C for 2 minutes. This is 10cmx]Oc
Cut the samples into m-sized samples, put them in a double cylindrical laminar flow generator (inner cylinder rotates at high speed, outer cylinder inner diameter 25 cm, inner cylinder outer diameter 10 Cffl) together with water, and adjust the inner cylinder rotational speed. A stretched conductive sheet was obtained by processing at 200 rpm for 200 minutes. Next, commercially available urethane elastomer resin (solvent DM)
F, solid content 10evt%) was coated on a release paper with a gauge of 130 μm, and then dried in a 100"c x 3" sheet and left uncoated. Thermal adhesive transfer was carried out at 110°C under pressure.Then, it was dried at 100°C for 30 minutes to produce an elongated conductive sheet with a reinforcing elastomer sheet having a thickness of 10 μm.This sheet was 1 cIn wide x 5 cm long in the bias direction. By cutting it and elongating it by 15%, the resistance value decreased from 4.5 x 10 6 Ω to 3 x 10 2 Ω. At both ends of this sheet, a polyamide heat-sealing resin mixed with 20 volume % of copper powder (particle size 5 to 10 μm) was applied. Sheet (thickness 20
Sample N115 of the elongated conductive element according to the present invention was fabricated by heat-sealing a copper plate (40 μm) under the conditions of 130° C. and 13 atm.

几fiJli ポリウレタンに薄片状のNiメッキマイカ(面内径と厚
みの比が10対1)を15容量%混入されている厚み2
20μmのシートを作る。なおここでいう面内径の面と
は、N1メッキマイカの最大面積を有する面のことであ
り、また面内径はその最大面積を有する面の、面内長径
の最大値(面内最長径)XQ、9で定義される。さらに
厚みとは、Nj 12キマイカの面を、平行な2枚の平
板ではさんだ際の平行平板間の間隔である。このシート
を1(至)巾X5cm長に裁断し、15%伸長すること
による電気抵抗値が4X106Ωから40Ωに減少した
几fiJli Thickness 2 in which 15% by volume of flaky Ni-plated mica (in-plane diameter to thickness ratio is 10:1) is mixed into polyurethane.
Make a 20 μm sheet. Note that the surface with the inside diameter here refers to the surface with the maximum area of N1 plated mica, and the inside diameter is the maximum value of the long axis in the surface (the longest diameter in the surface) of the surface with the maximum area.XQ , 9. Further, the thickness is the distance between two parallel flat plates when the surfaces of Nj 12 chimica are sandwiched between two parallel flat plates. This sheet was cut into 1 (maximum) width x 5 cm length, and when stretched by 15%, the electrical resistance value decreased from 4 x 10 6 Ω to 40 Ω.

次にメタノールに、低融点ポリアミド樹脂を溶解した溶
液(固形分304%)に銅粉(粒径5〜10μm)を混
入しく固形分に対して20体積%)ナイフコーターで、
上記シートの両端にコーティング後100℃x30分乾
燥させて、シート状に平均0.9μmの導電性樹脂層を
形成させた。銅板(40μm)をその上に130℃、3
気圧の条件下で熱融着して比較例の試料阻6を作製した
Next, copper powder (particle size 5 to 10 μm) was mixed into a solution of low melting point polyamide resin dissolved in methanol (304% solid content) using a knife coater (20% by volume based on the solid content).
After coating both ends of the sheet, it was dried at 100° C. for 30 minutes to form a conductive resin layer having an average thickness of 0.9 μm in sheet form. A copper plate (40μm) was placed on top of it at 130℃, 3
Comparative sample sample 6 was prepared by thermal fusion under atmospheric pressure conditions.

次に、試料1Ik11〜5の本発明による伸長導電素子
と比較例の試料階6の伸長導電特性、0〜20%伸長く
り返しを100回/分の速度で1万回行った後の伸長導
電特性及び電極板の接着性を調べ、その結果を表1に比
較して示した。
Next, the elongated conductive properties of the elongated conductive elements according to the present invention of samples 1Ik11 to 5 and the sample floor 6 of the comparative example, and the elongated conductive properties after 0 to 20% elongation and repetition were performed 10,000 times at a speed of 100 times/min. The adhesion of the electrode plates was also investigated, and the results are shown in Table 1 for comparison.

耐伸長くり返し性は、伸長くり返し試験機(大栄科学製
デマンチャー)を使用し、100回/分の速度で4er
aの試料をOから20%の伸度で1$万回くり返した後
、0.10.20%伸長時の抵抗値を測定し、くり返し
試験前のそれと比較した。伸長導電特性は、1辺3cm
の正方形の銅板2枚で電極板をはさみ、それを引張り試
験機にとりつけ、所定の伸長率に対する電気抵抗値の値
を測定して得表1から本発明による伸長導電素子の試料
陽1〜5は1万回の伸長くり返し後でも電極板のばくり
かなく伸長導電特性も全く低下していないのに対し、比
較例の試料階6は、導電性樹脂層の厚みが1μm未満で
あるため、1万回の伸長くり返し後に電極板のばくりか
起こり、伸長導電特性も低下しているのがわかる。
The elongation and cycling resistance was measured using an elongation and cycling tester (Daiei Kagaku Demuncher) at a speed of 100 times/min.
After the sample a was repeated 10,000 times at an elongation of 20% from O, the resistance value at 0.10.20% elongation was measured and compared with that before the repeated test. Stretch conductive properties are 3cm on each side.
An electrode plate was sandwiched between two square copper plates, and the electrode plate was attached to a tensile tester, and the electric resistance value for a given elongation rate was measured. Even after 10,000 repetitions of elongation, the electrode plate only cracked and the elongated conductive properties did not deteriorate at all, whereas in sample 6 of the comparative example, the thickness of the conductive resin layer was less than 1 μm. It can be seen that after 10,000 repetitions of stretching, the electrode plate cracked and the stretched conductive properties also deteriorated.

〔発明の効果〕〔Effect of the invention〕

前述のような構成を存する本発明による伸長導電素子は
、導電性樹脂層の接着強力が大きく、接触抵抗も低く、
伸長くり返しによる耐久性が高いので、従来公知のセン
サー素子を用いては行うことのできない伸長変形特に相
当量の伸長変形をする対象物の伸長挙動を検出するセン
サー素子として用いて優れた性能を発揮する。
The elongated conductive element according to the present invention having the above-mentioned configuration has a high adhesive strength of the conductive resin layer, low contact resistance,
Since it has high durability against repeated stretching, it exhibits excellent performance when used as a sensor element to detect stretching behavior of objects that undergo a considerable amount of stretching deformation, especially stretching deformations that cannot be performed using conventionally known sensor elements. do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明による伸長W型素子の複数の実
施例を示す正面図であり、第1図は電極板として金属板
を、第2図はエンボス加工をされた金属板を、第3図は
厚電性布帛を電極板として用いた場合を示し、第4図は
、伸長導電シートの両端の両面に電極板をとりつけた場
合を示す。 la 、 Ib 、 lc 、 1+l=伸長導電性シ
ート、2a 、 2b 、 2c 、 2d−−−導電
性樹脂層、3a 、 3b 、 3c 、 3d−・−
電極板。
1 to 4 are front views showing a plurality of embodiments of the elongated W-shaped element according to the present invention, in which FIG. 1 shows a metal plate as an electrode plate, and FIG. 2 shows an embossed metal plate. 3 shows a case where a thick conductive fabric is used as an electrode plate, and FIG. 4 shows a case where electrode plates are attached to both ends of an elongated conductive sheet. la, Ib, lc, 1+l=stretched conductive sheet, 2a, 2b, 2c, 2d---conductive resin layer, 3a, 3b, 3c, 3d---・-
Electrode plate.

Claims (1)

【特許請求の範囲】[Claims] 1、伸長導電性シートと該シートに間隔をあけて取着さ
れた電磁板とを含んで成る伸長導電素子であって、該電
極板が導電性樹脂層を介して前記伸長導電性シートに接
合されていることを特徴とする伸長導電性シート。
1. An elongated conductive element comprising an elongated conductive sheet and an electromagnetic plate attached to the sheet at intervals, the electrode plate being joined to the elongated conductive sheet via a conductive resin layer. An elongated conductive sheet characterized by:
JP21466385A 1985-09-30 1985-09-30 Elongated conductive element Pending JPS6276506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21466385A JPS6276506A (en) 1985-09-30 1985-09-30 Elongated conductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21466385A JPS6276506A (en) 1985-09-30 1985-09-30 Elongated conductive element

Publications (1)

Publication Number Publication Date
JPS6276506A true JPS6276506A (en) 1987-04-08

Family

ID=16659500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21466385A Pending JPS6276506A (en) 1985-09-30 1985-09-30 Elongated conductive element

Country Status (1)

Country Link
JP (1) JPS6276506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124497A (en) * 2016-01-12 2017-07-20 セーレン株式会社 Conductive fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124497A (en) * 2016-01-12 2017-07-20 セーレン株式会社 Conductive fabric

Similar Documents

Publication Publication Date Title
Zhang et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals
US4715235A (en) Deformation sensitive electroconductive knitted or woven fabric and deformation sensitive electroconductive device comprising the same
CN111227812B (en) All-fiber-based flexible sensor and preparation method and application thereof
US7886617B2 (en) Cloth for electric device
TW201830745A (en) Structure for use in piezoelectric element, braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using these
CN110230142B (en) Manufacturing method of woven structure resistance type carbon-containing fiber fabric sensor
JP6467217B2 (en) Piezoelectric vibration sensor
Hong et al. Smart fabric strain sensor comprising reduced graphene oxide with structure-based negative piezoresistivity
CN113049640A (en) Bionic fiber composite material with real-time damage monitoring function and preparation method thereof
CN112261905A (en) Cloth with electrode wiring
Peng et al. Enhancing piezoelectricity of poly (vinylidene fluoride) nano‐wrapped yarns with an innovative yarn electrospinning technique
JP2010014694A (en) Load detection fiber
JPS62200701A (en) Deformed conductive knitting
JPS6276506A (en) Elongated conductive element
EP4361329A1 (en) Conductive mesh fabric
JPS62163903A (en) Extending conductive element of insulating object to be inspected
JPS62163904A (en) Expanding conductive element with fixing means
JPS6276504A (en) Elongated conductive element
US11087931B2 (en) Energy storing electrical device and a method of constructing an electrical device
JPS6276601A (en) Elongated conductive structure
TW201830744A (en) Structure for use in piezoelectric element, braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using these
JPS6276602A (en) Elongated conductive cloth piece
JPS6276505A (en) Elongated conductive element
WO2008148138A1 (en) Luminescent textiles
JPS62163902A (en) Working elongation setting type extending conductive element