JPS6021930B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JPS6021930B2
JPS6021930B2 JP4036277A JP4036277A JPS6021930B2 JP S6021930 B2 JPS6021930 B2 JP S6021930B2 JP 4036277 A JP4036277 A JP 4036277A JP 4036277 A JP4036277 A JP 4036277A JP S6021930 B2 JPS6021930 B2 JP S6021930B2
Authority
JP
Japan
Prior art keywords
hollow tube
rod
optical fiber
tube
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4036277A
Other languages
Japanese (ja)
Other versions
JPS53125853A (en
Inventor
俊夫 勝山
衛 杉江
信 佐藤
宏司 石田
庸雄 菅沼
尭三 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4036277A priority Critical patent/JPS6021930B2/en
Publication of JPS53125853A publication Critical patent/JPS53125853A/en
Publication of JPS6021930B2 publication Critical patent/JPS6021930B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 ‘1} 発明の利用分野 本発明は、光伝送用ファィバの製造方法に関する。[Detailed description of the invention] ‘1} Field of application of the invention The present invention relates to a method of manufacturing an optical transmission fiber.

■ 従来技術 光フアィバを作成する一方法として、ロッドィンチュー
ブ法と呼ばれる方法がある。
■Prior Art One method for producing optical fibers is a method called the rod-in-tube method.

この方法は、第1図に示すように、透明誘電体たとえば
客雛石英等からなる中空管1に、それより屈折率の高い
透明誘電体ロッド2を挿入(同図a)、電気炉あるいは
酸水素バーナなどの加熱源3で管の端から順次融着して
光フアィバ用ブレフオーム4(光フアィバに線引きする
以前の素材)を作成する(同図b)ことを第一段階とす
る。引き続いて、上記プレフオームを第2図に示すよう
に、加熱源5を用いてブレフオームの断面積が減少する
ように線引きし、光フアィバを得る。ところで、上記方
法では、中空管とロッドとの融着時に、中空管内壁面あ
るいはロッド表面に存在する微小なほこり等がプレフオ
ーム内部にとりこまれる欠点がある。また、融着時にな
んらかの原因のために微小な気泡が中空管とロッドの界
面に取り残される可能性が大きい。このようなブレフオ
ームにおける中空管とロッドとの界面の欠陥は、光フア
ィバの伝送特性に悪影響を及ぼす。すなわち、ブレフオ
ームを構成する中空管は線引き後光フアィバのクラツド
となり、ロッドはコアとなるため、これらの界面の欠陥
は伝送光を光フアィバ外にリークさせる。したがって、
融着時に生成した中空管とロッドとの界面の欠陥は光フ
アィバの光透過率を大幅、悪化させる。ロッドィンチュ
ーブ法に関する刊行物としては、例えば、特公昭41−
11071号公報および持開昭50−8球45号公報が
知られている。
As shown in Fig. 1, this method involves inserting a transparent dielectric rod 2 having a higher refractive index into a hollow tube 1 made of a transparent dielectric material such as quartz (Fig. The first step is to sequentially fuse the tube from the end using a heating source 3 such as an oxyhydrogen burner to create an optical fiber bream 4 (a material before being drawn into an optical fiber) (FIG. 2b). Subsequently, as shown in FIG. 2, the preform is drawn using a heating source 5 so that the cross-sectional area of the preform is reduced to obtain an optical fiber. However, the above method has a drawback that minute dust and the like existing on the inner wall surface of the hollow tube or the surface of the rod are trapped inside the preform when the hollow tube and rod are fused together. Further, there is a high possibility that minute air bubbles are left behind at the interface between the hollow tube and the rod for some reason during fusion. Such a defect at the interface between the hollow tube and the rod in the brefohm adversely affects the transmission characteristics of the optical fiber. That is, since the hollow tube constituting the bream serves as the cladding of the optical fiber after being drawn, and the rod serves as the core, defects at these interfaces cause transmitted light to leak out of the optical fiber. therefore,
Defects generated at the interface between the hollow tube and the rod during fusion greatly deteriorate the light transmittance of the optical fiber. Publications related to the Rodin tube method include, for example, Japanese Patent Publication No. 1973-
Publication No. 11071 and Publication No. 45 of Kyokai 50-8 Ball are known.

‘3} 発明の目的 本発明の目的は、上述した融着時における中空管とロッ
ドの界面の欠陥を取り除くことにある。
'3} Purpose of the Invention The purpose of the present invention is to eliminate the above-mentioned defects at the interface between the hollow tube and the rod during fusion.

‘4ー 発明の総括説明本発明は上述した中空管とロッ
ドとの融着を行なう以前に軟化温度が両者より低い譲霞
体薄膜を中空管内壁面上あるいはロッド外周面上に付着
させることにある。
'4 - General description of the invention The present invention involves attaching a flexible thin film having a softening temperature lower than that of the hollow tube and the rod to the inner wall surface of the hollow tube or the outer circumferential surface of the rod before the above-described fusion bonding between the hollow tube and the rod. be.

このように軟化温度が中空管およびロッドより低い薄膜
を付着させることにより、融着時において、第3図に示
すように中空管1とロッド2との界面に軟化温度の低い
容融物8が形成される。この容融物は加熱源を図中の矢
印の方向に移動させた場合、加熱された中空管の表面張
力によって矢印方向に押し出され、管の長手方向全区間
を融着したのちは、ブレフオーム外に大部分が排出され
る。この時、中空管の内壁面あるいはロッド外周面に微
小なほこり等が付着していた場合は、それらが上記溶融
物8中に取り込まれ、融着後はその大部分がブレフオー
ム外に溶融物とともに排出される。したがって、上述し
たようにして作成したブレフオームを線引きしたのちの
光フアィバは、その光透過率が大幅に向上する。ところ
で、融着時に形成される溶融物8はなんらかの原因のた
めに、そのすべてがプレフオーム外に排出されない場合
も起こり得る。この時、ブレフオ−ム内に残った溶融物
は、上記プレフオームを線引きした光フアィバの伝送特
性に悪影響を及ぼす可能性がある。この悪影響は主に残
存溶融物のため、光フアィバのコアからクラッド‘こか
けての屈折率変化が不連続になることに起因する。これ
を防ぐためには、付着させる誘電体薄膜の屈折率をn、
光ファイバコアの屈折率をn,、クラッドの屈折率を比
とした場合、nをnoSnミn′,にすればよい。この
結果溶融物のすべてがブレフオーム外に排出されない場
合でも、光フアィバの伝送特性に悪影響を及ぼすことは
なくなる。ところで、残在溶融物による伝送特性への悪
影響がほとんど無視出来る程度で、光フアィバを使用す
るときは、付着する譲露体薄膜の屈折率に対する限定は
孝癒しなくてよい。さて使用する譲電体薄膜用材料とし
ては、中空管およびロッドが高珪酸ガラスあるいは溶融
石英の場合、低軟化点ガラスがもっとも理想的である。
By attaching a thin film with a softening temperature lower than that of the hollow tube and rod in this way, a molten material with a low softening temperature is deposited at the interface between the hollow tube 1 and the rod 2 during fusion, as shown in Fig. 3. 8 is formed. When the heating source is moved in the direction of the arrow in the figure, this molten material is pushed out in the direction of the arrow by the surface tension of the heated hollow tube, and after welding the entire longitudinal section of the tube, it forms a blemish. Most of it is discharged outside. At this time, if minute dust or the like is attached to the inner wall surface of the hollow tube or the outer circumferential surface of the rod, it will be incorporated into the melt 8, and after fusion, most of it will be transferred to the outside of the fused material 8. It is discharged along with the Therefore, the light transmittance of the optical fiber obtained by drawing the bleforome produced as described above is greatly improved. By the way, for some reason, all of the molten material 8 formed during fusion bonding may not be discharged to the outside of the preform. At this time, the melt remaining in the preform may adversely affect the transmission characteristics of the optical fiber drawn from the preform. This negative effect is mainly due to the discontinuous change in refractive index from the core to the cladding of the optical fiber due to the residual melt. In order to prevent this, the refractive index of the dielectric thin film to be deposited must be set to n,
If the refractive index of the optical fiber core is n, and the refractive index of the cladding is a ratio, then n may be set to noSn min n'. As a result, even if not all of the melt is discharged out of the bleederm, it will not adversely affect the transmission characteristics of the optical fiber. Incidentally, the adverse effect of residual melt on the transmission characteristics is almost negligible, and when using an optical fiber, there is no need to impose strict restrictions on the refractive index of the attached thin film. Now, as the material for the conductor thin film to be used, when the hollow tube and rod are made of high silicate glass or fused silica, a low softening point glass is most ideal.

低軟化点ガラスとしては、ソーダライムシリカガラ(N
a20−Ca○一Si02)、ソーダボロシリケイトガ
ラス(Na20−B203一Si02)などの一般のガ
ラスの他にSi02に陽イオン酸化物を添加剤として含
むガラス、たとえばSi02−弦03,ガラスSi02
‐従02−B03ガラス,Si02‐P205−&03
ガラス等でSi02の割合が比較的大きくないものが考
えられる。とくに、Sj02−Ge02−弦02および
Si02−P205‐B203ガラスは、蛇02が溶融
石英より屈折率を高くする作用をもち、&03が低くす
る作用をもつ。したがって、高珪酸ガラスの中空管およ
びロッドでプレフオームを作成する場合、上記2種のガ
ラスの屈折率nを前述のnoSnSn.の範囲内に容易
に入れることが出来る。この点から考えて、Sj02−
P205−&03ガラス、Si02−QQ−&03ガラ
スは、光フアィバの伝送特性を悪化させる可能性が少な
く、優れた材料と考えられる。‘5} 実施例 以下、本発明を実施例を参照して詳細に説明する。
As a low softening point glass, soda lime silica glass (N
In addition to general glasses such as a20-Ca○-Si02) and soda borosilicate glass (Na20-B203-Si02), glasses containing cationic oxides as additives to Si02, such as Si02-chord 03, glass Si02
-Sub02-B03 glass, Si02-P205-&03
A material such as glass in which the proportion of Si02 is not relatively large can be considered. In particular, in the Sj02-Ge02-string 02 and Si02-P205-B203 glasses, the serpentine 02 has the effect of making the refractive index higher than that of fused silica, and the &03 has the effect of making the refractive index lower. Therefore, when creating a preform with a hollow tube and rod of high silicate glass, the refractive index n of the two types of glasses mentioned above is set to the above-mentioned noSnSn. can be easily placed within the range of Considering this point, Sj02-
P205-&03 glass and Si02-QQ-&03 glass are considered to be excellent materials since they are less likely to deteriorate the transmission characteristics of the optical fiber. '5} Examples Hereinafter, the present invention will be explained in detail with reference to Examples.

‐実施例 1 第4図に示すように、透明誘電体からなる中空管として
、外径140、内径12での溶融石英管16を用い、そ
の内壁面上にSi02−蛇02‐B203ガラスを付着
させた。
- Example 1 As shown in FIG. 4, a fused silica tube 16 with an outer diameter of 140 and an inner diameter of 12 is used as a hollow tube made of a transparent dielectric material, and Si02-J02-B203 glass is coated on its inner wall surface. Attached.

付着の方法は、溶融石英管16の一方からSICそ4
,BBr3,QC夕4 および○2ガスを送入し移動加
熱源3を用いて、回転している管16を局所的に加熱し
、管内壁面上にSiQ‐蛇02‐B203ガラスを堆積
する方法である。SICと4 等のソースガスは、温度
を2び0に固定した恒温槽10,12,14内に置かれ
たバブラーを用いて、Qキャリアガスによって搬送され
、管16内に送り込まれる。本実施例の実験では、SI
C公用キャリアガス流量は、120cc/min、QC
〆4 用ガス流量は150cc/min.BBr3用ガ
ス流量は200ccノminとした。またキャリアガス
用02ガス以外に、130cc/minの02ガスを管
16に送り込んでいる。移動加熱源3は移動速度V′を
2.5帆/secとし管の長手方向に二回移動を繰り返
した。このときの反応温度は約900ooである。この
結果、石英管内壁面に厚さ約1かmで屈折率が溶融石英
と程んど同じであるSi02‐蛇02‐B203ガラス
を長手方向に一様に堆積することが出来た。つぎに、図
3に示すように、ロッド2としてTi02をドーブした
溶融石英樺を用い、加熱源3を移動速度約1仇/min
で移動させながら、ロッド2と石英管1を温度1900
ooで融着した。このようにして作成したプレフオーム
2を線引きして得られた光フアィバの光透過率は波長8
3仇舷で約5.の旧/ゆであった。内壁面上にSi02
‐戊02‐B203ガラスを堆積していない石英管を用
いて光フアィバを作成した場合、その光透過率は20b
B/物以上であった。したがって、本発明による製造方
法を用いることによって、光透過率が4倍以上向上した
ことになる。実施例 2 実施例1では石英管内壁面にSi02−戊02−&02
ガラスを堆積したが、本実施例ではSi02一P2Q−
B03ガラスを堆積した。
The attachment method is as follows: from one side of the fused silica tube 16 to the SIC side 4.
, BBr3, QC24, and ○2 gases are fed into the rotating tube 16 using a moving heating source 3 to locally heat the rotating tube 16, thereby depositing SiQ-J02-B203 glass on the inner wall surface of the tube. It is. Source gases such as SIC and 4 are conveyed by Q carrier gas and fed into tube 16 using bubblers placed in thermostats 10, 12, and 14 whose temperatures are fixed at 2 and 0. In the experiment of this example, SI
C official carrier gas flow rate is 120cc/min, QC
〆4 Gas flow rate is 150cc/min. The gas flow rate for BBr3 was set to 200 cc min. In addition to the carrier gas 02 gas, 130 cc/min of the 02 gas is fed into the pipe 16. The moving heat source 3 was moved twice in the longitudinal direction of the tube at a moving speed V' of 2.5 sails/sec. The reaction temperature at this time is about 900 oo. As a result, it was possible to uniformly deposit Si02-J02-B203 glass on the inner wall surface of the quartz tube in the longitudinal direction with a thickness of about 1 m and having a refractive index almost the same as that of fused silica. Next, as shown in FIG. 3, using fused silica birch doped with Ti02 as the rod 2, the heating source 3 was moved at a speed of about 1 min/min.
While moving the rod 2 and quartz tube 1 at a temperature of 1900
It was fused with oo. The light transmittance of the optical fiber obtained by drawing the preform 2 created in this way is at wavelength 8.
Approximately 5. It was old/boiled. Si02 on the inner wall surface
-02-B203 When an optical fiber is made using a quartz tube without glass deposited, its light transmittance is 20b.
It was better than B/. Therefore, by using the manufacturing method according to the present invention, the light transmittance is improved by more than four times. Example 2 In Example 1, Si02-02-&02 was applied to the inner wall surface of the quartz tube.
Although glass was deposited, in this example, Si02-P2Q-
B03 glass was deposited.

堆積の方法は実施例1と同様で、ソースガスとして蛇C
そ4のかわりにPOCそ3 を用いた。ただし、POC
〆3とBBr3は室温で反応し、白色粉末を生成するの
で、POCそ3 は他のソースガスと別の経路で石英管
内に送った。それぞれのソースに対する02キアリアガ
ス流量は、SICそ4 が120cc/min、POC
そ3 が400cc/min、BBr3が250cc/
minである。また過剰な02ガスを200cc/mi
n流した。移動加熱源の移動速度は2.5柵/sec。
,加熱温度は約90000で、加熱源を管の長手方向に
二度繰り返して移動させた。その結果得られたSi02
−P205−B203ガラスの膜厚は約1糾mで屈折率
は溶融石英と程んど同じであった。ロッドとの融着方法
およびロッドの材料は実施例1と同じである。このよう
にして作成した光フアィバの光透過率は波長830燭で
約4.皿B/ゆであった。したがって、ガラス材料とし
て、Si02一P205一B203ガラスを用いた場合
も光透過率の改善は著しいことがわかる。
The deposition method was the same as in Example 1, using C as the source gas.
POC part 3 was used instead of part 4. However, P.O.C.
Since POC3 and BBr3 react at room temperature to produce white powder, POC3 was sent into the quartz tube through a different route from the other source gases. The 02 Chiaria gas flow rate for each source is 120cc/min for SIC So4 and 120cc/min for POC.
Part 3 is 400cc/min, BBr3 is 250cc/min
It is min. Also, remove excess 02 gas at 200cc/mi.
n flowed. The moving speed of the moving heating source is 2.5 rails/sec.
, the heating temperature was about 90,000, and the heating source was moved twice in the longitudinal direction of the tube. The resulting Si02
-P205-B203 glass had a film thickness of about 1 m and a refractive index almost the same as that of fused silica. The method of welding with the rod and the material of the rod are the same as in Example 1. The optical fiber thus prepared has a light transmittance of approximately 4.0 at a wavelength of 830. Dish B/Boiled. Therefore, it can be seen that the light transmittance is significantly improved even when Si02-P205-B203 glass is used as the glass material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ロッドィンチューブ法で光ファイバブレフオ
ームを作成する時の作成方法を示す図。 第2図は、プレフオームの線引き工程を示す図。第3図
は透明誘電体管の内壁面に軟化温度の低い膜を付着させ
て融着するときの状態を示す図。第4図は透明誘電体管
(溶融石英管)の内壁面に軟化温度の低いガラス膜を堆
積させる方法を示す構成図。多′幻 多Z図 多5欧 多4図
FIG. 1 is a diagram illustrating a method of creating an optical fiber beam using the rod-in-tube method. FIG. 2 is a diagram showing a preform drawing process. FIG. 3 is a diagram showing a state in which a film with a low softening temperature is attached and fused to the inner wall surface of a transparent dielectric tube. FIG. 4 is a block diagram showing a method of depositing a glass film with a low softening temperature on the inner wall surface of a transparent dielectric tube (fused silica tube). Ta' Genta Z diagram Ta 5 Europe Ta 4 diagram

Claims (1)

【特許請求の範囲】 1 透明誘電体からなる中空管の内部に、核中空管より
屈折率の高い透明誘電体からなるロツドを挿入して、両
者を加熱融着し、その後にこの断面積を減少するように
延伸して光フアイバを作成する方法において、加熱融着
以前に、前記中空管の内壁もしくは前記ロツドの表面に
前記中空管および前記ロツドより軟化温度あるいは融点
の低い透電体薄膜を形成してから前記ロツドを前記中空
管内に挿入し、加熱融着の際に前記誘電体薄膜の溶融物
の大部分が中空管の外部へ排出されることを特徴とする
光フアイバの製造方法。 2 前記中空管、前記ロツド、前記誘電薄膜の屈折率を
、それぞれ、n_0,n,n_1とするとき、n_0≦
n≧n_1なることを特徴とする特許請求の範囲第1項
記載の光フアイバの製造方法。
[Claims] 1. A rod made of a transparent dielectric material having a higher refractive index than the core hollow tube is inserted into a hollow tube made of a transparent dielectric material, the two are heated and fused, and then this cut is made. In a method of producing an optical fiber by drawing to reduce its area, a transparent material having a softening temperature or melting point lower than that of the hollow tube and the rod is applied to the inner wall of the hollow tube or the surface of the rod before heat fusing. A light source characterized in that the rod is inserted into the hollow tube after forming an electric thin film, and most of the melted material of the dielectric thin film is discharged to the outside of the hollow tube during heating and fusing. Method of manufacturing fiber. 2 When the refractive index of the hollow tube, the rod, and the dielectric thin film are n_0, n, and n_1, respectively, n_0≦
The method for manufacturing an optical fiber according to claim 1, characterized in that n≧n_1.
JP4036277A 1977-04-11 1977-04-11 Optical fiber manufacturing method Expired JPS6021930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036277A JPS6021930B2 (en) 1977-04-11 1977-04-11 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036277A JPS6021930B2 (en) 1977-04-11 1977-04-11 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS53125853A JPS53125853A (en) 1978-11-02
JPS6021930B2 true JPS6021930B2 (en) 1985-05-30

Family

ID=12578515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036277A Expired JPS6021930B2 (en) 1977-04-11 1977-04-11 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPS6021930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118325U (en) * 1988-01-30 1989-08-10

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118300A (en) * 1984-07-04 1986-01-27 Matsushita Electric Ind Co Ltd Optical microphone
FR2741061B1 (en) * 1995-11-13 1998-03-20 Alcatel Fibres Optiques METHOD FOR MANUFACTURING SINGLE-MODE OPTICAL FIBER AND OPTICAL AMPLIFIER USING SUCH FIBER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118325U (en) * 1988-01-30 1989-08-10

Also Published As

Publication number Publication date
JPS53125853A (en) 1978-11-02

Similar Documents

Publication Publication Date Title
US4249925A (en) Method of manufacturing an optical fiber
US3877912A (en) Method of producing an optical transmission line
US4378987A (en) Low temperature method for making optical fibers
US4230472A (en) Method of forming a substantially continuous optical waveguide
US4528009A (en) Method of forming optical fiber having laminated core
US4372767A (en) Method of manufacturing optical fibers
JPH0447285B2 (en)
US4326869A (en) Method of producing optical waveguide
US4163654A (en) Method of manufacturing graded index optical fibers
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
US4518407A (en) Optical fibre preform manufacture
US4764194A (en) Method of manufacturing hollow core optical fibers
JPS6021930B2 (en) Optical fiber manufacturing method
JPS596265B2 (en) Optical fiber manufacturing method
JPS5838368B2 (en) Optical fiber manufacturing method
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
US8613208B2 (en) Method for forming an improved weld between a primary preform and a silica bar
JPH0660028B2 (en) Method for manufacturing preform for optical fiber
JPS6011244A (en) Manufacture of optical fiber
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JPS58185446A (en) Preparation of base material for optical fiber
JPS6251214B2 (en)
JPH038742A (en) Ge-as-s glass fiber having core-clad structure
JPH02275732A (en) As-s glass fiber having core clad structure
JPS6096537A (en) Production of optical fiber preform