JPS6251214B2 - - Google Patents
Info
- Publication number
- JPS6251214B2 JPS6251214B2 JP56071947A JP7194781A JPS6251214B2 JP S6251214 B2 JPS6251214 B2 JP S6251214B2 JP 56071947 A JP56071947 A JP 56071947A JP 7194781 A JP7194781 A JP 7194781A JP S6251214 B2 JPS6251214 B2 JP S6251214B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- base material
- core
- waveguide structure
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 60
- 239000000463 material Substances 0.000 claims description 26
- 239000013307 optical fiber Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000005383 fluoride glass Substances 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000006060 molten glass Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 238000004017 vitrification Methods 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 description 14
- 238000005253 cladding Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000012792 core layer Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/0128—Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
- C03B37/01291—Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01265—Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
- C03B37/01277—Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by projecting or spraying the melt, e.g. as droplets, on a preform
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/041—Non-oxide glass compositions
- C03C13/042—Fluoride glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
- C03C3/325—Fluoride glasses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
- C03B2201/82—Fluoride glasses, e.g. ZBLAN glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
本発明は、導波構造を有する光フアイバ用ガラ
ス母材を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a glass preform for an optical fiber having a waveguide structure.
従来のこの種の方法を模式的に第1図および第
2図に示す。第1図においては、ガラス管3をチ
ヤツク4で支持し、回転させながら原料供給部1
から接続パイプ2を通してガラス管3内へ原料ガ
スを導入しつつ、ガラス管3の外側から加熱源5
によつて加熱反応させるとともにガラス化を行
い、クラツド層、コア層を堆積させた後、中実化
し、導波構造を有する光フアイバ用ガラス母材を
製造する。 A conventional method of this type is schematically shown in FIGS. 1 and 2. In FIG. 1, the glass tube 3 is supported by the chuck 4, and the raw material supply section 1 is rotated.
The heating source 5 is introduced from the outside of the glass tube 3 while introducing the raw material gas into the glass tube 3 through the connecting pipe 2.
After a heating reaction is carried out and vitrification is performed to deposit a cladding layer and a core layer, the material is solidified to produce a glass base material for an optical fiber having a waveguide structure.
第2図においては、回転引き上げ装置6に支持
された支持棒7の先端へ原料供給部1から接続用
パイプ2を通して反応筒8へ原料ガスを導入反応
させたガラス微粒子を放出し、これを堆積してガ
ラス微粒子による母材9を作製する。ガラス微粒
子による母材9を回転引き上げつつ、リング状の
加熱源10によつて連続的に加熱溶融透明ガラス
化し、光フアイバ用ガラス母材11を作製する。
この工程において光フアイバ用ガラス母材11の
導波構造を作製するため、原料供給部1からの原
料ガスに差異を与え、反応筒8を複数個使用す
る。 In FIG. 2, raw material gas is introduced from the raw material supply section 1 to the tip of the support rod 7 supported by the rotating lifting device 6 through the connecting pipe 2 into the reaction tube 8, and the reacted glass fine particles are discharged and deposited. Then, a base material 9 made of glass fine particles is produced. While the base material 9 made of glass particles is rotated and pulled up, it is continuously heated and melted into transparent glass using a ring-shaped heat source 10 to produce a glass base material 11 for optical fiber.
In this step, in order to fabricate the waveguide structure of the optical fiber glass base material 11, different raw material gases are supplied from the raw material supply section 1, and a plurality of reaction tubes 8 are used.
これらの方法は石英系の非常に安定な酸化物ガ
ラスに対して適用できるものであり、ガラス化傾
向の小さいふつ化物ガラスなどには適用できなか
つた。すなわち第3図の示差熱分析曲線に示すよ
うに、この種のガラスでは粘性が小さいので、結
晶化し易く、ガラス化には融点(第3図に示す1
4)以上からガラス転移温度(第3図に示す1
2)以下への急冷が必要である。第1図の方法で
は、コア層を形成する時、ガラス管全体を融点以
上に加熱するので、クラツド層が低粘性液体とな
り、コア層と溶け合いコア、クラツドが形成でき
ないという欠点があつた。第2図の方法では、ガ
ラス微粒子の透明ガラス化時に急冷できないの
で、結晶が生じるという問題があつた。このよう
に従来の方法では、ふつ化物ガラスなどのガラス
化傾向の小さい素材から導波構造を有するガラス
母材の作製は不可能であつた。 These methods can be applied to extremely stable oxide glasses such as quartz, but cannot be applied to fluoride glasses that have a small tendency to vitrify. In other words, as shown in the differential thermal analysis curve in Figure 3, this type of glass has a low viscosity, so it is easy to crystallize, and vitrification requires a melting point (1 as shown in Figure 3).
4) From the above, the glass transition temperature (1 shown in Figure 3)
2) Rapid cooling is required to: The method shown in Figure 1 has the disadvantage that when forming the core layer, the entire glass tube is heated above its melting point, so the cladding layer becomes a low viscosity liquid and melts with the core layer, making it impossible to form a core and cladding. The method shown in FIG. 2 has the problem that crystals form because glass particles cannot be rapidly cooled during transparent vitrification. As described above, with conventional methods, it has been impossible to produce a glass base material having a waveguide structure from a material with a small tendency to vitrify, such as fluoride glass.
本発明はこのような現状に鑑みてなされたもの
であり、光フアイバ用ガラス母材製造の導波構造
を作製する工程において、コア用ガラス棒をその
ガラスのガラス転移温度近傍に加熱し、その表面
にクラツド用溶融ガラスを付着、積層させること
を特徴としその目的はふつ化物ガラスなどのガラ
ス化に急冷が必要である素材から導波構造を有す
る光フアイバ用ガラス母材を作製することにあ
る。 The present invention was made in view of the current situation, and in the process of manufacturing a waveguide structure for manufacturing a glass base material for an optical fiber, a core glass rod is heated to around the glass transition temperature of the glass, and its It is characterized by adhering and laminating molten glass for cladding on the surface, and its purpose is to produce a glass base material for optical fibers with a waveguide structure from materials that require rapid cooling to vitrify, such as fluoride glass. .
第4図は本発明の一実施例図であつて、15は
コア用ガラス棒、4はガラス棒のチヤツク、16
はクラツド用ガラス原料供給装置、17はコア用
ガラス棒加熱源、18はクラツド用ガラス原料溶
融装置である。この装置の動作は、コア用ガラス
棒15をチヤツク4で支持して回転させる。コア
用ガラス棒加熱源17はコア用ガラス棒15の温
度を一定に保つ。クラツド用ガラス原料供給装置
16から放出されるクラツド用ガラス原料はクラ
ツド用ガラス原料溶融装置18によつて溶融さ
れ、溶融ガラス微粒子の形態を保ちつつ、コア用
ガラス棒15の表面に付着する。クラツド用ガラ
ス原料供給装置16とクラツド用ガラス原料溶融
装置18は一定の位置関係を保ちつつ、コア用ガ
ラス棒15の表面に沿つて移動し、コア用ガラス
棒15の表面全体に溶融ガラス微粒子を一様に付
着させる。 FIG. 4 shows an embodiment of the present invention, in which 15 is a glass rod for the core, 4 is a chuck of the glass rod, and 16 is a glass rod for the core.
17 is a glass rod heating source for the core, and 18 is a glass material melting device for the cladding. In operation of this device, the core glass rod 15 is supported by the chuck 4 and rotated. The core glass rod heating source 17 keeps the temperature of the core glass rod 15 constant. The glass raw material for cladding discharged from the glass raw material supplying device 16 for cladding is melted by the glass raw material melting device 18 for cladding, and adheres to the surface of the glass rod 15 for core while maintaining the form of molten glass particles. The clad glass raw material supply device 16 and the clad glass raw material melter 18 move along the surface of the core glass rod 15 while maintaining a fixed positional relationship, and apply molten glass fine particles to the entire surface of the core glass rod 15. Attach it evenly.
ここでコア用ガラス棒15の温度を第3図に示
すガラス転移温度12近傍に保つため、コア用ガ
ラス棒加熱源17の発熱量をコントロールする。
コア用ガラス棒15と溶融ガラス微粒子の熱容量
を比較すると、コア用ガラス棒15の熱容量が非
常に大であるので、溶融ガラス微粒子はコア用ガ
ラス棒15の表面に付着後、第3図に示すガラス
転移温度12の温度近傍まで急冷され結晶を生じ
ない。また溶融ガラス微粒子がコア用ガラス棒1
5の表面に付着した瞬間は、それらの界面は、第
3図のガラス転移温度12から結晶化温度13の
中間温度になつて双方は融着する。 Here, in order to maintain the temperature of the core glass rod 15 near the glass transition temperature 12 shown in FIG. 3, the amount of heat generated by the core glass rod heating source 17 is controlled.
Comparing the heat capacities of the core glass rod 15 and the molten glass particles, it is found that the heat capacity of the core glass rod 15 is very large. It is rapidly cooled to a temperature close to the glass transition temperature of 12, and no crystals are formed. In addition, molten glass fine particles are added to the core glass rod 1.
At the moment of adhesion to the surface of 5, their interface becomes an intermediate temperature between the glass transition temperature 12 and the crystallization temperature 13 in FIG. 3, and the two are fused together.
以上説明したように、本発明の光フアイバ用ガ
ラス母材の製造方法によると、コア用ガラス棒の
表面に結晶を生じることなく、クラツド用ガラス
層を積層させることができるので、ガラス化に急
冷が必要であるガラス素材から導波構造を有する
光フアイバ用ガラス母材を作製することが可能と
なる。 As explained above, according to the method for manufacturing a glass base material for optical fiber of the present invention, the glass layer for the cladding can be laminated without forming crystals on the surface of the glass rod for the core, so it is possible to rapidly cool the glass base material for vitrification. It becomes possible to produce a glass base material for an optical fiber having a waveguide structure from a glass material that requires the following.
したがつて本発明によれば、これをふつ化物ガ
ラスに適用すると導波構造を有するふつ化物ガラ
ス母材が作製でき、母材線引きにより高品質のふ
つ化物ガラス光フアイバが容易に製造できるとい
う利点がある。この光フアイバを用いれば、従来
の石英系光フアイバでは不可能であつた波長2〜
4μmの光通信が可能になる。 Therefore, according to the present invention, when this is applied to fluoride glass, a fluoride glass base material having a waveguide structure can be produced, and a high quality fluoride glass optical fiber can be easily manufactured by drawing the base material. There is. If this optical fiber is used, it is possible to achieve wavelengths from 2 to
4μm optical communication becomes possible.
第1図および第2図は従来の導波構造を有する
光フアイバ用ガラス母材の作製方法の模式図、第
3図は急冷法によつて作成可能なBaF2−CaF2−
YF3−AlF3系ガラスの示差熱分析の一例を示す
図、第4図は本発明の一実施例図である。
1……原料供給部、2……接続用パイプ、3…
…ガラス管、4……チヤツク、5……加熱源、6
……回転引き上げ装置、7……支持棒、8……反
応筒、9……ガラス微粒子による母材、10……
リング状加熱源、11……光フアイバ用ガラス母
材、12……ガラス転移温度、13……結晶化温
度、14……融点、15……コア用ガラス棒、1
6……クラツド用ガラス原料供給装置、17……
コア用ガラス棒加熱源、18……クラツド用ガラ
ス原料溶融装置。
Figures 1 and 2 are schematic diagrams of a conventional method for producing a glass base material for optical fibers having a waveguide structure, and Figure 3 is a schematic diagram of a BaF 2 -CaF 2 - that can be produced by a rapid cooling method.
FIG. 4 is a diagram showing an example of differential thermal analysis of YF 3 -AlF 3 glass, and FIG. 4 is a diagram showing an embodiment of the present invention. 1... Raw material supply section, 2... Connection pipe, 3...
...Glass tube, 4...Chick, 5...Heating source, 6
... Rotating lifting device, 7 ... Support rod, 8 ... Reaction tube, 9 ... Base material made of glass particles, 10 ...
Ring-shaped heating source, 11... Glass base material for optical fiber, 12... Glass transition temperature, 13... Crystallization temperature, 14... Melting point, 15... Glass rod for core, 1
6... Glass raw material supply device for cladding, 17...
Glass rod heating source for core, 18... glass raw material melting device for cladding.
Claims (1)
ら導波構造を有するガラス母材を製造する方法に
おいて、ふつ化物ガラスなどのガラス化に急冷が
必要である素材からなるコア用ガラス棒をそのガ
ラスのガラス転移温度近傍に加熱し、その表面に
ふつ化物ガラスなどのガラス化に急冷が必要であ
る素材からなるクラツド用溶融ガラスを付着、積
層させることによつて導波構造を有するガラス母
材を製造することを特徴とする光フアイバ用ガラ
ス母材の製造方法。1. In a method of manufacturing a glass base material having a waveguide structure by supporting a glass tube with a chuck and rotating it, a core glass rod made of a material that requires rapid cooling for vitrification, such as a fluoride glass, is A glass base material with a waveguide structure is produced by heating it to near the glass transition temperature, and then attaching and laminating molten glass for the clad made of a material that requires rapid cooling to vitrify, such as fluoride glass, on its surface. A method for producing a glass base material for optical fiber, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56071947A JPS57188422A (en) | 1981-05-13 | 1981-05-13 | Manufacture of glass base material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56071947A JPS57188422A (en) | 1981-05-13 | 1981-05-13 | Manufacture of glass base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57188422A JPS57188422A (en) | 1982-11-19 |
JPS6251214B2 true JPS6251214B2 (en) | 1987-10-29 |
Family
ID=13475188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56071947A Granted JPS57188422A (en) | 1981-05-13 | 1981-05-13 | Manufacture of glass base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57188422A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285308U (en) * | 1988-12-22 | 1990-07-04 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895813A (en) * | 1987-09-30 | 1990-01-23 | American Telephone And Telegraph Company, At&T Bell Laboratories | Method for fabricating devices including multicomponent metal halide glasses and the resulting devices |
CN102976607B (en) * | 2011-09-06 | 2015-12-16 | 苏州佳因特光电科技有限公司 | A kind of single mode chalcogenide glass fiber and preparation method thereof |
-
1981
- 1981-05-13 JP JP56071947A patent/JPS57188422A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285308U (en) * | 1988-12-22 | 1990-07-04 |
Also Published As
Publication number | Publication date |
---|---|
JPS57188422A (en) | 1982-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4363647A (en) | Method of making fused silica-containing material | |
US4362545A (en) | Support member for an optical waveguide preform | |
US4388094A (en) | Method and apparatus for producing tubular glass article | |
US4602926A (en) | Optical fibre fabrication | |
US5879426A (en) | Process for making optical fibers from core and cladding glass rods | |
US4289516A (en) | Low loss optical fibers | |
RU2236386C2 (en) | Method of manufacturing optic fiber intermediate product | |
JPH03183630A (en) | Production of preform for nonoxide glass fiber | |
JPS6251214B2 (en) | ||
USH1259H (en) | Large fluoride glass preform fabrication | |
US4289522A (en) | Support member for an optical waveguide preform | |
JPS596265B2 (en) | Optical fiber manufacturing method | |
JPH0660028B2 (en) | Method for manufacturing preform for optical fiber | |
JP2556569B2 (en) | Method for manufacturing base material for fluoride glass fiber | |
US3607163A (en) | Method for making glass tubes | |
JPS58151336A (en) | Manufacture of optical glass rod | |
KR100251773B1 (en) | Over cladding method of manufacturing optical fiber | |
JPH0764577B2 (en) | Method for manufacturing preform for chalcogenide glass fiber | |
JPH11109142A (en) | Drawing method of optical fiber perform, drawing device therefor, and optical fiber perform | |
JPS61101429A (en) | Production of glass tube | |
JPS6021930B2 (en) | Optical fiber manufacturing method | |
JPS62162645A (en) | Production of preform for optical fiber | |
JPH0940437A (en) | Production of optical fiber | |
JPH07237930A (en) | Light-transmitting optical-function glass part preform and production thereof | |
JPH0692672A (en) | Drawing furnace containing double crucible |