JPS62162022A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS62162022A
JPS62162022A JP187286A JP187286A JPS62162022A JP S62162022 A JPS62162022 A JP S62162022A JP 187286 A JP187286 A JP 187286A JP 187286 A JP187286 A JP 187286A JP S62162022 A JPS62162022 A JP S62162022A
Authority
JP
Japan
Prior art keywords
pitch
heavy
spinning
liquid
heavy liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP187286A
Other languages
Japanese (ja)
Inventor
Kenzou Ban
伴 釼三
Hiroshi Hasui
蓮井 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP187286A priority Critical patent/JPS62162022A/en
Publication of JPS62162022A publication Critical patent/JPS62162022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a carbon fiber having high strength and elastic modulus, by heat-treating a carbonaceous raw material, treating the obtained mesophase pitch with a centrifugal separator furnished with a light medium-heavy medium separation weir, melt-spinning collected heavier component and subjecting the spun fiber to infusibilization, carbonization, etc. CONSTITUTION:A carbonaceous raw material (e.g. coal-based pitch) is heat- treated and the treated material is supplied through a feed pipe 6 to a centrifugal separator preferably in a state of <=430 deg.C and a viscosity of 0.1-10ps. The material is separated in layers at the inner wall of a rotary cylinder 1 into a heavy medium layer having high anisotropy and a light medium layer in which development of anisotropy is not sufficient. The heavy medium is passed through a gap between a heavy medium over flow weir 3 and a light medium-heavy medium separation weir 5 and taken out through a heavy medium discharging port 8. The heavy component composed of a mesophase pitch having a softening point of preferably 220-320 deg.C (e.g. having a softening point of 305 deg.C and anisotropic ratio of 93% at a spinning temperature) is spun under molten state and the fiber is successively subjected to infusibilization, carbonization and, if necessary, graphitization to obtain the objective fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維の製造方法に関するものであ)、よシ
詳しくは高強度及び高弾性率を有する高特性炭素繊維を
与える紡糸ピッチを用いる炭素繊維の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing carbon fibers, and more particularly, using a spinning pitch that provides high-performance carbon fibers with high strength and high modulus. The present invention relates to a method for manufacturing carbon fiber.

〔従来の技術〕[Conventional technology]

炭素繊維は、比強度、比弾性率が高い材料で、高性能複
合材料のフィラー繊維として最も注目されてお夛、中で
もピッチ系炭素繊維は原料が潤沢であシ、炭化工程の少
留が大きい、繊維の弾性率が高い、等ポリアクリロニト
リル系炭素繊維に比べて様々な利点を持っている。
Carbon fiber is a material with high specific strength and specific modulus, and is attracting the most attention as a filler fiber for high-performance composite materials.In particular, pitch-based carbon fiber has abundant raw materials and has a large amount of waste during the carbonization process. It has various advantages compared to polyacrylonitrile carbon fiber, such as high fiber elastic modulus.

周知の様に、重質油、タール、ピッチ等の炭素質原料を
、160−.100℃に加熱すると、それら物質中に粒
径が数ミクロンから数百ミクロンの、偏光下に光学的異
方性を示す小球体が生方性を示す状態となる。この異方
性組織は炭素質原料の熱重縮合反応によシ生成した平面
状高分子芳香族炭化水素が層状に積み重なシ、配向した
もので、黒鉛結晶構造の前駆体とみなされてbる。
As is well known, carbonaceous raw materials such as heavy oil, tar, pitch, etc. are processed at 160-. When heated to 100° C., small spheres with particle sizes ranging from several microns to several hundred microns and exhibiting optical anisotropy under polarized light become biotropic. This anisotropic structure is composed of layered and oriented planar polymeric aromatic hydrocarbons produced by thermal polycondensation reactions of carbonaceous raw materials, and is considered to be a precursor of graphite crystal structure. bl.

この様な異方性組織を含む熱処理物は、一般的にはメソ
フェーズピッチと呼称されている。
A heat-treated product containing such an anisotropic structure is generally called mesophase pitch.

かかるメソフェーズピッチを紡糸ピッチとして使用する
方法としては、例えば、石油系ピッチを静置条件下で約
、xro−ago℃で加熱処理し、ダO〜90重量%の
光学的異方性相を含有するピッチを得て、これを紡糸ピ
ッチとする方法が提案されている(特開昭4t9−/?
/コク号公報)。
As a method for using such mesophase pitch as a spinning pitch, for example, petroleum-based pitch is heat-treated at about A method has been proposed in which the pitch is obtained and used as the spinning pitch (JP-A-4T9-/?
/ Koku issue).

しかし、かかる方法によ〕等方質の炭素質原料をメソ化
するには長時間を要するので、予め炭素質原料を十分量
の溶媒で処理してその不溶分を得、それをコjO−g0
0℃の温度で7θ分以下の短時間加熱処理して、高度に
配向され、光学的異方性部分が75重量比以上で、キノ
リンネ溶分コ!重量S以下の、所謂、ネオメソフェーズ
ピッチを形成し、これを紡糸ピッチとする方法が提案さ
れている(特開昭!ダーit、o4Iコク号公報)。
However, since it takes a long time to meso-form an isotropic carbonaceous raw material by this method, the carbonaceous raw material is treated with a sufficient amount of solvent in advance to obtain its insoluble matter, and then the insoluble matter is g0
Heat treatment for a short time of 7θ minutes or less at a temperature of 0°C results in a highly oriented, optically anisotropic portion with a weight ratio of 75 or more, and a quinoline soluble fraction! A method has been proposed in which a so-called neo-mesophase pitch having a weight of S or less is formed and this is used as a spinning pitch (Japanese Patent Application Laid-open No. Sho! Darit, o4I Koku).

その他、高特性炭素繊維製造用の配向性のよい紡糸ピッ
チとしては、例えば、コールタールピッチをテトラヒド
ロキノリン存在下忙水添処理し、次いで、約ago℃で
短時間加熱処理して得られる光学的に等方性で100℃
以上に加熱することによって異方性に変わる性質を有す
るピッチ、所謂、ブリメソフェーズピッチ(4I開昭z
g−itダコ1号公報)、或いは、メソフエ一ズピッチ
をBirch還元法等によ〕水素化処理して得られる光
学的に等方性で外力を加えるとその方向への配向性を示
すピッチ、所謂、ドーマントメソフェーズ(特開昭、t
7−100/l&号公報)等が提案されている。
In addition, as a spinning pitch with good orientation for producing high-performance carbon fibers, for example, an optical fiber obtained by subjecting coal tar pitch to intensive hydrogenation treatment in the presence of tetrahydroquinoline, and then heating it for a short time at about ago°C. isotropically at 100℃
Pitch that has the property of becoming anisotropic when heated to a higher temperature, so-called brimesophase pitch (4I Kaisho Z)
g-it Dako No. 1 Publication), or a pitch that is optically isotropic and exhibits orientation in that direction when an external force is applied, which is obtained by hydrogenating mesophasic pitch by Birch reduction method, etc. The so-called dormant mesophase (JP-A-Sho, t
No. 7-100/l&) etc. have been proposed.

この様な紡糸ピッチをノズルを通して溶融紡糸すること
によりピツチ繊維を得ることができる。次いで、このピ
ッチ繊維を不融化、炭化、さらに場合によシ黒鉛化する
事によってピッチ系の高特性炭素繊維を得る事ができる
Pitch fibers can be obtained by melt spinning such spinning pitch through a nozzle. Next, by making the pitch fiber infusible, carbonizing it, and optionally graphitizing it, a pitch-based high-performance carbon fiber can be obtained.

(発明が解決しようとする問題点) 仁のピッチ系高特性炭素繊維は、炭化工程における歩留
りが大きい、繊維の弾性率が高いなど、ポリアクリロニ
トリル系炭素繊維に比べて種々の利点を有しているもの
の、従来周知の方法で得タメソフエーズピッチから製造
したピッチ系炭素繊維は、一般にポリアクリロニトリル
系炭素繊維に比べて強度の点で若干劣る欠点を有してい
る。
(Problems to be Solved by the Invention) Jin's pitch-based high-performance carbon fibers have various advantages over polyacrylonitrile-based carbon fibers, such as a high yield in the carbonization process and a high fiber elastic modulus. However, pitch-based carbon fibers produced from Tamesophase pitch obtained by conventionally known methods generally have the disadvantage that they are slightly inferior in strength to polyacrylonitrile-based carbon fibers.

そこでピッチ系炭素繊維の製造においては、−番 − よ)高性能の炭素繊維を製造しようとする試みがなされ
てお夛、これまでに様々な提案がなされている。しかし
いまだPAN系炭素炭素繊維価する高度な性能を持つ炭
素繊維を安定して得るに至っていない。
Therefore, in the production of pitch-based carbon fibers, attempts have been made to produce high-performance carbon fibers, and various proposals have been made so far. However, it has not yet been possible to stably obtain carbon fibers with high performance comparable to that of PAN-based carbon fibers.

一般にピッチ系炭素繊維の高性能化においては繊維内に
高度に配向した分子の存在が不可欠であるが、従来技術
によって加熱処理によ)分子の配向度を高くしようとす
ると同時に軟化点が上昇し、紡糸が非常に困難であった
Generally, in order to improve the performance of pitch-based carbon fibers, the presence of highly oriented molecules within the fiber is essential. , it was very difficult to spin.

例えば室温で測定した光学的異方性の割合が100%に
達すると軟化点はszo”crlcも達し。
For example, when the optical anisotropy ratio measured at room temperature reaches 100%, the softening point also reaches szo"crlc.

ピッチの溶融紡糸は、通常ピッチの軟化点よ)lθ〜&
0℃高い温度て行われるので軟化点sago℃のピッチ
を紡糸するKは紡糸温度が5to−eio℃という高温
にな〕、熱分解ガスの発生およびコーキングの発生が顕
著で紡糸操作を安定して行うことが出来なくなる。
Melt spinning of pitch is usually performed at the softening point of pitch) lθ~&
Since spinning is carried out at a temperature 0°C higher, the spinning temperature is as high as 50°C, which is a pitch with a softening point of sago°C], and the generation of pyrolysis gas and coking are significant, making it difficult to stabilize the spinning operation. become unable to do so.

そζで従来では、紡糸ピッチの異方性を/ρOX’!で
発達させずにメソ相が連続相を形成する段階までに熱処
理をとどめることによって紡糸性を保持した紡糸ピッチ
を得ていた。しかしこのような紡糸ピッチでは高性能の
炭素繊維は得られず、また、配向度の低いピッチ(メソ
相含有率−〇〜’yo%)を溶融状態で遠心分離機に供
給し、1aooo−グo、oooaの加速度をかけて固
体スラリ一層と光学的異方性相とを同時に分離するか、
あるいは光学的等方性相、光学的異方性相及び固体スラ
リーの3 Rtjiに分離する遠心分離法が提案されイ
bる(特開昭/、0−jり6/9号公報)。しかしなが
ら、かかる遠心分離機による光学的異方性相の分離は光
学的異方性相の上層(光学的等方性相に近い部分)から
行うものであって、かかる方法では1元学的等方性相と
異方性相との分離が十分でなく高性能の炭素繊維が得ら
れなかった。
Therefore, conventionally, the anisotropy of the spinning pitch is /ρOX'! By stopping the heat treatment until the meso phase forms a continuous phase without allowing the meso phase to develop, a spinning pitch that maintains spinnability was obtained. However, high-performance carbon fibers cannot be obtained with such a spinning pitch, and pitch with a low degree of orientation (mesophase content -〇~'yo%) is fed to a centrifuge in a molten state to produce 1aooo-group. Simultaneously separate one layer of the solid slurry and the optically anisotropic phase by applying an acceleration of o, oooa, or
Alternatively, a centrifugal separation method has been proposed which separates the slurry into 3 layers: an optically isotropic phase, an optically anisotropic phase, and a solid slurry (Japanese Patent Application Laid-open No. 6/9). However, separation of the optically anisotropic phase using such a centrifugal separator is performed from the upper layer of the optically anisotropic phase (a portion close to the optically isotropic phase), and in such a method, one-dimensional Separation between the orthotropic phase and the anisotropic phase was insufficient and high performance carbon fibers could not be obtained.

(問題点を解決するための手段) そこで、本発明者らは、上記問題点を解決すべく高性能
炭素繊維を与えるメソフェーズピッチの製造方法につい
て鋭意検討した結果、紡糸温度下で高す異方性を示し、
且つ軟化点の低いメソフェーズピッチは異方性の充分発
達していないピッチに比べ重質であることに注目して液
−液分離層を設けた遠心分離装置を用すて該層によシ、
重液層をよシ重質分から抜き出すようにそれぞれを遠心
分離し、別個に取得することによ)、加熱処理ピッチ(
重液部分)から等方性相ピッチ(@液部分)を実質的に
除去できることを見出し、この知見に基づき本発明を完
成した。
(Means for Solving the Problems) Therefore, in order to solve the above problems, the present inventors have conducted extensive studies on a method for producing mesophase pitch that provides high-performance carbon fibers, and have found that Show your gender,
In addition, noting that mesophase pitch with a low softening point is heavier than pitch whose anisotropy is not sufficiently developed, a centrifugal separator equipped with a liquid-liquid separation layer was used to remove the layer.
By centrifuging each to separate the heavy liquid layer from the heavy liquid layer and obtaining them separately), heat-treated pitch (
It was discovered that the isotropic phase pitch (@liquid part) could be substantially removed from the heavy liquid part, and the present invention was completed based on this knowledge.

すなわち、本発明の目的は紡糸温度下で等方性相を形成
する成分を除去して高強度、高弾性率を有するピッチ系
炭素繊維を与える炭素繊維用紡糸ピッチを得、該ピッチ
を用いて炭素繊維を製造する方法を提供するものである
That is, the purpose of the present invention is to obtain a spinning pitch for carbon fiber that provides a pitch-based carbon fiber having high strength and high modulus of elasticity by removing components that form an isotropic phase at the spinning temperature, A method of manufacturing carbon fiber is provided.

そして、その目的は炭素質原料を加熱処理して得られる
メンフェーズピッチを溶融紡糸し、得られるピッチ繊維
を不融化、炭化、更に必要に応じて黒鉛化処理すること
によシ炭素繊維を製造する方法において、前記メンフェ
ーズピッ−マ − チを軽液−重液分離堰を設けた遠心分離装置に供給し、
重液層と軽液層とに分離して該分離堰によシ重液層の軽
液層から最も離れた部位から重液を取得するように重液
と軽液のそれぞれを別個に取得した後、該重液層を溶融
紡糸することを特徴とする炭素繊維の製造方法によシ容
易に達成される。
The purpose is to produce carbon fibers by melt-spinning menphase pitch obtained by heat-treating carbonaceous raw materials, making the pitch fibers infusible, carbonizing them, and graphitizing them if necessary. In the method of
The heavy liquid and light liquid were separated into a heavy liquid layer and a light liquid layer, and the heavy liquid and light liquid were obtained separately through the separation weir so that the heavy liquid was obtained from the part of the heavy liquid layer that was farthest from the light liquid layer. This can be easily achieved by a carbon fiber manufacturing method characterized in that the heavy liquid layer is then melt-spun.

以下、本発明の詳細な説明するに、本発明の紡糸ピッチ
としては配向しやすh分子種が形成されており、光学的
に異方性のピッチを与えるものであれば特に制限はなく
、前述のような従来の謹々のものを使用することができ
る。
In the following, the present invention will be described in detail. The spinning pitch of the present invention is not particularly limited as long as molecular species that are easily oriented are formed and an optically anisotropic pitch is provided. You can use a conventional one such as .

これらの紡糸ピッチを得るための炭素質原料としては1
例えば、石炭系のコールタール、コールタールピッチ、
石炭液化物、石油系の重質油、タール、ピッチ等が挙げ
られる。これらの炭素質原料には通常フリーカーボン、
未溶解石炭、灰分などの不純物が含まれているが、これ
らの不純物け濾過、遠心分離、あるいは溶剤を使用する
静置沈降分離などの周知の方法で予め除去しておく事が
望ましい。
The carbonaceous raw material for obtaining these spinning pitches is 1
For example, coal-based coal tar, coal tar pitch,
Examples include liquefied coal, heavy petroleum oil, tar, and pitch. These carbonaceous raw materials usually contain free carbon,
Although it contains impurities such as undissolved coal and ash, it is desirable to remove these impurities in advance by well-known methods such as filtration, centrifugation, or static sedimentation using a solvent.

また、前記炭素質原料を1例えば、加熱処理した後、特
定溶剤で可溶分を抽出するといった方法、あるいは水素
供与性溶剤、水素ガスの存在下に水添処理するといった
方法で予備処理を行なってもよい。
In addition, the carbonaceous raw material may be pre-treated by, for example, heat-treated and then extracted with a specific solvent, or hydrogenated in the presence of a hydrogen-donating solvent or hydrogen gas. It's okay.

本発明においてはかかる紡糸ピッチを溶融状儒で軽液−
重液分離堰を有する遠心分離装置の回転円筒体に導入す
る。
In the present invention, such a spinning pitch is used as a light liquid in a molten state.
It is introduced into a rotating cylinder of a centrifugal separator having a heavy liquid separation weir.

遠心分離操作では粘度が低い程、小さい遠心力で且つ旬
時間に分離が完了するが、あま夛高温にして粘度を低下
させようとすると紡糸ピッチの熱変質をまねくので、り
30”C以下で粘度100ボイズ以下、好ましくはo、
i〜10ポイズとなる温度で操作するのがよい。100
ボイズ以上でも遠心分離操作は可能であるが、分離所要
時間あるいは所要遠心力が粘度に比例して犬となるため
装置コストが大となシ得策でない。
In a centrifugal separation operation, the lower the viscosity, the smaller the centrifugal force and the faster the separation will be completed. However, if you try to lower the viscosity at too high a temperature, it will cause thermal deterioration of the spinning pitch. Viscosity 100 voids or less, preferably o,
It is preferable to operate at a temperature of i to 10 poise. 100
Although it is possible to perform centrifugal separation even when the viscosity is higher than that, the time required for separation or the required centrifugal force increases in proportion to the viscosity, so it is not a good idea because the cost of the equipment is large.

例えば熱処理反応器を出たピッチを熱交換器等を経ず熱
処理温度と同一温度で短時間に遠心分離操作するのが好
ましい。
For example, it is preferable that the pitch leaving the heat treatment reactor be centrifuged for a short time at the same temperature as the heat treatment temperature without passing through a heat exchanger or the like.

また、遠心分離装置内は不活性雰囲気に保持するのが好
ましく、不活性雰囲気としては紡糸ピッチと反応しない
気体であれば特に限定されるものではないが窒素、アル
ゴン等の希ガス、特に入手の容易さの点から窒素を用い
るのが好しい。
In addition, it is preferable to maintain the inside of the centrifugal separator in an inert atmosphere, and the inert atmosphere is not particularly limited as long as it does not react with the spinning pitch, but rare gases such as nitrogen and argon can be used. Nitrogen is preferably used for ease of use.

尚、加熱処理工程において既に導入された紡糸ピッチ中
に含まれる不活性気体の量によっては不活性気体を更に
強制的に通気する必要はない。
Note that depending on the amount of inert gas contained in the spinning pitch already introduced in the heat treatment step, there is no need to further forcefully ventilate the inert gas.

次に本発明を第1図及び第一図に基づいて説明する。第
1図及び第一図はガス成分と等方相ピッチ等の軽液を重
液から分離除去するための遠心分離装置の模式的構成図
である。図中lは回転円筒、コは軽液オーバーフロー堰
、3は重液オーバーフロー堰、ダは気液分離堰、!は重
液分離堰、ルはフィード管、/ダは液オーバーフロー堰
である。
Next, the present invention will be explained based on FIGS. FIGS. 1 and 1 are schematic configuration diagrams of a centrifugal separator for separating and removing light liquids such as gas components and isotropic phase pitch from heavy liquids. In the figure, l is a rotating cylinder, c is a light liquid overflow weir, 3 is a heavy liquid overflow weir, and da is a gas-liquid separation weir. is a heavy liquid separation weir, ru is a feed pipe, and /da is a liquid overflow weir.

第1図に於いて、回転円筒/は回転軸/、7に回転円筒
の一端にはその周縁に接して軽液オーバーフロー堰ユが
設けられ、他端にはその周縁に接して重液オーバーフロ
ー堰3が設けられる。
In Fig. 1, the rotating cylinder / is the rotating shaft /, 7, a light liquid overflow weir is provided at one end of the rotating cylinder in contact with its periphery, and a heavy liquid overflow weir is provided in contact with its periphery at the other end. 3 is provided.

気液分離堰ダはガス成分を液よシ分離させるためのもの
で、横断面が口状をした円筒構造のものであシ、し状部
が軽液オーバーフロー堰コの小口径端を扱うように回転
同筒と同心に設置される。口状部の一端は軽液オーバー
フロー堰−〇小口径端よシ深く挿入するのがよいが、あ
まル深く挿入すると軽液と重液の界面を乱すこに固定さ
れるが、回転同筒/に固定することもできる。
The gas-liquid separation weir is for separating gas components from liquid, and has a cylindrical structure with a mouth-shaped cross section, and the wedge-shaped part is designed to handle the small diameter end of the light liquid overflow weir. It is installed concentrically with the rotating cylinder. It is better to insert one end of the mouth part deeper than the small diameter end of the light liquid overflow weir. However, if it is inserted too deeply, it will disturb the interface between the light liquid and heavy liquid, but it will be fixed in place. It can also be fixed to

軽液−重液分離堰jは、軽液の混入を防いで重液のみを
軽液層から最も離れた部位から取シ出すためのもので、
截頭円錐筒構造のものであシ、重液オーバーフロー堰3
の内1111に所定間隙を設けて設置される。軽液−重
液分離堰Sの先11一 端は少なくとも軽液−重液界面/コよ〕深く挿入するこ
とが必要であシ、軽液の混入をよシ少なくし、かつ重液
層のよシ重質分から取)出す上で、重液の流出を妨げな
い程度に深く挿入するのがよい。軽液−重液分離堰Sは
、必ずしも回転円筒/に固定する必要はないが、前記し
たように回転円筒/とのクリアランスを狭くする盛装が
あ夛、この為回転時の振動による回転円筒/との接触を
防止するため、回転円筒/に固定する方が安全である。
The light liquid-heavy liquid separation weir J is designed to prevent the mixing of light liquid and to extract only the heavy liquid from the part farthest from the light liquid layer.
Heavy liquid overflow weir 3 with truncated conical cylinder structure
It is installed with a predetermined gap 1111 between the two. One end of the tip 11 of the light liquid-heavy liquid separation weir S needs to be inserted deeply, at least as far as the light liquid-heavy liquid interface. It is best to insert it deep enough not to obstruct the outflow of the heavy liquid when removing it from the heavy liquid. The light liquid-heavy liquid separation weir S does not necessarily have to be fixed to the rotating cylinder, but as mentioned above, there are many embellishments that narrow the clearance with the rotating cylinder. It is safer to fix it to a rotating cylinder to prevent contact with the rotating cylinder.

フィード管6は、分離効率を上げる上から。Feed pipe 6 is provided from above to increase separation efficiency.

軽液オーバーフロー堰コ及び重液オーバーフロー堰3か
ら出来るだけ離れた位置つまシ回転円筒/のはy中央の
位置に設置するのが好ましい。
It is preferable to install the rotary cylinder at a position as far away as possible from the light liquid overflow weir 3 and the heavy liquid overflow weir 3 at the center position.

かかる構造からなる遠心分離装置において、フィード管
6よシ回転内筒/内に供給されたメソフェーズピッチは
、遠心力によシ回転内筒/の内壁において、高い異方性
を有する重液層と異方性が充分には発達していない軽液
層とに層状に分離させる。
In the centrifugal separator having such a structure, the mesophase pitch supplied into the rotating inner cylinder through the feed pipe 6 forms a heavy liquid layer with high anisotropy on the inner wall of the rotating inner cylinder due to centrifugal force. The liquid layer is separated into a light liquid layer whose anisotropy is not sufficiently developed.

12一 層状に分離された軽液は軽液オーバーフロー堰コよ多回
転内筒/から導出され、外筒10の内壁を流下して外筒
10に設けた軽液流出ロクよシ系外に取シ出される。
12 The light liquid separated in a single layer is led out from the multi-rotation inner cylinder/by the light liquid overflow weir, flows down the inner wall of the outer cylinder 10, and is taken out of the light liquid outflow system through the light liquid outflow mechanism provided in the outer cylinder 10. It will be served.

また、重液は重液オーバーフロー堰3と軽液−重液分離
堰5との間隙を流通し、画壇の会合部に設けられたスリ
ットを経て、外筒10の内壁を流下して重液流出口tよ
シ系外へ導出される。更にメソフェーズピッチに含有さ
れているガ・ス成分は重力差によシ軽液層表面から気相
へ除去されたガス成分はガス流出口9よシ糸外へ除去さ
れることとなる。
In addition, the heavy liquid flows through the gap between the heavy liquid overflow weir 3 and the light liquid-heavy liquid separation weir 5, passes through a slit provided at the meeting part of the painting platform, flows down the inner wall of the outer cylinder 10, and the heavy liquid flows. It is led out of the system through exit t. Further, the gas components contained in the mesophase pitch are removed from the surface of the light liquid layer into the gas phase due to the difference in gravity, and the gas components are removed to the outside of the weft thread at the gas outlet 9.

ロー堰コおよび重液オーバーフロー堰3の高さと液フィ
ード速度によ)液の平均滞留時間が決まるが、軽液と重
液の分離比率の調節には両オーバーフロー堰の高を同じ
とし、軽液、重液ともほぼ同量流出させ、目的の分離度
に応じた量の軽液をフィード液にリサイクルする方法、
あるbは、第2図に示すように、軽液オーバーフは複数
個設け、その開口面積の比率を適当に選ぶことによシ調
節する方法などをとることが好ましい。
The average residence time of the liquid is determined by the height of the low weir and the heavy liquid overflow weir 3 and the liquid feed rate, but in order to adjust the separation ratio of light liquid and heavy liquid, the height of both overflow weirs should be the same, and the light liquid , a method of draining almost the same amount of heavy liquid and recycling the amount of light liquid into feed liquid according to the desired degree of separation;
For example b, as shown in FIG. 2, it is preferable to provide a plurality of light liquid overflows and adjust them by appropriately selecting the ratio of their opening areas.

ガス成分および軽液−重液の分離度合は液の粘度、遠心
力の強さおよび滞留時間の3つの条10ボイズで操作す
るのがよい。
The degree of separation of gas components and light liquid-heavy liquid is preferably controlled based on three conditions: viscosity of the liquid, strength of centrifugal force, and residence time.

必要とする遠心力および滞留時間は液の粘度に応じて異
なるが、例えば、液粘度がSボイスの場合で遠心力が3
00〜g 000 G、滞留時間/〜60分程度であれ
ばよい。
The required centrifugal force and residence time differ depending on the viscosity of the liquid, but for example, when the liquid viscosity is S voice, the centrifugal force is 3.
00 to g 000 G and residence time/~60 minutes.

ストが高くなるので、装置のコストと紡糸ピッチの性状
とを考慮して操作粘度(操作温度)、遠心力および滞留
時間を選ぶのがよい。
Since the stress becomes high, it is better to select the operating viscosity (operating temperature), centrifugal force and residence time in consideration of the cost of the equipment and the properties of the spinning pitch.

回転同筒/の回転軸は水平方向の他に鉛直方向でも何ら
問題はないが、回転軸が鉛直の場合は回転円筒/よ)排
出された軽液および重液がるなどの処置が必要でめる。
There is no problem if the axis of rotation of the rotating cylinder is vertical as well as horizontal, but if the axis of rotation is vertical, it may be necessary to take measures to remove the light liquid and heavy liquid discharged from the rotating cylinder. Melt.

また、第1図における軽液−重液分離堰Sは、先端が円
筒/の近く迄挿入されて騒る限シ必ずしも重液オーバー
フロー堰3と所定間隙を設ける必要はなく、円筒/に対
し直角となる位置に設置することもできる。さらに、気
−液分離層qは、分離された軽液中に気泡が残っていて
もよい場合は省略すればよい。
In addition, the light liquid-heavy liquid separation weir S in FIG. It can also be installed in a location where Further, the gas-liquid separation layer q may be omitted if bubbles may remain in the separated light liquid.

このようにガス成分と等方性相ピッチ等の異方性の充分
発達していない軽液分を除去した重液である紡糸ピッチ
は紡糸装置に供給され、溶融紡糸されてピッチ繊維を形
成し、公知の方法によシネ融化処理及び炭化処理し、更
に必要に応じて黒鉛化処理することによ)高特性のピッ
チ系炭素繊維が製造される。
The spinning pitch, which is a heavy liquid from which gas components and light liquid components with insufficiently developed anisotropy such as isotropic phase pitch have been removed, is supplied to a spinning device and melt-spun to form pitch fibers. Pitch-based carbon fibers with high properties are produced by subjecting the fibers to cine melting treatment and carbonization treatment using known methods, and further graphitization treatment as required).

(効 果) 本発明によれば熱処理後のピッチに残存するガス成分と
等方性相ピッチ等の軽液を充分かつ効率的に除去でき、
得られた高い異方性を有する重液である紡糸ピッチから
高強度及び高弾性率を有する高特性の炭素繊維を得るこ
とができる。
(Effects) According to the present invention, gas components remaining in the pitch after heat treatment and light liquids such as isotropic phase pitch can be sufficiently and efficiently removed.
High-performance carbon fibers with high strength and high modulus of elasticity can be obtained from the resulting spinning pitch, which is a heavy liquid with high anisotropy.

また、驚くべきことに、本発明の方法によれば、静置分
離法又は従来の遠心分離法で得たメソ相ピッチの場合の
ような紡糸時の軽沸が殆んどなく、安定紡糸が容易であ
シ、また強度及び弾性率が熱処理のみで実質的にメソ相
のみとし、且つ遠心脱気したものに比して同等以上であ
った。
Surprisingly, according to the method of the present invention, there is almost no light boiling during spinning, unlike in the case of mesophase pitch obtained by static separation method or conventional centrifugation method, and stable spinning is achieved. It was easy to use, and the strength and modulus of elasticity were substantially the same or higher than those obtained by heat treatment, which resulted in substantially only the meso phase, and by centrifugal degassing.

尚、本発明におけるピッチの軟化点は、メトジー法にて
測定した値である。1+紡糸温度下での異方性割合は、
ライン社製のホットステージを使用してざ馴φ×二薗の
アルミカップに試料的4tO−Arθ■を仕込み、窒素
を/l/分流通下q℃/分の速度で昇温しながら偏光顕
微鏡下(100倍率)で観察し、試料の一定表面積に占
る光学的異方性の面積の割合を測定することによって求
めたものである。
In addition, the softening point of pitch in the present invention is a value measured by the Metgy method. The anisotropy ratio under 1+ spinning temperature is
Using a Rhine hot stage, a sample of 4tO-Arθ■ was placed in an aluminum cup with a diameter of φ x 2, and the temperature was raised at a rate of q°C/min while flowing nitrogen at a rate of q°C/min under a polarizing microscope. It was determined by observing at a lower magnification (100x magnification) and measuring the ratio of the area of optical anisotropy to a constant surface area of the sample.

以下、本発明を実施例によシ具体的に説明するが、本発
明はその要旨をこえない限夛、下記の実施例に限定され
るものではない。
EXAMPLES The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the following examples as long as it does not go beyond the gist of the invention.

実施例−/ 石炭系ピッチを窒素ガス通気下、1130℃で7時間熱
処理して軟化点、2go℃常温での異方性割合が30%
のピッチを得た。
Example - Coal-based pitch was heat-treated at 1130°C for 7 hours under nitrogen gas ventilation to achieve a softening point of 2go°C and anisotropy ratio of 30% at room temperature.
I got the pitch.

このピッチを窒素雰囲気下3’70℃(粘度O,ココイ
ズ)で、第1〜二図に示す構造の遠心分離装置〔軽液お
よび重液オーバーフロー堰コ及び3の内径λoom、気
−液分離堰ダの外径ココ0IIlll+、軽液−重液分
離堰jの外径コ4tダ■、回転円筒/の内径2!rOw
m、回転数/ 3 ! Orpm(遠心力zooG))
のフィード管乙に連続的に供給して平均滞留時間3分で
処理した。
This pitch was collected under a nitrogen atmosphere at 3'70°C (viscosity O, cocoise) using a centrifugal separator with the structure shown in Figs. The outer diameter of the light liquid-heavy liquid separation weir j is 4t, the inner diameter of the rotating cylinder is 2! rOw
m, number of revolutions/3! Orpm (centrifugal force zooG))
It was continuously supplied to the feed tube B and processed with an average residence time of 3 minutes.

重液流出口ざよフ流出した重液は軟化点3Q!℃紡糸温
度下での異方性割合が93比(常温では100%)であ
った。
The softening point of the heavy liquid that flows out from the heavy liquid outlet is 3Q! The anisotropy ratio at the spinning temperature of °C was 93 (100% at room temperature).

仁のピッチを3ダθ℃溶融紡糸したところ巻取シ速度/
 000 rn/―でピッチ繊維径がgμ以上では無破
断でコ時間以上安定に紡糸できた。
When the pitch of the grain was melt-spun at 3 degrees θ℃, the winding speed/
000 rn/- and the pitch fiber diameter was gμ or more, stable spinning could be performed for more than 1 hour without breakage.

ピッチ繊維(糸径/コμ)空気雰囲気下、310℃で不
融化した後、窒素雰囲気下、7400℃で炭化して得た
糸径9.5μの炭素繊維は引張シ強度J / 0 勿/
 KJ 、引張シ弾性率コクT/、Jであった。
Pitch fiber (thread diameter/μ) The carbon fiber with a thread diameter of 9.5μ obtained by infusible at 310℃ in an air atmosphere and then carbonized at 7400℃ under a nitrogen atmosphere has a tensile strength of J/0.
KJ, tensile modulus Koku T/, J.

比較例−/ 実施例−/で得られた熱処理後のピッチをそのまま紡糸
したところ軽沸外の揮発、および紡糸ノズル直下の脈動
が激しく、巻取シ速度4io。
When the heat-treated pitch obtained in Comparative Example-/Example-/ was spun as it was, volatilization at a low boiling point and severe pulsation immediately below the spinning nozzle were observed, and the winding speed was 4io.

m/■ピッチ繊維径/コμでも安定に紡糸できなかった
Stable spinning could not be achieved even at m/■ pitch fiber diameter/μ.

少量得られたピッチ繊維を実施例/と同様にして得た糸
径10.7μの炭素繊維は引張シ強度/70kg/sJ
、引張夛弾性率/3T/−であった。
A carbon fiber with a thread diameter of 10.7μ obtained in the same manner as in Example/from a small amount of pitch fiber has a tensile strength of 70 kg/sJ.
, tensile modulus/3T/-.

比較例−一一 実施例−/で得られた熱処理ピッチfjlθ℃にて60
分静置し、その下層部のピッチを採取し、実施例/と同
様にして溶融紡糸に供した。
Comparative Example-11 Example-/Heat treatment pitch fjlθ℃ obtained at 60
The mixture was allowed to stand still for several minutes, and the pitch of the lower layer was sampled and subjected to melt spinning in the same manner as in Example.

このときの下層部のピッチは紡糸温度下での異方性割合
が約30%であった。
The pitch of the lower layer at this time had an anisotropy ratio of about 30% at the spinning temperature.

静置分離によって得られた下層部ピッチの紡糸性は比較
例−/と同様に安定紡糸が困難であった。又、少量得ら
れたピッチ繊維を実施例/と同様にして得られた糸径1
0.θμの炭素繊維の特性は引張夛強度ユ!r !r#
 / wJ 、引張シ弾性率コ0.kT/−であった。
The spinnability of the lower layer pitch obtained by static separation was similar to Comparative Example -/, and stable spinning was difficult. In addition, the pitch fiber obtained in a small amount was used in the same manner as in Example 1.
0. The characteristic of carbon fiber of θμ is tensile strength! r! r#
/wJ, tensile modulus co0. It was kT/-.

実施例−一 石炭系ピッチを窒素ガス通気下、ダ30℃で/時間QQ
分熱処理して軟化点コ93℃常温での異方性割合が93
ぶ(aaO℃での異方性割合go 5A)であった。
Example - Coal-based pitch under nitrogen gas aeration at 30°C/hour QQ
After heat treatment, the softening point is 93℃, and the anisotropy ratio at room temperature is 93℃.
(anisotropy ratio go 5A at aaO°C).

このピッチを実施例/と同一装置を使用して温度3go
℃(粘度Sポイズ)回転数3go。
This pitch was measured at a temperature of 3go using the same equipment as in Example/.
°C (viscosity S poise) rotation speed 3go.

rpm (,7360G )、平均滞留時間30分で処
理した。
rpm (,7360G) and an average residence time of 30 minutes.

重液流出口ざよシ流出したピッチは軟化点310C,紡
糸温度下での異方性割合が9g96以上(常温では1O
OX)であった。
The pitch flowing out of the heavy liquid outlet has a softening point of 310C and an anisotropy ratio of 9g96 or more at the spinning temperature (1O at room temperature).
OX).

このピッチを実施例1と同様に3ダ3℃で溶融紡糸した
ところ巻取シ速度1000m/−ピッチ繊維径がgμで
は一時間以上無破断で、安定に紡糸できた。
This pitch was melt-spun at 3° C. for 3 days in the same manner as in Example 1. When the winding speed was 1000 m/min and the pitch fiber diameter was g μ, stable spinning was possible without breakage for over 1 hour.

ピッチ繊維(糸径lコμ)を実施例/と同様にして得た
糸径9.3μの炭素繊維は引張シ強度3ダq ”9 /
 −1引張シ弾性率コt’r7’−であった。
Carbon fibers with a thread diameter of 9.3μ obtained from pitch fibers (thread diameter 1 μμ) in the same manner as in Example / have a tensile strength of 3 daq ”9 /
-1 tensile modulus of elasticity was t'r7'-.

比較例−3 実施例−一で得られた加熱処理後のピッチを31θ℃で
一時間装置処理を行った。
Comparative Example-3 The heat-treated pitch obtained in Example-1 was subjected to equipment treatment at 31θ°C for one hour.

しかしメソ相(重液層)と等方相(軽液層)は全く分離
しなかった。
However, the meso phase (heavy liquid layer) and the isotropic phase (light liquid layer) did not separate at all.

比較例−4 実施例−一で得られた加熱処理後のピッチを、軽液−重
液分離堰を撤去し代〕に液オーバーフロー堰の中段に重
液流出口を設けた遠心分離機に導入し、実施例−一と同
様に処理した結果、重液流出口よ)流出したピッチは軟
化点301℃紡糸温度下での異方性割合gzN(常温で
は9 t N )と等方性ピッチの分離不十分なもので
あった。
Comparative Example 4 The heat-treated pitch obtained in Example 1 was introduced into a centrifugal separator with a heavy liquid outlet in the middle of the liquid overflow weir after removing the light liquid-heavy liquid separation weir. As a result of treatment in the same manner as in Example 1, the pitch that flowed out from the heavy liquid outlet had a softening point of 301°C and an anisotropic ratio gzN (9 t N at room temperature) and an isotropic pitch under the spinning temperature. Separation was insufficient.

このピッチを337℃で紡糸し、実施例−コと同sK不
融化炭化して得大炭素繊維は糸径9、ダμ、引張)強度
コqrkg/−1弾性率13T/−で実施例−一よシ劣
るものであった。
This pitch was spun at 337°C, and the same sK infusible carbonization as in Example-C was performed to obtain a large carbon fiber with a yarn diameter of 9, dμ, tensile strength, qrkg/-1, and elastic modulus of 13T/-. It was worse than anything else.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第一図は本発明の実施例に用いる装置の一例
の模式的構成図である。 /:回転筒     コニ軽液オーバーフ四−堰3:重
液オーバーフロー堰 ダニ気−液分離堰 3:軽液−重液分離堰 ≦:フイード管  7:軽液流出ロ t:重液流出口  9:ガス流出口 10:外筒     //:流出量調整用切入部/コニ
軽液−重液界面 /3:回転軸
1 and 1 are schematic configuration diagrams of an example of an apparatus used in an embodiment of the present invention. /: Rotating tube Koni light liquid overflow 4-weir 3: Heavy liquid overflow weir mite gas-liquid separation weir 3: Light liquid-heavy liquid separation weir ≦: Feed pipe 7: Light liquid outflow t: Heavy liquid outflow port 9: Gas outlet 10: Outer cylinder //: Outflow volume adjustment notch/Koni light liquid-heavy liquid interface/3: Rotating shaft

Claims (5)

【特許請求の範囲】[Claims] (1)炭素質原料を加熱処理して得られるメソフェーズ
ピッチを溶融紡糸し、得られるピッチ繊維を不融化、炭
化、更に必要に応じて黒鉛化処理することにより炭素繊
維を製造する方法において、前記メソフェーズピッチを
軽液−重液分離堰を設けた遠心分離装置に供給して重液
層と軽液層とに分離し、該分離堰により重液層の軽液層
から最も離れた部位から重液を取得するように重液と軽
液のそれぞれを別個に取得した後、該重液を溶融紡糸す
ることを特徴とする炭素繊維の製造方法。
(1) A method for producing carbon fibers by melt-spinning mesophase pitch obtained by heat-treating a carbonaceous raw material, and subjecting the resulting pitch fibers to infusible, carbonized, and, if necessary, graphitized treatments, comprising: The mesophase pitch is fed to a centrifugal separator equipped with a light liquid-heavy liquid separation weir to separate it into a heavy liquid layer and a light liquid layer. A method for producing carbon fibers, which comprises obtaining a heavy liquid and a light liquid separately, and then melt-spinning the heavy liquid.
(2)遠心分離装置の軽液または/及び重液の取出部に
流出量調整用切欠部または開口部を有することを特徴と
する特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, characterized in that the light liquid and/or heavy liquid extraction section of the centrifugal separator has a notch or opening for adjusting the outflow amount.
(3)遠心分離装置の遠心力が300〜8000Gであ
ることを特徴とする特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the centrifugal force of the centrifugal separator is 300 to 8000G.
(4)メソフェーズピッチの軟化点が220〜320℃
であることを特徴とする特許請求の範囲第1項記載の方
法。
(4) Softening point of mesophase pitch is 220-320℃
The method according to claim 1, characterized in that:
(5)重液層の異方性割合が紡糸温度において90%以
上であることを特徴とする特許請求の範囲第1項記載の
方法。
(5) The method according to claim 1, wherein the anisotropy ratio of the heavy liquid layer is 90% or more at the spinning temperature.
JP187286A 1986-01-08 1986-01-08 Production of carbon fiber Pending JPS62162022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP187286A JPS62162022A (en) 1986-01-08 1986-01-08 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP187286A JPS62162022A (en) 1986-01-08 1986-01-08 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS62162022A true JPS62162022A (en) 1987-07-17

Family

ID=11513643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP187286A Pending JPS62162022A (en) 1986-01-08 1986-01-08 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS62162022A (en)

Similar Documents

Publication Publication Date Title
JPS5818421A (en) Preparation of carbon fiber
US4431623A (en) Process for the production of carbon fibres from petroleum pitch
JPH0699693B2 (en) Optically anisotropic carbonaceous pitch and its manufacturing method
JPH0737689B2 (en) Method for producing carbon fiber and graphite fiber
JPS62162022A (en) Production of carbon fiber
US4810437A (en) Process for manufacturing carbon fiber and graphite fiber
JPS6224036B2 (en)
JPH0133572B2 (en)
JPS62116688A (en) Manufacture of carbon fiber spinning pitch
JPS62146987A (en) Production of carbon fiber spinning pitch
JP2953445B2 (en) Carbon fiber production method
JPH01247487A (en) Production of mesophase pitch
JPS59136383A (en) Preparation of pitch for producing carbon fiber
JPS5834569B2 (en) Carbon fiber manufacturing method
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JPH032298A (en) Production of meso-phase pitch
JPS60133087A (en) Production of pitch as a starting material of carbon fiber
JPH03167291A (en) Optically anisotropic pitch and its manufacture
JPH0418126A (en) Production of carbon fiber and graphite fiber
JPH03227396A (en) Production of optically anisotropic pitch
JPS61241391A (en) Production of mesophase pitch
JPH0811844B2 (en) Method for producing pitch-based carbon fiber
JPH01249887A (en) Production of mesophase pitch
JPS61241392A (en) Production of mesophase pitch
JPS61287961A (en) Precursor pitch for carbon fiber