JPS62162645A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPS62162645A
JPS62162645A JP359586A JP359586A JPS62162645A JP S62162645 A JPS62162645 A JP S62162645A JP 359586 A JP359586 A JP 359586A JP 359586 A JP359586 A JP 359586A JP S62162645 A JPS62162645 A JP S62162645A
Authority
JP
Japan
Prior art keywords
quartz tube
raw material
tube
glass
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP359586A
Other languages
Japanese (ja)
Inventor
Minoru Watanabe
稔 渡辺
Ichiro Yoshida
吉田 伊知朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP359586A priority Critical patent/JPS62162645A/en
Publication of JPS62162645A publication Critical patent/JPS62162645A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01876Means for heating tubes or rods during or immediately prior to deposition, e.g. electric resistance heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:The whole part of the quartz tube is heated to make the starting gas uniform in the lengthwise direction of the tube, then the temperature of the tube is lowered to deposit the raw material on the wall surface and oxidize it whereby the title preform of high uniformity and purity is produced. CONSTITUTION:A quartz tube 1 is set to the glass lathe 5. The quartz tube 1 is covered with demountable heater 2 except the part where the starting material for glass such as YbCl3 is placed and heated at, e.g., 500 deg.C. Then, as nitrogen gas is allowed to flow, the part where the starting material is placed is heated at about 400 deg.C to remove crystal water, then the quartz is heated up to about 900 deg.C. For example, the YbCl3 gas becomes uniform in its concentration in the tube, the heater 2 is removed to rapidly cool down to room temperature. YbCl3 uniformly deposits on the inner wall of the quartz tube 1. Then, the gas is switched from nitrogen to oxygen, the tube is heated at 1,500 deg.C to oxidize the YbCl3 to form the glass layer. A glass preform of high purity and uniformity in the lengthwise direction is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高融点の原料を使って石英管内部にガラス層を
形成する光ファイバ用プリフォームの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber preform in which a glass layer is formed inside a quartz tube using a raw material with a high melting point.

Nd、Yb、Fir  などの希土類元素はガラスの非
線型光学効果を増大させる効果をもつことが従来から知
られている。
It has been known that rare earth elements such as Nd, Yb, and Fir have the effect of increasing the nonlinear optical effect of glass.

またFl:I−? Ttlは磁気光学効果を増大させる
ことが知られている。これらの元素をコアに添加したフ
ァイバはファイバレーザーや、偏波面制御用部品の他、
光増幅用部品などに応用できる可能性があり期待されて
いる。
Also, Fl:I-? Ttl is known to increase magneto-optic effects. Fibers with these elements added to their cores can be used in fiber lasers, polarization control parts, and other applications.
This is expected to have potential applications in optical amplification components.

〔従来の技術〕[Conventional technology]

従来、上記のような元素を添加したファイバは、アルカ
リ金嘱を含んだ多成分ガラスで作られていた。また、最
近では、不純物を減少させるため、石英管の内部にガラ
ス層を形成する肉付法により作ることも行われている。
Traditionally, element-doped fibers such as those mentioned above have been made from multicomponent glasses containing alkali metals. Furthermore, recently, in order to reduce impurities, a quartz tube has been manufactured by a filling method in which a glass layer is formed inside the tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のごとく、その添加によりガラスの非線型光学効果
あるいは磁気光学効果を増大できる、Nd、Yb、IC
r及びTl)などの希土類元素やPI)はその化合物に
融点の低いものがないため、高純度ガラスを製造できる
、石英管内部にガラス層を形成する肉付法で上記の元素
を添加したプリフォームを製造しようとすると、原料供
給系を極めて高温にする必要がある。しかるに、このよ
うな高温においては、原料は酸素とただちに反応し、供
給系をふさいでしまう。そこであらかじめ石英管内の一
端に原料を置き、ここを不活性ガス雰囲気下にて加熱す
ることにより該原料を蒸発させ、不活性ガス分キャリア
として石英管内部を移動させて、遂次石英管内壁に原料
を付着させる方法が考えられている。
As mentioned above, Nd, Yb, and IC can increase the nonlinear optical effect or magneto-optic effect of glass by adding them.
Rare earth elements such as r and Tl) and PI) do not have low melting points in their compounds, so it is possible to produce high-purity glass by adding the above elements using the filling method, which forms a glass layer inside a quartz tube. In order to manufacture reformed products, it is necessary to heat the raw material supply system to extremely high temperatures. However, at such high temperatures, the feedstock reacts quickly with oxygen and blocks the feed system. Therefore, a raw material is placed in advance at one end of the quartz tube, and by heating it in an inert gas atmosphere, the raw material is evaporated, and the inert gas is moved inside the quartz tube as a carrier, and is sequentially applied to the inner wall of the quartz tube. A method of attaching raw materials is being considered.

しかしながら、上記の方法では石英管の長手方向に均一
に原料を付着させることは困難であるという欠点がちっ
た。
However, the above method has the disadvantage that it is difficult to apply the raw material uniformly in the longitudinal direction of the quartz tube.

本発明はこの欠点を解決し、前記の元素をも含む原料を
用い長手方向に均一な光フアイバ用プリフォームを製造
し得る方法を提供するものである。
The present invention solves this drawback and provides a method for manufacturing optical fiber preforms that are uniform in the longitudinal direction using raw materials that also contain the above-mentioned elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の従来方法の欠点につき鋭意検討の
結果、その原因は、蒸発した原料が遂次付着するため、
原料を置いた場所に近いところほど、原料濃度が高くな
ることにある、という考察を得た。そこで石英管全体を
加熱することにより、原料ガスが内壁に殆んど付着しな
い温度に保ち、石英管の長手方向に原料ガスを均一に分
布させた後、石英管の温度を下げて原料ガスを壁面に付
着させれば、長手方向に均一に分布させることができる
と考えつき、本発明に到達したのである。
As a result of intensive study on the drawbacks of the above-mentioned conventional method, the inventors of the present invention found that the cause is that the evaporated raw materials are successively deposited.
The idea was that the closer the raw material is placed, the higher the concentration of the raw material. Therefore, by heating the entire quartz tube, the raw material gas is kept at a temperature that hardly adheres to the inner wall, and after uniformly distributing the raw material gas in the longitudinal direction of the quartz tube, the temperature of the quartz tube is lowered and the raw material gas is heated. They came up with the idea that if they were attached to a wall surface, they could be distributed uniformly in the longitudinal direction, and thus arrived at the present invention.

すなわち、本発明は石英管の内壁にガラス原料を付着さ
せ、その後酸化してガラス層を形成させる光ファイバの
製造方法において、石英管の合成ガラスを形成させる部
分全体を均一に加熱した後、上記ガラス原料のガスを石
英管内に均一に満し、石英管の温度全体を下げて該ガラ
ス原料を石英管内壁に付着させ、その後肢ガラス原料を
酸化し、ガラス層を形成することを特徴とする光フアイ
バ用プリフォームの製造方法である。
That is, the present invention provides an optical fiber manufacturing method in which a glass raw material is attached to the inner wall of a quartz tube and then oxidized to form a glass layer. It is characterized by uniformly filling a quartz tube with glass raw material gas, lowering the entire temperature of the quartz tube to cause the glass raw material to adhere to the inner wall of the quartz tube, and oxidizing the rear glass raw material to form a glass layer. This is a method for manufacturing an optical fiber preform.

本発明において用いるガラス原料としては、例えばEr
 、 Nd 、 Pr 、、Yb 、 Tb XlCu
 、 Pb 等の化合物が挙げられ、具体的には例えば
Br01B・6HI2011!1rBr3、Rr工3 
、NclC/3 、NdO/3 a A&o 、NdB
r3 、N(l工1、Pr013 XPr0t3 ′7
H20、PrBr5.Pry 、Yl)Pg 、YbO
/a”AH20、Y’t)04 、YbBrt、YbB
r1 、Tb工、、Yl)工8、’f’1)F3、τb
e/3 、TbBr3、TI)工3 、EtuO/、 
、Bu043.1euBr、 、Ku工2、PbBr1
、pb工2等が挙げられる。
As the glass raw material used in the present invention, for example, Er
, Nd, Pr,, Yb, Tb XlCu
, Pb, etc., specifically, for example, Br01B・6HI2011!1rBr3, Rr
, NclC/3, NdO/3 a&o, NdB
r3, N(l 1, Pr013 XPr0t3 '7
H20, PrBr5. Pry, Yl)Pg, YbO
/a"AH20, Y't)04, YbBrt, YbB
r1, Tb engineering, , Yl) engineering 8, 'f'1) F3, τb
e/3, TbBr3, TI) Engineering3, EtuO/,
, Bu043.1euBr, , Kuko2, PbBr1
, pb engineering 2, etc.

本発明においてはこのようなガラス原料を石英管内に設
置しておき、石英管全体を均一に加熱して原料ガス濃度
を均一とするが、この温度は用いる原料により異るもの
の大体700〜1500℃程度である。この均一加熱に
先立ち、原料中の結晶水等を除去する加熱を行うことは
勿論かまわない。この後、石英管温度を所定の温度にま
で均一に冷却し、上記原料を石英管内に付着させ、次に
例えば02等を管内に流し再び加熱して原料を酸化し合
成ガラス層を得る。以降は通常の加熱・中実化を行えば
希土類元素を有するコアを持つ光フアイバ用プリフォー
ムが得られる。
In the present invention, such a glass raw material is placed in a quartz tube, and the entire quartz tube is uniformly heated to make the concentration of the raw material gas uniform. Although this temperature varies depending on the raw material used, it is generally 700 to 1500°C. That's about it. Prior to this uniform heating, it is of course possible to perform heating to remove water of crystallization and the like in the raw material. Thereafter, the temperature of the quartz tube is uniformly cooled to a predetermined temperature, the raw material is deposited inside the quartz tube, and then, for example, 02 or the like is poured into the tube and heated again to oxidize the raw material to obtain a synthetic glass layer. Thereafter, by performing normal heating and solidification, an optical fiber preform having a core containing a rare earth element can be obtained.

〔作用〕[Effect]

本発明により原料を石英管内壁に長手方向に均一に付着
させることができる理由は、一端に置かれた原料が他端
へ移動する過程において石英管に付着しないので、管内
部の原料ガス濃度が均一になること、及び均一ガス濃度
とした後に石英管全体の温度を均一に下げることにある
The reason why the raw material can be uniformly adhered to the inner wall of the quartz tube in the longitudinal direction according to the present invention is that the raw material placed at one end does not adhere to the quartz tube during the process of moving to the other end, so the raw material gas concentration inside the tube is reduced. The goal is to achieve uniform gas concentration and to uniformly lower the temperature of the entire quartz tube after achieving a uniform gas concentration.

本発明の具体的方法については、以下の実施例により説
明する。
The specific method of the present invention will be explained with reference to the following examples.

〔実施例〕〔Example〕

実施例1゜ 直径20fi、厚さ1.7gm、長さ1.2情の石英管
内壁に、MOVD法によりクラッド層を合成した。この
時の条件は810/、 500 cc/分、POC/3
30cc/分、0.1000cC/分、層付20層であ
った。
Example 1 A cladding layer was synthesized by the MOVD method on the inner wall of a quartz tube having a diameter of 20 mm, a thickness of 1.7 gm, and a length of 1.2 mm. The conditions at this time are 810/, 500 cc/min, POC/3
It was 30cc/min, 0.1000cC/min, and 20 layers.

クラッドの合成が終了した後石英管を旋盤からはずし、
粉末の原料YtlO/3・AH,Ofアンプルから薬包
紙にとり出して、静かに石英管内に入れた。量は3fで
ある。
After the cladding has been synthesized, the quartz tube is removed from the lathe.
Powder raw material YtlO/3.AH, Of was taken out from the ampule onto a medicine wrapper and gently placed into a quartz tube. The amount is 3f.

石英管を傾け、細かく振動させ、クラッドを堆積させた
場所から2−5c1n手前に原料を移動させた。この状
態で第1図に示すように石英管1をガラス旋盤5にとり
つけた。
The quartz tube was tilted and vibrated finely, and the raw material was moved 2-5c1n in front of the place where the cladding was deposited. In this state, the quartz tube 1 was mounted on a glass lathe 5 as shown in FIG.

石英管1は原料3の置かれた端を除き、全体に長さ50
−の脱着可能なヒーター2をかぶせ、500℃に加熱し
ておく。次にガス及び低融点原料供給バイブロより1を
分のN、をηCしながら原料3のおかれた部分を約40
0℃に加熱し、結晶水を除いた後、ヒーターを900℃
に加熱し、原料も同じく900℃に加熱した。Yl)O
lsガスの濃度が石英管1の長手方向で均一になった後
ヒーター2を除き、室温まで急速に冷却した。石英管1
の内壁は均一に白く曇り、y’bcz。
The quartz tube 1 has a total length of 50 mm excluding the end where the raw material 3 is placed.
- Cover with removable heater 2 and heat to 500°C. Next, the part where raw material 3 was placed was heated to about 40 ml while adding 1 min of N from the gas and low melting point raw material supply vibro to ηC.
After heating to 0℃ and removing crystal water, turn the heater to 900℃.
The raw materials were also heated to 900°C. Yl)O
After the concentration of ls gas became uniform in the longitudinal direction of the quartz tube 1, the heater 2 was removed and the tube was rapidly cooled to room temperature. Quartz tube 1
The inner wall of is uniformly white and cloudy, y'bcz.

が均一に付着しているのがわかった。It was found that it adhered evenly.

次にバイブロからのN、をへに切りかえて再開石英管に
ヒーター2をかぶせ、1500℃に加熱することにより
Yl)O/3 を酸化させた。ヒーター2を除き酸水素
バーナ−4で2000℃に加熱し中実化して線引したと
ころ、長手方向のYb20.  の濃度変動は5%以下
であった。また比屈折率差は石英よりも0.5%高かっ
た。
Next, the N from the vibro was switched to N, the restarted quartz tube was covered with heater 2, and Yl)O/3 was oxidized by heating to 1500°C. When the heater 2 was removed and heated to 2000°C with an oxyhydrogen burner 4 to make it solid and drawn, the result was Yb20. The concentration fluctuation was less than 5%. Further, the relative refractive index difference was 0.5% higher than that of quartz.

実施例2 実施例1と同様の方法でYb0ls を石英管内壁に均
一に付着させ酸化させた後、さらにM(!VD法で81
02層を一層形成した。そしてYl)tow  層と8
101層の形成を交互に3回くりかえし酸水素バーナ−
4で中実化した後ファイバ化したところ長手方向のYl
)!03  の濃度変動は5%以下であった。またコア
径は12μ毒であった。
Example 2 After uniformly depositing Yb0ls on the inner wall of the quartz tube and oxidizing it in the same manner as in Example 1, M(!81
02 layer was formed. and Yl) tow layer and 8
The formation of 101 layers was repeated 3 times using an oxyhydrogen burner.
When it was made into a fiber after being solidified in step 4, Yl in the longitudinal direction was
)! The concentration fluctuation of 03 was less than 5%. Moreover, the core diameter was 12 μm.

〔発明の効果〕〔Effect of the invention〕

本発明は高融点化合物を原料として、長手方向に均一で
、かつ高純度であるガラスプリフォームが製造でき、ま
たこのような高融点化合物を長手方向に均一に含有しか
つ高純度なコア、を持つ光フアイバ用プリフォームが製
造でキル。
The present invention can produce a glass preform that is uniform in the longitudinal direction and has high purity using a high melting point compound as a raw material, and also has a core that contains such a high melting point compound uniformly in the longitudinal direction and has high purity. The optical fiber preform with which it was manufactured was killed.

このようにガラスの非線型光学効果や磁気光学効果を向
上する元素を含有するコアを持つ光フアイバ用プリフォ
ームは、ファイバレーザー、偏波面制御用部品、光増幅
用部品としての応用に大きな可能性をもたらすものであ
る。
In this way, optical fiber preforms with cores containing elements that improve the nonlinear optical effect and magneto-optic effect of glass have great potential for application as fiber lasers, polarization control components, and optical amplification components. It brings about

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光フアイバ用プリフォームの製造方法
の実施態様を概略説明する断面図である。
FIG. 1 is a sectional view schematically explaining an embodiment of the method for manufacturing an optical fiber preform of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 石英管の内壁にガラス原料を付着させ、その後酸化して
ガラス層を形成させる光ファイバの製造方法において、
石英管の合成ガラスを形成させる部分全体を均一に加熱
した後、上記ガラス原料のガスを石英管内に均一に満し
、石英管の温度全体を下げて該ガラス原料を石英管内壁
に付着させ、その後該ガラス原料を酸化し、ガラス層を
形成することを特徴とする光ファイバ用プリフオームの
製造方法。
In an optical fiber manufacturing method in which a glass raw material is attached to the inner wall of a quartz tube and then oxidized to form a glass layer,
After uniformly heating the entire portion of the quartz tube where synthetic glass is to be formed, uniformly filling the quartz tube with the glass raw material gas, lowering the overall temperature of the quartz tube and causing the glass raw material to adhere to the inner wall of the quartz tube, A method for manufacturing an optical fiber preform, which comprises subsequently oxidizing the glass raw material to form a glass layer.
JP359586A 1986-01-13 1986-01-13 Production of preform for optical fiber Pending JPS62162645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP359586A JPS62162645A (en) 1986-01-13 1986-01-13 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP359586A JPS62162645A (en) 1986-01-13 1986-01-13 Production of preform for optical fiber

Publications (1)

Publication Number Publication Date
JPS62162645A true JPS62162645A (en) 1987-07-18

Family

ID=11561824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP359586A Pending JPS62162645A (en) 1986-01-13 1986-01-13 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPS62162645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514636A (en) * 2001-12-20 2005-05-19 コーニング・インコーポレーテッド Isotope substituted optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514636A (en) * 2001-12-20 2005-05-19 コーニング・インコーポレーテッド Isotope substituted optical fiber

Similar Documents

Publication Publication Date Title
US4363647A (en) Method of making fused silica-containing material
US7363776B2 (en) Method for forming fused quartz using deuterium
US4203744A (en) Method of making nitrogen-doped graded index optical waveguides
JP2003512988A (en) Manufacturing method of nanocrystalline glass ceramic fiber
KR101084393B1 (en) Process for producing optical fiber base and apparatus therefor
EP0678763A1 (en) Process for producing optical waveguide
JPS62162645A (en) Production of preform for optical fiber
JP3517848B2 (en) Manufacturing method of optical fiber preform
JPS60263103A (en) Base material for optical fiber and its production
JPS6251214B2 (en)
JPS6272537A (en) Production of high-purity quartz glass
JPH02275724A (en) Production of optical fiber matrix
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JPH0324415B2 (en)
JPH05330831A (en) Production of rare-earth-element-doped quartz glass
JPS596821B2 (en) Method for manufacturing multicomponent glass fiber
JPS6114085B2 (en)
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPH0656454A (en) Production of optical fiber preform
JPS5924093B2 (en) Manufacturing method of glass fiber base material for optical transmission
Harrington et al. Single-crystal infrared fibers fabricated by traveling-zone melting
JPH01115897A (en) Production of magnesium fluoride single crystal
JPH0211531B2 (en)
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission
JPS6047215B2 (en) Method for manufacturing base material for optical fiber