JPS62162688A - Production of compound semiconductor crystal - Google Patents

Production of compound semiconductor crystal

Info

Publication number
JPS62162688A
JPS62162688A JP416886A JP416886A JPS62162688A JP S62162688 A JPS62162688 A JP S62162688A JP 416886 A JP416886 A JP 416886A JP 416886 A JP416886 A JP 416886A JP S62162688 A JPS62162688 A JP S62162688A
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
coil
raw material
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP416886A
Other languages
Japanese (ja)
Inventor
Yoshiki Yabuhara
薮原 良樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP416886A priority Critical patent/JPS62162688A/en
Publication of JPS62162688A publication Critical patent/JPS62162688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a compound semiconductor crystal without any inclusion in good yield at a high growth rate, by placing a coil surface of a high-frequency oscillating coil for high-frequency induction heating obliquely to the crystal growth direction of a raw material melt. CONSTITUTION:Composition elements are contained in a graphite boat 11 inserted into a quartz reaction tube 10 placed in a pressure vessel and the quartz reaction tube 10 is slowly moved in the direction of arrow (C) while preparing a raw material melt 2 melted by a high-frequency oscillating coil 5 while heating to prepare a compound semiconductor crystal. The coil surface (B-B) of the high-frequency oscillating coil 5 is tilted about 30 deg. at the crystal growth direction. Thereby a crystal melt interface appears obliquely to the top or bottom surface of the boat 11. Since the composition elements shifting to a larger side than the stoichiometry and extruded in the crystal growth are extruded to the top or bottom surface of the crystal, the shifted composition elements are not incorporated into the interior of the crystal. As a result, the aimed compound semiconductor without any inclusion can be prepared in good yield at a high growth rate.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高周波誘導加熱によるボート成長法により化
合物半導体、待に1−va化合物半導体を製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a compound semiconductor, particularly a 1-VA compound semiconductor, by a boat growth method using high-frequency induction heating.

〈従来の技術〉 化合物半導体結晶を作製する方法としてその化合物半導
体を構成する組成元素から水平ブリッジマン法、帯溶融
法等いわゆるボート成長法によって製造することが知ら
れている。
<Prior Art> A known method for producing a compound semiconductor crystal is to produce it from the constituent elements constituting the compound semiconductor by a so-called boat growth method such as a horizontal Bridgman method or a zone melting method.

このボート成長法を利用した化合物半導体結晶の製造方
法のうちでも、化合物半導体の組成元素を高周波誘導加
熱により溶融する方法は、目的とする化合物半導体結晶
が多量、かつ迅速に生産できろ点で他の加熱方法よりも
すぐれている。
Among the methods for producing compound semiconductor crystals using this boat growth method, the method in which the constituent elements of the compound semiconductor are melted by high-frequency induction heating has the advantage of being able to quickly produce large amounts of the desired compound semiconductor crystals. It is superior to the heating method of

高周波誘導加#41よ、高周波印加1ζよる磁界の変化
によって励起されろ誘導電流によるオーム損を積極的に
利用し、交番磁界中に置かれた導体、つまり被加熱物を
加熱して所要の温度上昇を得るものである。
High-frequency induction application #41 is excited by the change in magnetic field caused by high-frequency application 1ζ.It actively utilizes the ohmic loss caused by the induced current and heats the conductor placed in the alternating magnetic field, that is, the object to be heated, to the desired temperature. It is something that gets you a rise.

高周波誘導加熱方式による半導体結晶成長の代表例とし
て、InP結晶の高圧ゾーンメルティング法(以下、r
HPZM法」という)について説明する。
A typical example of semiconductor crystal growth using high-frequency induction heating is the high-pressure zone melting method (hereinafter referred to as r
HPZM method) will be explained.

このHPZM法は第2図に示すように、圧力容器1内部
の石英反応管2の中央部に押入しな黒鉛ボー1−3にイ
ンジウム(In)4を入れ、高周波発信コイル5によっ
て加熱溶融し、原料融)(1!(1nP)の融点以上の
温度に維持する。また、黒鉛ボート3内後部にはリン(
P)6を入れ、抵抗加熱ヒータ7により加熱気化し、上
記の高周波加熱によって溶月7したInと反応させ、I
nP融液を作製する。
In this HPZM method, as shown in FIG. 2, indium (In) 4 is placed in a graphite bowl 1-3 inserted into the center of a quartz reaction tube 2 inside a pressure vessel 1, and is heated and melted by a high-frequency transmitter coil 5. , the melting point of the raw material (1! (1nP)) is maintained at a temperature higher than the melting point of the raw material.
I
Prepare nP melt.

圧力容器1内は、通常10〜50気圧程度の圧力に維持
され、石英反応管2内Pの気化に伴なう内圧上昇による
破裂を防いでいる。
The inside of the pressure vessel 1 is normally maintained at a pressure of about 10 to 50 atmospheres to prevent rupture due to an increase in internal pressure due to vaporization of the inside P of the quartz reaction tube 2.

この状態において石英反応管2を矢印C方向へ徐々に移
動させ、[nPi!l!液を固化させることによってI
nP結晶が得られる。
In this state, the quartz reaction tube 2 is gradually moved in the direction of arrow C, and [nPi! l! I by solidifying the liquid
An nP crystal is obtained.

しかし、このHPZM法によるInP結晶製造は、高周
波誘導加熱するとき従来は第3図に示すように高周波発
信コイル5コイル面B−Bを結晶成方向Cに対し垂直方
向に配置していた。そして、このような状−態で高周波
コイルに電流を流すと、第3図において、被加熱体であ
る黒鉛ボー1−11の発熱部分は13となる。このよう
な状態の下で黒鉛ボート11を移動させ結晶成長させる
ものであるが、その成長に伴なう固化熱はボート11部
分から逃げるため、原料融液は反応容器の外周から固化
し、結晶成長する。そして、黒鉛ボート11の移動速度
を早くしていくと、第3図14のように結晶融液界面は
結晶成長方向に対し、極端な凸部をもつようになる。そ
こでこの種の結晶成長法では融液状態のストイキオメ!
・リ (5toichioa+etry)を完全に等し
くすることは不可能のため結晶成長時において、融液状
態テノストイキオメトリ (Stoichio@etr
y)がら大きい側へずれている組成元素は、そのずれの
分だけ原料融液先端へ押し出されろ。
However, in the production of InP crystals by this HPZM method, conventionally, when high-frequency induction heating is performed, the coil plane B--B of the high-frequency transmitting coil 5 has been arranged in a direction perpendicular to the crystal growth direction C, as shown in FIG. When a current is passed through the high frequency coil in such a state, the heat generating portion of the graphite bow 1-11, which is the object to be heated, becomes 13 in FIG. Under such conditions, the graphite boat 11 is moved to grow crystals, but the solidification heat accompanying the growth escapes from the boat 11, so the raw material melt solidifies from the outer periphery of the reaction vessel and the crystals grow. grow up. When the moving speed of the graphite boat 11 is increased, the crystal melt interface becomes extremely convex with respect to the crystal growth direction, as shown in FIG. 314. Therefore, this type of crystal growth method uses stoichiome in the melt state!
・Since it is impossible to make ri (5toichioa+etry) completely equal, during crystal growth, melt state tenostoichiometry (Stoichio@etr
y) The compositional elements that are shifted to the larger side should be pushed out to the tip of the raw material melt by the amount of the shift.

第3図に示すように、結晶融液界面14が極端に凸とな
ると、凸部15では、ずれた組成元素の濃度が増加し、
結晶内へ取り込んで了い、得られるInP結晶の歩留り
を悪くし、成長速度を増加させることができなかった。
As shown in FIG. 3, when the crystal-melt interface 14 becomes extremely convex, the concentration of the shifted compositional elements increases in the convex portion 15.
InP was incorporated into the crystal, resulting in a poor yield of the resulting InP crystal, and it was not possible to increase the growth rate.

他方、特公昭57−27075号公報明細書では閃亜鉛
鉱形結晶構造をもつ化合物半導体単結晶のボート成長法
による製造方法として、石英ボート中に踵結晶、ドーパ
ントとしてのシリコンをガリウムと共に入れ、砒素と共
に透明石英容器に真空封入したものを、放熱孔部を有し
、かつ縦方向に温度分布の異なる構造をもつ高温炉部と
低温炉部から構成される加熱炉内に入れることにより、
結晶成長時の原料融液の固体と液体の界面を成長方向に
対して傾けることができ100面ウェハ而内面の不純物
濃度を均一にできることを示している。
On the other hand, in the specification of Japanese Patent Publication No. 57-27075, a heel crystal and silicon as a dopant are placed in a quartz boat together with gallium, and arsenic is By placing the quartz container vacuum-sealed in a transparent quartz container into a heating furnace consisting of a high-temperature furnace section and a low-temperature furnace section that have heat dissipation holes and have a structure in which temperature distribution differs in the vertical direction,
This shows that the interface between the solid and liquid of the raw material melt during crystal growth can be tilted with respect to the growth direction, and the impurity concentration on the inner surface of a 100-sided wafer can be made uniform.

〈発明が解決しようとする問題点〉 しかし、前記特公昭57−27075号公報明細書で開
示されている化合物半導体単結晶の製造方法は、抵抗加
熱方式にしたがっているため、成長界面での;温度勾配
、つまり高温炉と低温炉との間の温度勾配を大きくする
ことが困難である。
<Problems to be Solved by the Invention> However, since the method for manufacturing compound semiconductor single crystals disclosed in the specification of Japanese Patent Publication No. 57-27075 follows a resistance heating method, the temperature at the growth interface is It is difficult to increase the gradient, that is, the temperature gradient between the high temperature furnace and the low temperature furnace.

これは特にI−I P Z M法のように高温環境では
より困難になる。
This becomes more difficult especially in high temperature environments such as the I-I P Z M method.

そのため、結晶融液が固化する際、ストイキオメトリ−
からずれた組成元素を結晶内に巻きこまないようにする
ためには成長速度を十分小さくしなければならず、量産
化することが困難であった。
Therefore, when the crystal melt solidifies, the stoichiometry
In order to prevent compositional elements that deviate from the crystal from being incorporated into the crystal, the growth rate must be kept sufficiently low, making mass production difficult.

一方、高周波誘導加熱方式の場合は、局所的に加熱でき
るため、固化の際の温度勾配を大きくできる利点はある
が、特公昭57−27075号公報明細書で示されるよ
うに高鷹部、放熱部、低温部に分割した加熱方式を取る
ことができないため、原料融液界面を結晶成長方向に傾
斜させることができなかった。
On the other hand, the high-frequency induction heating method has the advantage of being able to increase the temperature gradient during solidification because it can heat locally, but as shown in the specification of Japanese Patent Publication No. 57-27075, Since it is not possible to use a heating method that divides the heating method into a low-temperature section and a low-temperature section, it has not been possible to tilt the raw material melt interface in the crystal growth direction.

この発明は前述した従来の化合物半導体結晶の製造方法
の欠点を解消し、化合物半導体結晶製造の歩留を向上さ
せ、かつ成長速度の早い化合物半導体結晶の製造方法を
提供しようとするものである。
The present invention aims to eliminate the drawbacks of the conventional compound semiconductor crystal manufacturing methods described above, improve the yield of compound semiconductor crystal manufacturing, and provide a compound semiconductor crystal manufacturing method that has a high growth rate.

く問題点を解決するための手段〉 前述の目的を達成するため、この発明は製造しようとす
る化合物半導体結晶の組成元素を、ボート上に配置した
後、これら組成元素を高周波誘導加熱し、生成した原料
融液を結晶成長させて化合物半導体結晶を製造するに当
り、高周波誘導加熱用高周波発信コイルのコイル面を原
料融液の結晶成長方向と傾斜するように配置し、結晶融
液界面をボートの上面又は下面に傾けて成長させること
を特徴とするものである。
Means for Solving the Problems> In order to achieve the above-mentioned object, the present invention arranges the constituent elements of a compound semiconductor crystal to be manufactured on a boat, and then heats these constituent elements by high frequency induction to generate the crystal. When manufacturing a compound semiconductor crystal by crystal-growing the raw material melt, the coil surface of the high-frequency transmission coil for high-frequency induction heating is arranged so as to be inclined to the crystal growth direction of the raw material melt, and the crystal melt interface is It is characterized in that the growth is grown tilted toward the top or bottom surface.

く作   用〉 以上の構成になっているから、ボート上の発熱部分はボ
ートの上下面に対し傾いた部分に現われるようになり、
原料融液の結晶成長速度を上げた場合でも結晶融液界面
はボートの上面又は下面に対し傾いて現われろ。
Due to the above structure, the heat-generating parts on the boat appear in the parts that are tilted with respect to the top and bottom of the boat.
Even if the crystal growth rate of the raw material melt is increased, the crystal melt interface will appear inclined with respect to the top or bottom surface of the boat.

したがって、結晶成長の際し押し出されるストイキオメ
トリ−から大きい傾へずれた組成元素は結晶上面又は下
面へ押し出されるから、結晶内部へこれらのずれた組成
元素を取り込むことがなくなる。
Therefore, the compositional elements which are largely deviated from the stoichiometry that are pushed out during crystal growth are pushed out to the upper or lower surface of the crystal, so that these deviated compositional elements are not taken into the crystal.

く実 施 例〉 つぎに、この発明の一実施例について説明する。Example of implementation Next, one embodiment of the present invention will be described.

第1図はこの発明の化合物半導体結晶の製造方法の実施
に使用するHPZM法による製造装置の要部構成を示し
、内部を10〜50気圧程度に維持した図示しない圧力
容器内に配置しt二石英反応管10内に入れた組成元素
収納の黒鉛ボート11を、高周波コイル5で加熱溶融し
た原料融液12を作りながら、石英反応管10を矢印C
方゛向に徐々に移動して、目的とする化合物半導体結晶
を作製するものである。ただし、第1図の高周波発信コ
イル5のコイル面B−Bは結晶成長方向に対し約30°
傾けておくのが適当な傾斜角度である。
FIG. 1 shows the configuration of the main parts of a manufacturing apparatus using the HPZM method used to carry out the method for manufacturing compound semiconductor crystals of the present invention. While creating a raw material melt 12 by heating and melting a graphite boat 11 containing constituent elements placed in a quartz reaction tube 10 with a high-frequency coil 5, move the quartz reaction tube 10 in the direction of arrow C.
The target compound semiconductor crystal is produced by gradually moving in a direction. However, the coil plane B-B of the high-frequency transmitting coil 5 in Fig. 1 is approximately 30° with respect to the crystal growth direction.
The appropriate angle of inclination is to keep it tilted.

この装置で結晶成長速度60 ma / hで、InP
を作製したところ、Inのインクルージヨン(1ncl
usion)のない良質のInP多結晶体を製造するこ
とができた。しかも、その歩留は90%に達し、極めて
高収率であることが確認できた。
With this equipment, InP was grown at a crystal growth rate of 60 ma/h.
When we prepared In inclusion (1ncl
It was possible to produce a high-quality InP polycrystalline body free from oxidation. Moreover, the yield reached 90%, confirming an extremely high yield.

一方、高周波発信コイル5のコイル面B−Bを、第3図
にように結晶成長方向(clに対し直交するように配置
した以外は前記実施例の装置と同じ装置によってInP
結晶を作製したところ、結晶成長速度60 m/ hで
、全長300鴫の結晶が得られたが、前半分は150m
ところまでインゴット中心から下部にInのインクルー
ジヨンが認められ、歩留りは60%にすぎなかった。そ
してInのインクルージヨンをなくするためには結晶成
長速度を20 mm/ hまで落さなければならなかっ
た。
On the other hand, as shown in FIG. 3, the coil plane B-B of the high-frequency transmitting coil 5 was arranged to be perpendicular to the crystal growth direction (cl) using the same apparatus as the apparatus of the previous example.
When the crystal was produced, a crystal with a total length of 300 m was obtained at a crystal growth rate of 60 m/h, but the first half was 150 m long.
Inclusions were observed from the center to the bottom of the ingot, and the yield was only 60%. In order to eliminate In inclusions, the crystal growth rate had to be reduced to 20 mm/h.

以上の実1t!1例および比較例ばInPについて説明
したけれども、GaAs、GaP、InAsなど他の■
−■族化合物半導体結晶についても同様の方法で作製す
ることができる。さらに、この方法で得られろ化合物半
導体結晶は多結晶のみならず、単結晶も作製できる特に
化合物半導体の多結晶製造方法に適している。
More than 1 ton of fruit! Although InP has been explained as an example and a comparative example, other
-■ Group compound semiconductor crystals can also be produced in a similar manner. Furthermore, the compound semiconductor crystal obtained by this method can be produced not only as a polycrystal but also as a single crystal, and is particularly suitable for a method for producing a polycrystalline compound semiconductor.

〈発明の効果〉 以上の説明から明らかなように、高周波誘導加熱による
ボート成長法で化合物半導体結晶製造に当り、この発明
によれば、高周波発信コイル面を原料融液の結晶成長方
向に対し傾斜するように配置することにより、歩留りが
よく、インクルージフンのない化合物半導体結晶を製造
することができる。しかも、成長速度を早めることが可
能である。
<Effects of the Invention> As is clear from the above description, when compound semiconductor crystals are manufactured by the boat growth method using high-frequency induction heating, according to the present invention, the high-frequency transmitting coil surface is tilted with respect to the crystal growth direction of the raw material melt. By arranging them in this way, it is possible to manufacture compound semiconductor crystals with good yield and without inclusions. Moreover, it is possible to accelerate the growth rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の化合物半導体結晶の製造方法の実施
に使用する高圧ゾーンメルティング化合物半導体結晶製
造装置の要部構成図、第2図は従来の高圧ゾーンメルテ
ィング化合物半導体結晶製造装置の概略構成図、第3図
は高周波誘導加熱による従来の高圧ヅーシメルテイング
化合物半導体結晶製造装置の要部構成図である。 図  面  中、 1−圧力容器、 2.10・石英反応管、 3.11・・ボート、 5 高周波発信コイル、 12・原料融液、 14・結晶融液界面、 B−B ・高周波発信コイルのコイル面、C・結晶成長
方向。 特  許  出  願  人 住友電気工業株式会社 代    理    人
FIG. 1 is a schematic diagram of the main parts of a high-pressure zone melting compound semiconductor crystal manufacturing apparatus used to carry out the compound semiconductor crystal manufacturing method of the present invention, and FIG. 2 is a schematic diagram of a conventional high-pressure zone melting compound semiconductor crystal manufacturing apparatus. FIG. 3 is a block diagram of a main part of a conventional high-pressure shimmelting compound semiconductor crystal manufacturing apparatus using high-frequency induction heating. In the drawing, 1-Pressure vessel, 2.10. Quartz reaction tube, 3.11.. Boat, 5. High-frequency transmitting coil, 12. Raw material melt, 14. Crystal melt interface, B-B. High-frequency transmitting coil. Coil surface, C. Crystal growth direction. Patent application agent Sumitomo Electric Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 製造しようとする化合物半導体結晶の組成元素を、ボー
ト上に配置した後、これら組成元素を高周波誘導加熱し
て生成した原料融液を結晶成長させて化合物半導体結晶
を製造するに当り、高周波誘導加熱用高周波発信コイル
のコイル面を、原料融液の結晶成長方向と傾斜させて配
置し、結晶融液界面をボートの上面又は下面に傾けて成
長させることを特徴とする化合物半導体結晶の製造方法
After placing the constituent elements of the compound semiconductor crystal to be manufactured on a boat, high-frequency induction heating is used to produce the compound semiconductor crystal by crystal-growing the raw material melt produced by high-frequency induction heating of these constituent elements. A method for producing a compound semiconductor crystal, characterized in that the coil surface of a high-frequency transmitting coil for use is arranged to be inclined with respect to the crystal growth direction of a raw material melt, and the crystal melt interface is grown with the crystal melt interface inclined toward the upper or lower surface of a boat.
JP416886A 1986-01-14 1986-01-14 Production of compound semiconductor crystal Pending JPS62162688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP416886A JPS62162688A (en) 1986-01-14 1986-01-14 Production of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP416886A JPS62162688A (en) 1986-01-14 1986-01-14 Production of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS62162688A true JPS62162688A (en) 1987-07-18

Family

ID=11577206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP416886A Pending JPS62162688A (en) 1986-01-14 1986-01-14 Production of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS62162688A (en)

Similar Documents

Publication Publication Date Title
CN113322510B (en) SiC single crystal growth device and liquid phase epitaxy SiC single crystal growth method
JP2014196242A (en) AlxGa1-xN crystal substrate
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JPS62162688A (en) Production of compound semiconductor crystal
JPH11147785A (en) Production of single crystal
JPS61201700A (en) High-resistance gaas crystal and its production
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP3684446B2 (en) Method and apparatus for manufacturing semi-insulating GaAs single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
KR950000645B1 (en) High quality n-type gasa single crystal growing method by horizontal bridgeman
JP4576571B2 (en) Method for producing solid solution
JP2773441B2 (en) Method for producing GaAs single crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
KR100359229B1 (en) Method for Growing n-Type GaAs Monocrystal by Means of VFG
JP3416186B2 (en) Method for producing multi-component single crystal
JP2864808B2 (en) III-V compound semiconductor single crystal
JPH10182298A (en) Production of semimagnetic semiconductor polycrystal
JP2000327496A (en) Production of inp single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP2001130999A (en) METHOD FOR PRODUCING GaAs SEMICONDUCTOR SINGLE CRYSTAL
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal