JPH038742A - Ge-as-s glass fiber having core-clad structure - Google Patents

Ge-as-s glass fiber having core-clad structure

Info

Publication number
JPH038742A
JPH038742A JP1139169A JP13916989A JPH038742A JP H038742 A JPH038742 A JP H038742A JP 1139169 A JP1139169 A JP 1139169A JP 13916989 A JP13916989 A JP 13916989A JP H038742 A JPH038742 A JP H038742A
Authority
JP
Japan
Prior art keywords
glass
core
fiber
clad
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1139169A
Other languages
Japanese (ja)
Other versions
JPH0791087B2 (en
Inventor
Junji Nishii
準治 西井
Ryuji Iizuka
飯塚 竜二
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Original Assignee
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISANKABUTSU GLASS KENKYU KAIHATSU KK filed Critical HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority to JP1139169A priority Critical patent/JPH0791087B2/en
Publication of JPH038742A publication Critical patent/JPH038742A/en
Publication of JPH0791087B2 publication Critical patent/JPH0791087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/043Chalcogenide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To provide the subject glass fiber having excellent IR permeability, heat resistance, the power transmission characteristics of CO laser, etc., by composing the core glass and clad glass thereof from three elements of Ge, As and S and substituting one part of the S in the core glass with Se. CONSTITUTION:Core glass and clad glass are composed from three element of germanium, arsenic and sulfur and one part of the sulfur in the core glass is substituted with selenium to provide a Ge-As-S glass fiber having a core-clad structure. The preferable embodiment of the glass fiber is a core-clad structure Ge-As-S glass fiber wherein both the core glass and clad glass are composed of 0.5-35at% of Ge, 5-44at% of As and 40-85at% of S, the sum of the Ge and the As being 20-60at% and 0.5-15at% of the sulfur in the core glass being substituted with Se.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光の透過性、及びCOレーザーのパワー伝送特
性に優れたコアクラッド構造を有するGe−As−5ガ
ラスフアイバーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Ge-As-5 glass fiber having a core-clad structure with excellent light transmittance and CO laser power transmission characteristics.

[従来の技術] カルコゲナイドガラスは赤外透過性、化学的安定性、耐
熱性に優れた赤外線透過材料として知られており、赤外
線透過用の窓、フィルター、などに一部用いられている
が、このガラスをファイバー状に成形すれば、既にシリ
カガラスファイバーで実施されている情報伝達や温度計
測用の導波路に応用できるばかりでなく、COレーザー
のエネルギー伝送用導波路としても利用することができ
る。カルコゲナイドガラスの中でもイオウ系ガラスは結
晶化に対する安定性や耐候性に優れており、かつ1〜6
μmの赤外線をよく透過することから、ファイバー用材
料として注目されている。
[Prior Art] Chalcogenide glass is known as an infrared transmitting material with excellent infrared transmittance, chemical stability, and heat resistance, and is partially used in infrared transmitting windows, filters, etc. If this glass is formed into a fiber shape, it can not only be applied to waveguides for information transmission and temperature measurement, which are already implemented using silica glass fibers, but also can be used as a waveguide for CO laser energy transmission. . Among chalcogenide glasses, sulfur-based glasses have excellent stability against crystallization and weather resistance, and
It is attracting attention as a material for fibers because it transmits μm infrared rays well.

[発明が解決しようとする課題] 一般に光ファイバーは中心部分のコアとその周囲を該コ
アよりも屈折率の低いクラッドで取り囲んだ2!]I構
造にすることが好ましいことはよく知られている。我々
は先に、独自に開発したルツボ紡糸法(特願昭63−3
8474、昭63.02.23出願)を用いた、コアク
ラッド構造を有するAs−5ガラスフアイバーを提案し
た(特願平L−94331、平[。4.15出願)。し
かし、As−5ガラスの耐熱温度はせいぜい200°C
であり、それ以上の温度域でファイバーを使用すると、
ファイバーの端面が酸化したり、ファイバーが軟化した
りするため、例えば、このファイバーを用いてCOレー
ザーのパワー伝送を行うと、入射パワーが70W以上に
なるとファイバーが軟化して、それ以上のパワーを安定
して透過することが困難であった。耐熱性に優れたイオ
ウ系ガラスとして、Ge−As−5ガラスが知られてい
る(I?、l7.Myuller、et al、 5o
Lid StateChemistry(1985)6
B)が、このガラスを紡糸した例は報告されていない。
[Problems to be Solved by the Invention] Generally, an optical fiber has a central core surrounded by a cladding having a lower refractive index than the core. ] It is well known that the I structure is preferable. We first developed our own crucible spinning method (patent application 1986-3).
8474, filed on February 23, 1983), and proposed an As-5 glass fiber having a core-clad structure (Japanese Patent Application No. 1993-94331, filed on April 15, 1989). However, the heat resistance temperature of As-5 glass is at most 200°C.
, and when the fiber is used in a temperature range higher than that,
Because the end face of the fiber may oxidize or the fiber may become soft, for example, if this fiber is used to transmit the power of a CO laser, if the incident power exceeds 70 W, the fiber will soften, making it impossible to transmit more power than that. It was difficult to stably transmit the water. Ge-As-5 glass is known as a sulfur-based glass with excellent heat resistance (I?, 17. Myuller, et al., 5o
Lid State Chemistry (1985) 6
B) However, there have been no reports of spinning this glass.

[課題を解決するための手段] 本発明に係るコアクラッド構造を有するGe−As−5
ガラスフアイバーは、コアガラス及びクラッドガラスが
ゲルマニウム(Ge)、ひ素(As)、イオウ(S)の
3元素から構成されており、かつコアガラスのイオウの
一部がSeで置換されていることを特徴としている。す
なわち、該ガラスファイバーは、コア、クラッド共に、
Geが0.5〜35aL%、5〜44at%、Sが40
〜85aL%、GeとAsの合計が20〜θOat%で
あり、かつ、コアのイオウの0.5〜15at%がSe
で置換されているガラスによって、好ましくは、Geが
10〜25、Asが10〜30at%、Sが50〜75
at%、GeとAsの合計が25〜45aL%であり、
かつ、コアのイオウの2.5〜5at%がSeで置換と
れているガラスによって構成されている。
[Means for solving the problem] Ge-As-5 having a core clad structure according to the present invention
The glass fiber has a core glass and a cladding glass composed of three elements: germanium (Ge), arsenic (As), and sulfur (S), and a portion of the sulfur in the core glass is replaced with Se. It is a feature. That is, the glass fiber has both a core and a cladding.
Ge is 0.5-35aL%, 5-44at%, S is 40
~85aL%, the total of Ge and As is 20~θOat%, and 0.5~15at% of the sulfur in the core is Se.
Depending on the glass substituted with
at%, the total of Ge and As is 25 to 45aL%,
In addition, it is made of glass in which 2.5 to 5 at% of the sulfur in the core is replaced with Se.

コアガラス、クラッドガラス共にGeの含有量が上記限
定範囲の上限を越えると、ガラスが結晶化しやすくなり
紡糸ができなくなるばかりか、理由はよくわからないの
だが、結晶化していないにもかかわらずガラスが脆くな
り、ファイバーに成形できても非常に折れやすい。
When the Ge content of both the core glass and the clad glass exceeds the upper limit of the above limited range, the glass tends to crystallize and spinning becomes impossible, and for reasons that are not well understood, the glass It becomes brittle, and even if it can be formed into fibers, it breaks very easily.

また、コアガラス、クラッドガラス共にGeの含有量が
上記限定範囲の下限よりも低くなると、ガラスの耐熱性
が悪くにるので、例えばCOレーザーのパワー伝送など
に用いるには好ましくない。
Further, if the Ge content of both the core glass and the clad glass is lower than the lower limit of the above-mentioned limited range, the heat resistance of the glass deteriorates, which is not preferable for use in, for example, power transmission of a CO laser.

さらに、コアガラス、クラッドガラス共にAsの含有量
が上記限定範囲の上限または下限からはずれると、ガラ
スが結晶化しやすくなり、紡糸ができな(なる。Sの含
有量が上記限定範囲の下限よりも低くなると、ガラスが
結晶化しやす(なり、紡糸ができなくなる。Sの含有量
が上記限定範囲の上限を越えると、ガラスが結晶化しや
すくなり紡糸ができなくなねばかりか、ガラスの耐熱性
が悪くなるので好ましくない。コアガラスのSeの含有
量はファイバーの開口数NAを調節するためのドーパン
トであるため、たとえばNA=0.4のファイバーを得
るためには2,5〜5aL%で十分である。
Furthermore, if the As content of both the core glass and the cladding glass deviates from the upper or lower limit of the above limited range, the glass will tend to crystallize, making spinning impossible. If the S content is too low, the glass tends to crystallize (and cannot be spun). If the S content exceeds the upper limit of the above-mentioned limited range, not only will the glass easily crystallize and spinning will not be possible, but the heat resistance of the glass will deteriorate. This is not preferable because it deteriorates the Se content.Since the Se content in the core glass is a dopant for adjusting the numerical aperture NA of the fiber, for example, 2.5 to 5 aL% is sufficient to obtain a fiber with NA=0.4. It is.

[実施例コ 次に本発明の方法を実施例に基づいて、さらに詳細に説
明する。
[Example] Next, the method of the present invention will be explained in more detail based on an example.

[実施例−1] G E : 15at%、A s : 25at%、S
 : 57aL%、Se:3aL%の組成からなるコア
ロッドを、Ge:15a(%、A s : 25at%
、s : 80aL%の組成からなるクラッドチューブ
の中に挿入し、これを下部にノズルを有するルツボの中
に垂直に設置し、ルツボ内部をアルゴンガスで置換した
。その後、ルツボの下端近傍のみをクラッドチューブ及
びコアロッドの粘度が106ポイズになる温度まで加熱
した。クラッドチューブとコアロッドとが融着し、かつ
クラッドチューブがルツボ下端のノズルの周囲に均一に
融着した後、クラッドチューブの周囲を1.5 kg/
cJの圧力で加圧すると同時にクラッドチューブとコア
ロッドとの間隙を10’Lorrに減圧した。これらの
作業によってクラッドチューブとコアロッドとは完全に
一体化し、ノズルよりコア径650μm1クラツド径8
00μmのファイバーを連続的に紡糸することができた
。ファイバーは直に樹脂でコーティングした後にドラム
に巻く取った。
[Example-1] G E: 15 at%, As: 25 at%, S
: 57aL%, Se: 3aL%, Ge: 15a(%, As: 25at%)
, s: 80aL%, this was placed vertically in a crucible having a nozzle at the bottom, and the inside of the crucible was replaced with argon gas. Thereafter, only the vicinity of the lower end of the crucible was heated to a temperature at which the viscosity of the clad tube and core rod became 106 poise. After the clad tube and core rod are fused and the clad tube is evenly fused around the nozzle at the lower end of the crucible, the area around the clad tube is 1.5 kg/
At the same time, the gap between the clad tube and the core rod was reduced to 10'Lorr. Through these operations, the clad tube and core rod are completely integrated, and the core diameter is 650 μm and the clad diameter is 8 from the nozzle.
00 μm fiber could be continuously spun. The fibers were directly coated with resin and then wound onto a drum.

得られたファイバーの透過損失を第1図に示す。The transmission loss of the obtained fiber is shown in FIG.

最低損失は2.6μm付近で0.3dB/mであり、又
COレーザーの発振波長である5、4μmでの透過損失
は0.4dB /mであった。ファイバーのNAは0.
5であった。このファイバーを用いてCOレーザーのパ
ワー伝送を試みたところ、長さ50cmのファイバーで
120Wの出射エネルギーを得ることができ、その際フ
ァイバーは全く軟化しなかった。
The lowest loss was 0.3 dB/m near 2.6 μm, and the transmission loss at 5 and 4 μm, which is the oscillation wavelength of the CO laser, was 0.4 dB/m. The NA of the fiber is 0.
It was 5. When we attempted to transmit the power of a CO laser using this fiber, we were able to obtain an output energy of 120 W with a 50 cm long fiber, and the fiber did not soften at all.

実施例−2−3 表1に示す組成からなるコアロッド及びクラッドチュー
ブを作製して、実施例−1と同じ手法でコア径650μ
m1クラツド径800μmのファイバーを連続的に紡糸
した。得られたファイバーの透過損失を測定したところ
、最低損失は実施例−2のファイバーで0.3dI3 
/m(2,6tt m) 、また実施例−3のファイバ
ーで0.2dB /m (2,3μm)が達成された。
Example-2-3 A core rod and clad tube having the compositions shown in Table 1 were produced, and the core diameter was 650 μm using the same method as in Example-1.
Fibers with a m1 cladding diameter of 800 μm were continuously spun. When the transmission loss of the obtained fiber was measured, the lowest loss was 0.3 dI3 for the fiber of Example-2.
/m (2.6 tt m), and 0.2 dB /m (2.3 μm) was achieved with the fiber of Example-3.

COレーザーの発振波長である5゜4μmでの透過損失
はいずれのファイバーでも0゜4dB/mであった。ま
たこれらのファイバー50cmを用いてCOレーザーの
パワー伝送を行ったところ、いずれのファイバーでも1
20W以−ヒのパワーを出射できた。
The transmission loss at 5°4 μm, which is the oscillation wavelength of the CO laser, was 0°4 dB/m for each fiber. In addition, when power transmission of CO laser was performed using these 50 cm fibers, each fiber had 1
It was able to emit more than 20W of power.

比較例−1 As:40aj%、S : 57at%、S e : 
3at%の組成からなるコアロッドを、AS:38aL
%、S:62at%の組成からなるクラッドチューブの
中に挿入し、実施例−1と同じ手法でコア径650μm
、クラツド径800μmのファイバーを連続的に紡糸し
た。得られたファイバーの5.4μmでの透過損失は0
.4dB/mであった。しかし、このファイバー50c
mを用いてCOレーザーのパワー伝送を行ったところ、
出力が110Wに達した時点でファイバーが軟化しはじ
めたため、長時間のパワー伝送が困難であった。
Comparative Example-1 As: 40 aj%, S: 57 at%, S e:
A core rod having a composition of 3 at%, AS:38aL
%, S: inserted into a clad tube consisting of a composition of 62 at%, and a core diameter of 650 μm using the same method as in Example-1.
, fibers with a cladding diameter of 800 μm were continuously spun. The transmission loss of the obtained fiber at 5.4 μm is 0.
.. It was 4 dB/m. However, this fiber 50c
When power transmission of CO laser was performed using m,
The fiber began to soften when the output reached 110 W, making it difficult to transmit power for a long time.

比較例−2 Ge:36at%、As:5aL%、S : 57aL
%、Se : 2at%の組成からなるコアロッドを、
Ge:5eat%、As:5at%、S : 59at
%の組成からなるクラッドチューブの中に挿入し、実施
例−1と同じ手法で紡糸を試みた。しかし、紡糸温度域
でクラッドガラスが失透したため、連続的な紡糸が困難
であった。
Comparative Example-2 Ge: 36at%, As: 5aL%, S: 57aL
%, Se: A core rod consisting of a composition of 2 at%,
Ge: 5at%, As: 5at%, S: 59at
%, and spinning was attempted using the same method as in Example-1. However, continuous spinning was difficult because the clad glass devitrified in the spinning temperature range.

比較例−3 G e : 1Oat%、A s : toat%、S
 : 78at%、Se:2aL%の組成からなるガラ
スロッドを、Ge:10aL%、As:10aj%、S
 : 80aL%の組成からなるクラッドチューブの中
に挿入し、実施例−1と同じ手法で紡糸することによっ
て、コア径650μm1クラツド径700μmのファイ
バーを得た。このファイバーの透過損失を測定したとこ
ろ、最低損失はO,ldB /m (2,3μm)であ
ったが、COレーザーの発振波長である5、4μmでの
透過損失は3.6dB /mと高く、また、ファイバー
の耐熱温度は160℃と低かった。このため、長さ50
cmのこのファイバーを用いてCOシレーザーのパワー
伝送を行ったところ、入射パワー40Wでファイバーが
軟化した。
Comparative example-3 Ge: 1Oat%, As: toat%, S
: A glass rod having a composition of 78 at%, Se: 2aL%, Ge: 10aL%, As: 10aj%, S
: A fiber having a core diameter of 650 μm and a cladding diameter of 700 μm was obtained by inserting the fiber into a clad tube having a composition of 80 aL% and spinning in the same manner as in Example-1. When we measured the transmission loss of this fiber, the lowest loss was O.ldB/m (2.3 μm), but the transmission loss at 5.4 μm, which is the oscillation wavelength of the CO laser, was as high as 3.6 dB/m. Moreover, the heat resistance temperature of the fiber was as low as 160°C. Therefore, the length is 50
When power transmission of a CO laser was performed using this fiber of cm, the fiber softened at an incident power of 40 W.

[発明の効果] 本発明によれば、従来は製造が困難であったコア・クラ
ッド構造を有し、赤外透過性に優れ、かつ耐熱温度が高
いコアクラッド構造を有するGe−As−5ガラスフア
イバーを製造することができる。また、このファイバー
を用いて、COレーザーのパワー伝送を行ったところ、
長さ50cmのファイバーの場合、120W以上のパワ
ー伝送が可能で、ファイバーの軟化は起こらなかった。
[Effects of the Invention] According to the present invention, Ge-As-5 glass has a core-clad structure that has been difficult to manufacture in the past, has excellent infrared transmittance, and has a core-clad structure that has a high heat resistance temperature. Fibers can be manufactured. In addition, when we used this fiber to transmit the power of a CO laser,
In the case of a fiber with a length of 50 cm, power transmission of more than 120 W was possible, and fiber softening did not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1のコア・クラッド型ファイバーの透過
損失スペクトルである。 非酸化物ガラス研究開発株式会社
FIG. 1 is a transmission loss spectrum of the core-clad fiber of Example 1. Non-Oxide Glass Research and Development Co., Ltd.

Claims (1)

【特許請求の範囲】 1 コアガラスおよびクラッドガラスがゲルマニウム(
Ge)、ひ素(As)、イオウ(S)の3元素から構成
されており、かつコアガラスのイオウの一部がセレン(
Se)で置換されていることを特徴とするコアクラッド
構造を有するGe−As−Sガラスファイバー。 2 コア、クラッド共にGeが0.5〜35at%、A
sが5〜44at%、Sが40〜85at%、GeとA
sの合計が20〜60at%であり、かつ、コアガラス
のイオウの0.5〜15at%がSeで置換されている
ことを特徴とする請求項1記載のコアクラッド構造を有
するGe−As−Sガラスファイバー。
[Claims] 1. The core glass and cladding glass are made of germanium (
It is composed of three elements: Ge), arsenic (As), and sulfur (S), and some of the sulfur in the core glass is selenium (
A Ge-As-S glass fiber having a core-clad structure characterized by being substituted with Se). 2 Ge is 0.5 to 35 at% in both core and cladding, A
S is 5 to 44 at%, S is 40 to 85 at%, Ge and A
Ge-As- having a core-clad structure according to claim 1, wherein the total of s is 20 to 60 at%, and 0.5 to 15 at% of the sulfur in the core glass is replaced with Se. S glass fiber.
JP1139169A 1989-06-02 1989-06-02 Ge-As-S glass fiber having core-clad structure Expired - Lifetime JPH0791087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139169A JPH0791087B2 (en) 1989-06-02 1989-06-02 Ge-As-S glass fiber having core-clad structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139169A JPH0791087B2 (en) 1989-06-02 1989-06-02 Ge-As-S glass fiber having core-clad structure

Publications (2)

Publication Number Publication Date
JPH038742A true JPH038742A (en) 1991-01-16
JPH0791087B2 JPH0791087B2 (en) 1995-10-04

Family

ID=15239185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139169A Expired - Lifetime JPH0791087B2 (en) 1989-06-02 1989-06-02 Ge-As-S glass fiber having core-clad structure

Country Status (1)

Country Link
JP (1) JPH0791087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676378A1 (en) * 1994-04-11 1995-10-11 Corning Incorporated Ga- and/or In-containing AsGe sulfide glasses
EP0849234A3 (en) * 1995-03-06 1998-09-30 Hoya Corporation Chalcogenide glass optical fibre
EP1567893A2 (en) * 2002-11-22 2005-08-31 OmniGuide, Inc. Dielectric waveguide and method of making the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676378A1 (en) * 1994-04-11 1995-10-11 Corning Incorporated Ga- and/or In-containing AsGe sulfide glasses
JPH07291655A (en) * 1994-04-11 1995-11-07 Corning Inc Transparent glass
AU689853B2 (en) * 1994-04-11 1998-04-09 Corning Incorporated Ga- and/or In-containing AsGe sulfide glasses
CN1042725C (en) * 1994-04-11 1999-03-31 康宁股份有限公司 Ga-and/or in-containing AsGe sulfide glasses
EP0849234A3 (en) * 1995-03-06 1998-09-30 Hoya Corporation Chalcogenide glass optical fibre
US5958103A (en) * 1995-03-06 1999-09-28 Hoya Corporation Process for producing preform for glass fiber and process for producing glass fiber
US6074968A (en) * 1995-03-06 2000-06-13 Hoya Corporation Chalcogenide glass fiber
EP1567893A2 (en) * 2002-11-22 2005-08-31 OmniGuide, Inc. Dielectric waveguide and method of making the same
EP1567893A4 (en) * 2002-11-22 2007-09-19 Omniguide Inc Dielectric waveguide and method of making the same

Also Published As

Publication number Publication date
JPH0791087B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US4490163A (en) Method of manufacturing a fiber-optical coupling element
EP0294037B1 (en) Optical fibre attenuators
US20050259944A1 (en) High index-contrast fiber waveguides and applications
JP2004506937A (en) Optical fiber with hole made of non-quartz glass
KR970028622A (en) Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof
US3981707A (en) Method of making fluorine out-diffused optical device
US4380588A (en) Glass for infrared ray-transmitting optical fibers and optical fibers formed from said glass
US4372767A (en) Method of manufacturing optical fibers
KR20010082180A (en) Methods and apparatus for producing optical fiber
JPH0447285B2 (en)
US5305414A (en) Low loss glass and optical fibers therefrom
JP3215810B2 (en) Single mode active optical fiber and method of manufacturing the same
ES496375A0 (en) AN IMPROVED METHOD FOR THE MANUFACTURE OF A FIBER OPTIC PREFORM
US4163654A (en) Method of manufacturing graded index optical fibers
US4908053A (en) Process for producing chalcogenide glass fiber
US4764194A (en) Method of manufacturing hollow core optical fibers
US4289516A (en) Low loss optical fibers
US5642454A (en) Method and apparatus for making optical fiber preforms and optical fibers fabricated therefrom
JPH038742A (en) Ge-as-s glass fiber having core-clad structure
JPS627130B2 (en)
US4099834A (en) Low loss glass suitable for optical fiber
WO2003093884A2 (en) A method and apparatus relating to optical fibres
JP2556350B2 (en) Method for manufacturing NA conversion optical fiber
JPS63217314A (en) Production of optical branching filter
JPH02275732A (en) As-s glass fiber having core clad structure