JPS61241392A - Production of mesophase pitch - Google Patents

Production of mesophase pitch

Info

Publication number
JPS61241392A
JPS61241392A JP60292351A JP29235185A JPS61241392A JP S61241392 A JPS61241392 A JP S61241392A JP 60292351 A JP60292351 A JP 60292351A JP 29235185 A JP29235185 A JP 29235185A JP S61241392 A JPS61241392 A JP S61241392A
Authority
JP
Japan
Prior art keywords
mesophase pitch
pitch
producing
mesophase
polycondensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60292351A
Other languages
Japanese (ja)
Other versions
JPS6250515B2 (en
Inventor
Takayuki Izumi
泉 孝幸
Tsutomu Naito
勉 内藤
Masayuki Igarashi
五十嵐 誠幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP60292351A priority Critical patent/JPS61241392A/en
Publication of JPS61241392A publication Critical patent/JPS61241392A/en
Publication of JPS6250515B2 publication Critical patent/JPS6250515B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a homogeneous mesophase pitch having low softening point and suitable for the production of carbon fiber and molded carbon material having high strength and elastic modulus, by subjecting a mesophase pitch production raw material to hydrocracking pretreatment and carrying out the thermal decomposition polycondensation of the material. CONSTITUTION:After the hydrocracking pretreatment of a mesophase pitch production raw material, the material is heated (preferably at about 410-440 deg.C) to effect the thermal decomposition polycondensation until the mesophase pitch fraction in the polycondensate reaches about 20-80vol%. The polycondensation product is left at rest at about <=400 deg.C (preferably about 360-390 deg.C) to effect the growth and deposition of the mesophase pitch having higher density to the lower layer, which is separated from the upper layer fraction rich in non- mesophase pitch having lower density.

Description

【発明の詳細な説明】 航空機工業、自動車工業又はその他の種々の技術分野に
おける技術の進歩、更には又最近特に叫ばれる省エネル
ギー、省資源の要求に即応して、軽量で且つ高強度、高
弾性率の複合材料の素材を構成する高強度、高弾性率を
もった高性能の炭素繊維が、或は又加圧成形して種々の
用途に使用される高強度高弾性率の成形炭素材料が強く
要望されている0本発明はこのような高性能の炭素繊維
及び成形炭素材料を製造するのに適した材料、即ち、十
分低温度で安定に溶融紡糸などの成形を行ない得る低軟
化点の、均質なメソ相ピッチを製造するための方法に関
するものである。
[Detailed Description of the Invention] In response to technological advances in the aircraft industry, automobile industry, and various other technical fields, and also to the recent demands for energy saving and resource saving, we have developed a lightweight, high-strength, and high-elastic product. High-performance carbon fibers with high strength and high modulus of elasticity that constitute the material of composite materials, or molded carbon materials with high strength and high modulus of elasticity that are pressure-molded and used for various purposes. The present invention, which is strongly desired, is a material suitable for manufacturing such high-performance carbon fibers and molded carbon materials, that is, a material with a low softening point that can be stably formed by melt spinning at a sufficiently low temperature. , relates to a method for producing homogeneous mesophase pitch.

本明細書で使用される「メソ相(腸esophase)
」という語句の意味は必ずしも学界又は種々の技術文献
において統一して用いられているとは言い難いので1本
明細書では「メソ相」とはピッチ構成成分の一つであり
、室温近くで固化したピッチ塊の断面を研摩し反射型偏
光顕微鏡で直交ニコル下で観察したとき、試料又は直交
ニコルを回転して光輝が認められる。即ち、光学的異方
性である部分を意味し、光輝が認められない、即ち、光
学的等方性である部分は「非メソ相」と呼ぶことにする
。一般的にタール、ピッチ等の重質炭化水素は初期には
完全に非メソ相であっても、熱分解重縮合反応を進める
と球状又は不定形のメソ相が生成し、成長1合体しなが
らメソ相は大きくなって行く、該メソ相は非メソ相に比
べて多環芳香族縮合環の平面性がより発達した化学構造
の分子が主成分で、平面を積層した形で凝集会合してお
り、溶融温度では一種の液晶状態であると考えられる。
As used herein, "mesophase"
It is difficult to say that the meaning of the phrase ``is necessarily uniformly used in academic circles or in various technical documents.'' In this specification, ``mesophase'' refers to one of the pitch components, which solidifies near room temperature. When a cross-section of the pitch lump is polished and observed under crossed Nicols using a reflective polarizing microscope, brightness is observed when the sample or crossed Nicols is rotated. That is, it means a part that is optically anisotropic, and a part where no brilliance is observed, that is, a part that is optically isotropic, is called a "non-meso phase." In general, heavy hydrocarbons such as tar and pitch initially have a completely non-meso phase, but as the pyrolysis polycondensation reaction progresses, a spherical or amorphous meso phase is generated, and as they grow and coalesce, The meso phase grows larger.The meso phase is mainly composed of molecules with a chemical structure in which the planarity of polycyclic aromatic condensed rings is more developed than in the non-meso phase, and the planes are aggregated and aggregated in a stacked manner. Therefore, it is considered to be in a kind of liquid crystal state at the melting temperature.

従ってこれを細い口金から押出して紡糸するときには分
子の平面が繊維軸方向に平行に近い配列をするために該
メソ相ピッチから作った炭素繊維は高弾性率を示すこと
となる。又メソ相の定量は偏光顕微鏡直交ニコル下で観
察写真撮影して光学的異方性部分の占める面積率を測定
して行ないその結果は体積%で表わす、又、非メソ相部
分の含有量が10%以下であり、はとんど大部分がメソ
相からなるピッチを「メソ相ピッチ」と称する。
Therefore, when extruded from a thin spinneret and spun, the carbon fibers made from the mesophase pitch exhibit a high modulus of elasticity because the molecular planes are aligned nearly parallel to the fiber axis direction. In addition, the mesophase is quantified by observing and photographing it under a polarizing microscope with crossed nicols and measuring the area ratio occupied by the optically anisotropic part.The results are expressed in volume %. A pitch that is 10% or less and is mostly composed of mesophase is referred to as a "mesophase pitch."

ピッチの均質性に関し、本発明の説明において上述のメ
ソ相の含有率の測定結果が体積で約90%〜約100%
の範囲にあり、ピッチ断面の顕微鏡観察で不融性粒子(
粒径IILm以上)を実測上検出できないものが実際の
溶融紡糸において良好な均質性を示すのでこのようなも
のを実質上均質なメソ相ピッチと称する。
Regarding the pitch homogeneity, in the description of the present invention, the measurement result of the mesophase content mentioned above is about 90% to about 100% by volume.
microscopic observation of the pitch cross section reveals infusible particles (
Pitches whose particle size (IILm or more) cannot be detected in actual measurements exhibit good homogeneity in actual melt spinning, and are therefore referred to as substantially homogeneous mesophase pitches.

また、本発明の説明でいうピッチの「軟化点」とは、ピ
ッチが固体と液体の間を転移する温度をいうが、差動走
査型熱量計を用いて、ピッチの融解又は凝固する潜熱の
吸放出のピーク時温度で測定した。この温度は、ピッチ
試料について他の方法(例えば、リング・アンド・ポー
ル法、微量融点法等)で測定したものと±10℃の範囲
で一致する0本発明において「低軟化点」とは、約り3
0℃〜約320℃の範囲の軟化点を意味する。
In addition, the "softening point" of pitch in the explanation of the present invention refers to the temperature at which pitch transitions between solid and liquid. It was measured at the peak temperature of absorption and release. This temperature agrees within a range of ±10°C with that measured by other methods (for example, ring-and-pole method, micro-melting point method, etc.) on pitch samples. In the present invention, "low softening point" means: Provision 3
It means a softening point in the range of 0°C to about 320°C.

高性能炭素繊維等の製造に必要なメソ相ピッチの製造方
法に関して従来いくつかの製造方法が提案されているが
、いずれの方法にあっても、■原料が工業的に入手困難
である;■長時間の反応を必要とするか、又は複雑な工
程を必要とする;■製造価格が大である;■メソ相を1
00%に近づけると軟化点が上がり、紡糸し難い;■軟
化点を抑えると不均質となり、紡糸し難い、と言った種
々の問題を有している。更に詳しく説明すると。
Several manufacturing methods have been proposed to date for the production of mesophase pitch, which is necessary for the production of high-performance carbon fibers, etc. However, in all of these methods, ■ Raw materials are difficult to obtain industrially; ■ Requires a long reaction time or a complicated process; ■ The production cost is high; ■ The mesophase is
When the softening point approaches 00%, the softening point increases, making it difficult to spin; (2) If the softening point is suppressed, the material becomes non-uniform, making it difficult to spin. Let me explain in more detail.

特公昭49−8634号公報に記載されている方法は、
クリセン、アンスラセン、テトラベンゾフェナジン等と
いった安価に且つ大証には入手することのできない原料
を用いるか、又は高温原油分解タールを乾留後410℃
で不融物を濾別するという煩雑な製造工程を必要とし、
しかも紡糸温度が400℃〜420℃の如き高温度を必
要とした。特開昭50−118028号公報に記載の方
法は、原料を攪拌しながら熱重質化を行なうものである
が、そのピッチ製法を実施例でみると、単純な工程では
高軟化点ピッチとなり、低軟化点ピッチを得るには長時
間の反応と不融物質の濾過除去を必要とした。特公昭5
3−7533号公報に記載の方法は、塩化アルミニウム
等のルイス酸系触媒を用いて重縮合するものであるが、
触媒の除去及びその前後の熱処理工程を含み、複雑で且
つ運転価格が大となる方法である。特開昭50−896
35号公報に記載される方法は、非メソ相ピッチを原料
として熱重縮合する際に減圧下に、又は不活性ガスを液
相へと吹き込みながらメソ相の含有量が40%〜90%
になる迄反応させるものであり、又特開昭53−491
25号公報は熱重縮合の際に攪拌して、メソ相含有量が
50%〜65%になる迄反応させるものであり、これら
両方法はいずれも得られるピッチのメソ相がキノリンネ
溶分と一致するようなものであってかなりの非メソ相含
有を残して軟化点を限界に抑える方法でありピッチが実
質的に不均質のため紡糸性が悪いという問題がある。特
開昭54−55625号に係る方法は、前記特開昭50
−89635号及び特開昭53〜49125号に係る方
法を組合せた、つまり不活性ガスのバブリングと攪拌と
を併用して、長時間熱分解重縮合を行ない、メソ相に完
全に100%転換する迄反応を行なわせるものであり、
均質なメソ相ピッチが得られるが重縮合が進みすぎて軟
化点及び紡糸温度が高くなってしまうという問題がある
。特開昭54−160427号公報に示される方法も確
かに、実買上均質なメソ相ピッチを与えることができる
が、溶剤抽出処理という複雑で高コストのプロセスを含
むものであり、しかも、一般的には高軟化点(約330
℃以上)のメソ相ピッチとなってしまうという問題点が
ある。
The method described in Japanese Patent Publication No. 49-8634 is
Use inexpensive raw materials such as chrysene, anthracene, tetrabenzophenazine, etc. that are not available at OSE, or use high-temperature crude oil cracking tar after carbonization at 410°C.
Requires a complicated manufacturing process of filtering out infusible materials,
Moreover, a high spinning temperature of 400°C to 420°C was required. The method described in JP-A No. 50-118028 performs thermoheavy heating while stirring the raw materials, but looking at examples of the pitch manufacturing method, a simple process produces pitch with a high softening point, Obtaining a low softening point pitch required a long reaction time and filtration removal of infusible materials. Tokuko Showa 5
The method described in Publication No. 3-7533 involves polycondensation using a Lewis acid catalyst such as aluminum chloride.
This method is complicated and involves high operating costs, including removal of the catalyst and heat treatment steps before and after that. Japanese Patent Publication No. 50-896
The method described in Publication No. 35 involves thermal polycondensation using non-mesophase pitch as a raw material, under reduced pressure or by blowing an inert gas into the liquid phase to reduce the mesophase content to 40% to 90%.
It is a method of reacting until the
In Publication No. 25, the reaction is carried out by stirring during thermal polycondensation until the meso phase content becomes 50% to 65%, and in both of these methods, the meso phase of the pitch obtained is mixed with the quinoline solvent. This is a method of suppressing the softening point to the limit by leaving a considerable non-meso phase content, and there is a problem that the pitch is substantially non-uniform, resulting in poor spinnability. The method according to Japanese Patent Application Laid-open No. 54-55625 is described in
-89635 and JP-A No. 53-49125, i.e., using inert gas bubbling and stirring in combination, thermal decomposition polycondensation is carried out for a long time to completely convert 100% to meso phase. It causes the reaction to take place until
Although a homogeneous mesophase pitch can be obtained, there is a problem in that polycondensation progresses too much and the softening point and spinning temperature become high. Although the method shown in Japanese Patent Application Laid-Open No. 54-160427 can certainly provide a homogeneous mesophase pitch in actual purchase, it involves a complicated and expensive process called solvent extraction treatment, and moreover, it is not commonly used. has a high softening point (approximately 330
There is a problem in that the mesophase pitch becomes a pitch of 100°C (°C or higher).

以上の説明にて理解されるように従来の技術によると、
触媒を用いる方法は別として、十分軟化点の低い、均質
な、安定して紡糸することのできるメソ相ピッチを工業
的に製造することは困難である。即ち、従来の技術では
本質的には一つの反応工程で、400℃前後の温度で長
時間かけて重質炭化水素の熱分解重縮合を進めて行くこ
とにより、メソ相含有量は次第に増大するが、それに応
じてピッチ全体の軟化点、従ってその溶融紡糸に適した
温度(紡糸温度)も次第に上昇し、紡糸温度の適当なと
ころで反応を停止させると、メソ相と非メソ相の混合し
た不均質なピッチが形成され、その結果良好な紡糸を達
成できない場合が多くなる。このような欠点を改善すべ
くより低温度で更に反応を続行しメソ相ピッチ含有量を
実質的に100%の均質なピッチにすることもできる 
 ″が、そのときは温度を制御しつつ反応に長時間を要
するというだけではなく、再現性よく良好なピッチを得
ることができず、更には一般に軟化点が非常に高くなる
ことが多く工業的に安定した紡糸がし難く、結果として
良い性能の炭素繊維を製造することは容易ではない。
As understood from the above explanation, according to the conventional technology,
Apart from methods using catalysts, it is difficult to industrially produce mesophase pitch that has a sufficiently low softening point, is homogeneous, and can be stably spun. That is, in the conventional technology, the mesophase content gradually increases by proceeding with thermal decomposition polycondensation of heavy hydrocarbons over a long period of time at a temperature of around 400°C in essentially one reaction step. However, the softening point of the pitch as a whole, and therefore the temperature suitable for melt spinning (spinning temperature), gradually rises, and when the reaction is stopped at an appropriate point at the spinning temperature, a mixture of meso and non-meso phases is formed. A homogeneous pitch is formed, and as a result good spinning cannot often be achieved. In order to improve this drawback, the reaction can be further continued at a lower temperature to obtain a homogeneous pitch with a mesophase pitch content of substantially 100%.
However, in that case, not only does it take a long time to react while controlling the temperature, but also it is difficult to obtain a good pitch with good reproducibility, and furthermore, the softening point is generally very high, making it difficult for industrial use. It is difficult to perform stable spinning, and as a result, it is not easy to produce carbon fibers with good performance.

本発明者等は種々の実験の結果、従来技術が有した諸問
題点の原因は、熱分解重縮合反応器の中で初期に生成し
たメソ相までもが反応終了まで高温に保持されているの
で、該メソ相ピッチの中でメソ相構成分子が更に重縮合
反応を行ないメソ相ピッチ部分の分子量が必要以上に巨
大化することにあると考え、従ってこれら従来技術の欠
点は、熱分解重縮合反応の途中でメソ相ピッチ部分を分
離して抜き出すことによって解決でき、該方法によって
90%〜100%のメソ相含有率で且つ十分軟化点の低
いピッチを得ることができることを見出した。又熱反応
途中でメソ相部分を分離して抜き出す手段としては、■
n−へブタン、ペンゼン、トルエン等の溶剤を用いた溶
剤抽出工程によってメン相を濃縮して取出す方法、及び
■溶剤を用いないで直接メソ相を分離する方法、とを試
みたが、前者は一般にメソ相ピッチの軟化点を制御する
のが難しく且つ工程が複雑であり、後者の方がより優れ
ていることが分った0本発明は後者に属する技術に関す
るものである。
As a result of various experiments, the present inventors have found that the cause of the various problems with the prior art is that even the meso phase formed initially in the pyrolysis polycondensation reactor is maintained at a high temperature until the end of the reaction. Therefore, it is thought that the molecules constituting the mesophase further undergo a polycondensation reaction in the mesophase pitch, and the molecular weight of the mesophase pitch becomes larger than necessary. It has been found that this problem can be solved by separating and extracting the mesophase pitch portion during the condensation reaction, and that by this method pitch with a mesophase content of 90% to 100% and a sufficiently low softening point can be obtained. Also, as a means of separating and extracting the meso phase part during the thermal reaction,
Attempts have been made to concentrate and extract the meso phase through a solvent extraction process using solvents such as n-hebutane, penzene, toluene, etc., and to directly separate the meso phase without using a solvent, but the former method has not been successful. Generally, it is difficult to control the softening point of mesophase pitch and the process is complicated, and the latter has been found to be superior.The present invention relates to a technique belonging to the latter.

本発明者等は、種々の研究実験を重ねた結果、重質炭化
水素を通常の方法で熱分解重縮合しメン相が部分的に生
成し小球状で分散している段階で熱反応を中止し1次に
熱分解重縮合が起り難く且つピッチの液体としての流動
性が十分に保たれているような温度域まで該反応物の温
度を下げて短時間静置したところ、メソ相小球は反応器
内で成長合体しつつ沈降し、該反応器底部で更に合体し
、あたかも水と油を器に入れた如く反応物は上層と下層
との二層とにはっきりと分離することを見出した。上層
を抜き出して調べてみると微小なメソ相法を若干含む非
メソ相ピッチ部分であり。
As a result of various research experiments, the present inventors conducted thermal decomposition polycondensation of heavy hydrocarbons using a conventional method, and stopped the thermal reaction at the stage when the men phase was partially formed and dispersed in the form of small spheres. First, when the temperature of the reactant was lowered to a temperature range at which pyrolysis polycondensation was difficult to occur and the fluidity of the pitch as a liquid was sufficiently maintained, and the mixture was allowed to stand for a short period of time, mesophase spherules were formed. It was discovered that the reactants grow and coalesce in the reactor and settle down, and further coalesce at the bottom of the reactor, and the reactants are clearly separated into two layers, an upper layer and a lower layer, just as if water and oil were placed in a container. Ta. When the upper layer was extracted and examined, it was found to be a non-mesophase pitch part containing some small mesophase particles.

下層は実質的に100%のメソ相ピッチ部分であり、特
に該メソ相ピッチ部分は従来技術では得ることが困難で
あった低軟化点のピッチであった。
The lower layer was substantially 100% mesophase pitch, and in particular, the mesophase pitch was a pitch with a low softening point that was difficult to obtain with the prior art.

この下層のピッチを常法に従って炭素繊維にしてみると
紡糸性が極めて良好な且つ優れた性能の、所謂、高性能
の炭素繊維となることが分った。
When this lower layer pitch was made into carbon fiber according to a conventional method, it was found that the so-called high-performance carbon fiber had extremely good spinnability and excellent performance.

本発明者等は上記製造方法を更に研究した結果、該方法
はメソ和製造用原料、つまり出発原料として重質炭化水
素を主成分とする重質油、タール又はピッチを使用し得
ることが分った。即ち、出発原料として石油系の種々の
重質油、熱分解タール、接触分解タール、水蒸気分解タ
ール、アスファルト等などが使用でき、一方石炭の乾留
などで得られる重質油、タール、ピッチ又は石炭液化工
程から製造される重質液化石炭なども使用可能である。
As a result of further research on the above production method, the present inventors found that the method can use heavy oil, tar, or pitch containing heavy hydrocarbons as the raw material for mesohydration production, that is, as a starting material. It was. That is, various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, steam cracking tar, asphalt, etc. can be used as starting materials, while heavy oil, tar, pitch, or coal obtained by carbonization of coal, etc. Heavy liquefied coal produced from a liquefaction process can also be used.

しかしながら、重質油、タール又はピッチの中にはあま
りにも高分子量の成分を含むか、又は/及び熱重縮合の
工程で高分子量の成分を容易に生成するものがあり、こ
のような成分は次の反応工程で反応系全体の粘度を大き
くシ、メソ相部分の合体沈降を妨げ、生成するメソ相ピ
ッチの軟化点を高くすることが分った。
However, some heavy oils, tars, or pitches contain components with too high molecular weight or/and easily generate high molecular weight components in the thermal polycondensation process; It was found that in the next reaction step, the viscosity of the entire reaction system was increased, preventing the mesophase portion from coalescing and settling, and raising the softening point of the mesophase pitch produced.

本発明者等は、斯る有害成分は出発原料を熱分解重縮合
反応にもたらす前に水素添加分解反応を施し、出発原料
を予備処理することによって除去し得ることを見出した
The present inventors have discovered that such harmful components can be removed by pretreating the starting material by subjecting it to a hydrogenolysis reaction before bringing it into the pyrolysis polycondensation reaction.

このように、熱重縮工程前に水素添加分解反応による予
備処理を施した出発原料は他の種々のメソ相ピッチの製
造法にも出発原料として有効に使用し得るであろう。
In this way, the starting material pretreated by hydrogenolysis reaction before the thermal polycondensation step can be effectively used as a starting material in various other mesophase pitch production methods.

従って、本発明の主たる目的は、メソ相ピッチ製造用原
料に水素添加分解反応による予備処理を施し1次いで熱
分解重縮合を行ない軟化点の低い、且つ弾性率及び強度
が更に向上した炭素繊維を紡糸することのできるメソ相
ピッチの製造方法を提供することである。
Therefore, the main object of the present invention is to pre-process raw materials for producing mesophase pitch by hydrogenolysis reaction, and then to perform thermal decomposition polycondensation to produce carbon fibers with a low softening point and further improved elastic modulus and strength. An object of the present invention is to provide a method for producing mesophase pitch that can be spun.

本発明の他の目的は、不融物の高温濾過、溶剤抽出、触
媒の添加及び除去と言った複雑な工程を必要とせずに1
例えば全工程を1〜3時間程度の短かい時間で完了する
ことのできるメソ相ピッチの製造方法を提供することで
ある。
Another object of the present invention is that the present invention provides a simple and easy-to-use solution without requiring complicated steps such as hot filtration of infusible materials, solvent extraction, addition and removal of catalysts.
For example, it is an object of the present invention to provide a method for producing mesophase pitch in which the entire process can be completed in a short time of about 1 to 3 hours.

本発明の他の目的は、約90%〜約100%のメン相か
ら成り且つ低軟化点(例えば260℃)の、従って低い
最適紡糸温度(例えば340℃)を有するメソ相ピッチ
の製造方法を提供することである。
Another object of the invention is to provide a method for producing mesophase pitch consisting of about 90% to about 100% mesophase and having a low softening point (e.g. 260°C) and therefore a low optimum spinning temperature (e.g. 340°C). It is to provide.

本発明の更に他の目的は、熱分解重縮合の顕著す温度(
約400℃)よりもはるかに低い温度で紡糸することの
でき、又ピッチが均質であって紡糸性(糸切れ頻度、糸
の細さ、糸径のばらつき等)が良好であり1品質の安定
した製品炭素繊維を作ることのできる均質な且つ変質す
ることのないメソ相ピッチの製造方法を提供することで
ある。
Still another object of the present invention is to achieve the remarkable temperature (
The yarn can be spun at a temperature much lower than 400 degrees Celsius), and the pitch is uniform and the spinnability (frequency of yarn breakage, yarn thinness, variation in yarn diameter, etc.) is good, and the quality is stable. It is an object of the present invention to provide a method for producing homogeneous mesophase pitch that does not undergo deterioration and can produce carbon fiber products.

本発明の他の目的は、紡糸中に実質上分解ガスを発生し
たり、不融物を生成することがなく、従って紡糸された
ピッチ繊維に気泡や固形異物を含有することが少なく、
それによって高強度の製品炭素繊維を作ることのできる
メソ相ピッチの製造方法を提供することである。
Another object of the present invention is that substantially no decomposition gas or infusible substances are generated during spinning, and therefore the spun pitch fibers contain few air bubbles or solid foreign substances.
An object of the present invention is to provide a method for producing mesophase pitch, thereby making it possible to produce carbon fiber products with high strength.

更に、本発明の他の目的は、繊維軸方向の黒鉛構造の結
晶配向性がよく発達し、弾性率の大きな製品炭素繊維を
作ることのできる分子配向性の優れたメソ相の含有率が
100%に近いピッチの製造方法を提供することである
Furthermore, another object of the present invention is to provide a carbon fiber with a mesophase content of 100% and an excellent molecular orientation, which can produce product carbon fibers with a well-developed graphite structure crystal orientation in the fiber axis direction and a large elastic modulus. To provide a method for producing pitch close to %.

本発明の更に他の目的は、熱分解重縮合反応工程の後に
液晶状ピッチの沈積熟成及び分離工程を設けることによ
り、原料の特性が相当に変化したり、或は前段の工程で
運転条件が多少変化しても後段の工程でピッチの特性品
質を安定的に容易に制御することのできるメソ相ピッチ
の製造方法を提供することである。
Still another object of the present invention is to provide a liquid crystalline pitch precipitation ripening and separation step after the pyrolysis polycondensation reaction step, so that the characteristics of the raw material are considerably changed or the operating conditions are changed in the previous step. It is an object of the present invention to provide a method for producing mesophase pitch which can stably and easily control the characteristic quality of the pitch in subsequent steps even if it changes to some extent.

次に本発明に係るメソ相ピッチの製造方法について詳し
く説明する。
Next, the method for producing mesophase pitch according to the present invention will be explained in detail.

本発明は要約すると、重質炭化水素を主成分とする重質
油、タール又はピッチを出発原料とし、該出発原料に水
素添加分解反応による予備処理を行ない、次で該予備処
理された出発原料を熱分解重縮合せしめメソ相ピッチが
製造される。最も好ましいメソ相ピッチの製造方法にお
いては、前述の如くに予備処理された出発原料を加熱し
て熱分解重縮合を行ない、残留ピッチ中のメソ相ピッチ
部分が約20%〜約80%になるようにした後。
To summarize, the present invention uses heavy oil, tar or pitch containing heavy hydrocarbons as a main component as a starting material, pre-treats the starting material by a hydrocracking reaction, and then processes the pre-treated starting material. is pyrolyzed and polycondensed to produce mesophase pitch. In the most preferred method for producing mesophase pitch, the starting material pretreated as described above is heated to perform pyrolytic polycondensation, so that the mesophase pitch portion in the residual pitch is about 20% to about 80%. After doing so.

該重縮合物を400℃以下、特に5分〜4時間といった
短時間にて行なうためには好ましくは約350℃〜約4
00℃に保持しながら静置しく本明細書にて「静置」と
は完全に攪拌しないか、又は攪拌したとしても極めてゆ
っくり攪拌することを意味する。)、下層に密度の大き
いメソ相ピッチ部分を一つの連続相として成長熟成しつ
つ集積し、これを上層゛のより密度の小さな相である非
メソ相ピッチを多く含む部分から分離して取出すことに
よってメソ相ピッチが製造される。
In order to carry out the polycondensation at 400°C or less, particularly in a short period of time such as 5 minutes to 4 hours, the temperature is preferably about 350°C to about 400°C.
In this specification, "standing" means not stirring completely, or even if stirring is done, stirring is done very slowly. ), the mesophase pitch part with a high density is accumulated as one continuous phase in the lower layer while growing and ripening, and this is separated and taken out from the part containing a large amount of non-mesophase pitch, which is a lower density phase in the upper layer. Mesophase pitch is produced by:

本方法により製造されたピッチはメソ相部分を  ″約
90%〜約lOO%含有する実質上均質なメソ相ピッチ
であり、且つ極めて低い軟化点(約り30℃〜約320
℃)を有し、従って十分低い紡糸最適温度(約380℃
〜約380℃)を有するものである。
The pitch produced by this method is a substantially homogeneous mesophase pitch containing about 90% to about 100% mesophase portion, and has an extremely low softening point (about 30°C to about 320°C).
℃), and therefore has a sufficiently low optimum spinning temperature (approximately 380℃).
~380°C).

本発明においては、前述の如く出発原料とじて種々のい
bゆる高分子量の重質炭化水素油、タール又はピッチを
使用し得ることが特徴である。即ち、出発原料として1
石油系の種々の重質油、熱分解タール、接触分解タール
、水蒸気分解タール、アスファルトなどが使用でき、一
方石炭の乾留などで得られる重質油、タール、ピッチ又
は石炭液化工程から製造される重質液化石炭なども使用
可能である。しかしながら、このような出発原料であっ
てもカーボンなどの固体粒子を含むものはいうまでもな
く好ましくないので、予め適当な:フィルタで濾過処理
を行なう必要がある。又、軽質油分を余りにも多く含む
ものは、後の工程の経済性を悪くするので、予め減圧蒸
留して、出発原料は沸点が約400℃以上の成分を主成
分とするように調整することが望ましい。
As mentioned above, the present invention is characterized in that various high molecular weight heavy hydrocarbon oils, tars, or pitches can be used as starting materials. That is, as starting material 1
Various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, steam cracking tar, asphalt, etc. can be used, while heavy oil, tar, pitch obtained by carbonization of coal, or produced from the coal liquefaction process Heavy liquefied coal can also be used. However, even if such a starting material contains solid particles such as carbon, it goes without saying that it is not preferable, so it is necessary to perform a filtration treatment in advance using a suitable filter. Also, if it contains too much light oil, it will make the subsequent process less economical, so it should be distilled under reduced pressure in advance so that the starting material has a boiling point of about 400°C or higher as its main component. is desirable.

本発明においては先ず、水素添加分解反応による予備処
理を施した原料が熱分解重縮合反応槽へと導入され、メ
ソ相生成のための熱反応が行なわれる。一般には温度約
380℃以上、好ましくは約380℃〜約460℃、更
に好ましくは約41O℃〜約440℃とされるであろう
、該熱分解重縮合工程は、重質炭化水素からメソ相を部
分的に製造する公知の方法を用いて行なうことができる
が、従来方法では350℃以上で該反応が生起すること
が知られているが、一般に良い特性のメソ相ピッチを得
るためには380℃程度の低温で数10時間の滞留時間
を必要としたのに対して、本方法においては440℃の
如き高温で、わずかに1時間の如S短い滞留時間で行な
うことができ、このことも又本発明の特徴の一つである
。しかしながら、本発明においても460℃以上の温度
で熱分解重縮合を行なうことは、原料未反応物の揮発が
増大し、メソ相の軟化点も高くなり且つ反応の制御が困
難になるという理由から不適等である。
In the present invention, first, a raw material that has been pretreated by a hydrogenolysis reaction is introduced into a pyrolysis polycondensation reaction tank, and a thermal reaction for producing a mesophase is performed. The pyrolytic polycondensation process, which will generally be at a temperature of about 380°C or higher, preferably from about 380°C to about 460°C, more preferably from about 410°C to about 440°C, converts heavy hydrocarbons into mesophase. This can be carried out using a known method of partially producing mesophase pitch, but it is known that the reaction occurs at temperatures above 350°C in the conventional method. Whereas the residence time required several tens of hours at a low temperature of about 380°C, this method can be carried out at a high temperature of 440°C with a short residence time of just one hour. This is also one of the features of the present invention. However, even in the present invention, performing the thermal decomposition polycondensation at a temperature of 460°C or higher is because the volatilization of unreacted raw materials increases, the softening point of the meso phase increases, and it becomes difficult to control the reaction. It is inappropriate.

該熱分解重縮合反応工程においては局所加熱を防ぐ目的
で攪拌が行なわれ、該熱分解重縮合反応工程は熱分解の
結果生成した低分子量の物質を速やかに除くために減圧
下、又は必ずしも不活性ガスをピッチ中へ吹込んでバブ
リングする必要はないが該ガスの流通下において行なう
ことが望ましいが、不活性ガスを流通せずに常圧又は加
圧下で該熱分解重縮合を行ない、その後減圧蒸留又は不
活性ガスによるストリッピング処理で低分子量物質を取
り除くことによってもできる。
In the pyrolysis polycondensation reaction step, stirring is performed for the purpose of preventing local heating, and the pyrolysis polycondensation reaction step is carried out under reduced pressure or under reduced pressure in order to quickly remove low molecular weight substances produced as a result of thermal decomposition. Although it is not necessary to inject and bubble active gas into the pitch, it is preferable to carry out the process while the gas is flowing.However, the pyrolysis polycondensation can be carried out under normal pressure or increased pressure without flowing an inert gas, and then under reduced pressure. It can also be achieved by removing low molecular weight substances by distillation or stripping treatment with an inert gas.

該熱分解重縮合反応工程は、原料中の重質炭化水素の熱
分解と重縮合とを主反応としてピッチ成分分子の化学構
造を変化させる工程であり、大略反応方向としてはパラ
フィン鎖構造の切断、脱水素、閉環、重縮合による多環
縮合芳香族の平面型構造の発達にあると考えられ、この
構造がより発達した分子が分子会合凝集して一つの相を
成すまでに成長したものがメソ相であると考えられ本発
明の主要な特徴の一つは、この熱分解重縮合工程を、低
分子量分解生成物や未反応物を実質1除いた生成ピッチ
中にメソ相部分が約20%〜約80%、好ましくは約4
0%〜約70%含有されるような状態になったとき、次
いで該メソ相部分を熟成し、沈降集積しそして分離する
ための熟成沈積会分離工程へと移すことである。この次
の工程へ移行させる時期は、上述のように、メソ相部分
の含有率がかなり広い範囲にわたって許容されることが
本発明の特徴でもあるが熟成沈積工程で低軟化点の均質
なメソ相ピッチを収率よく得るためには、熱分解重縮合
反応後のピッチの収率が高く且つメソ相含有率が約20
%〜約80%、軟化点が約250℃以下であるものが適
当であり。
The pyrolysis polycondensation reaction process is a process in which the chemical structure of the pitch component molecules is changed using thermal decomposition and polycondensation of heavy hydrocarbons in the raw materials as the main reactions, and the general direction of the reaction is to cleave the paraffin chain structure. This is thought to be due to the development of a planar structure of polycyclic condensed aromatics due to dehydrogenation, ring closure, and polycondensation, and molecules with a more developed structure grow until they form a single phase through molecular association and aggregation. One of the main features of the present invention, which is considered to be a meso phase, is that this thermal decomposition polycondensation process is performed so that the meso phase portion is approximately 20 % to about 80%, preferably about 4
When the content is between 0% and about 70%, the mesophase portion is then transferred to an aging sedimentation separation step for aging, sedimentation and separation. As mentioned above, it is a feature of the present invention that the content of the mesophase portion is allowed over a fairly wide range. In order to obtain pitch in a good yield, the yield of pitch after the pyrolysis polycondensation reaction should be high and the mesophase content should be about 20%.
% to about 80% and a softening point of about 250°C or less is suitable.

熱分解重縮合反応後のピッチ中のメソ相部分が20%よ
り小さいものでは次の熟成沈積工程での均質メソ相ピッ
チの収率が極めて小さく実用的価値がなく、又熱分解重
縮合反応後のピッチの軟化点が250℃より高いものま
たはその中のメソ相80%より大きいものにすると次工
程での2相の分離が十分に行なわれず、生成するメソ相
ピッチの軟化点が高くなり過ぎる。即ち、熱分解重縮合
工程で余りにもメソ相の生成が少ないと次の工程での1
回の分離操作で得られる下層のメソ相ピッチの収率が少
なく、経済性を悪くするが、一方余りにもメソ相の生成
を多くして次の工程へ移行すると確かにメソ相ピッチ収
率は増大するが、上層と下層の境界が不明瞭となりメソ
相の中に非メソ相を含んだ形態となったり製造されたメ
ソ相ピッチの軟化点が高くなり本発明の目的に適しない
ものとなる。
If the mesophase portion in the pitch after the pyrolysis polycondensation reaction is less than 20%, the yield of homogeneous mesophase pitch in the next ripening and deposition step will be extremely small and of no practical value, and the pitch after the pyrolysis polycondensation reaction will be If the softening point of the pitch is higher than 250°C or the mesophase is larger than 80%, the two phases will not be separated sufficiently in the next step, and the softening point of the mesophase pitch produced will be too high. . In other words, if too little mesophase is produced in the pyrolysis polycondensation step, 1
The yield of mesophase pitch in the lower layer obtained in one separation operation is low, which worsens economic efficiency, but on the other hand, if too much mesophase is generated and the process is moved to the next step, the mesophase pitch yield will certainly decrease. However, the boundary between the upper layer and the lower layer becomes unclear, resulting in a form containing a non-meso phase in the meso phase, and the softening point of the produced meso phase pitch becomes high, making it unsuitable for the purpose of the present invention. .

上述のように調製された適度にメソ相を含むピッチを次
の工程、即ち、メソ相の熟成沈積・分離工程へ移す方式
については、該熟成沈積・分離工程のために専用に設け
られた別個の反応槽へとピッチを移送してもよいし、完
全に回分式にてピッチを製造する場合には熱分解重縮合
を行なった反応槽と同一の槽を用いて該熟成沈積e分離
工程を行なってもよく、該後者の場合にはピッチの移送
作業を省略することができる。
Regarding the method of transferring the pitch containing a moderate amount of meso phase prepared as described above to the next step, that is, the ripening sedimentation/separation step of the meso phase, a separate separate chamber provided exclusively for the ripening sedimentation/separation step is used. The pitch may be transferred to a reaction tank, or if the pitch is produced completely batchwise, the same reaction tank as that in which the pyrolysis polycondensation was carried out may be used to carry out the ripening sedimentation e-separation step. In the latter case, the pitch transfer operation can be omitted.

上記のように熟成沈積・分離工程を有することは、本発
明の大きな特徴であるが、該工程の使用温度は前段の熱
分解重縮合工程よりやや低い領域を用いることが好まし
い、すなわち、熱分解のガス発生が少なく、また、もは
や重縮合が進まず。
It is a major feature of the present invention to have the aging sedimentation/separation step as described above, but it is preferable to use a temperature in this step that is slightly lower than that of the preceding pyrolysis polycondensation step. There is little gas generation, and polycondensation no longer progresses.

既に生成しているメソ相分子の分子量増大が起ることが
少ない十分低い温度で、かつ系全体が液体で、メソ相の
成長、合体、沈降がすみやかに起る粘度を保持している
ような十分に高い温度を選ぶ必要がある。このような温
度領域は、原料および前段工程での熱分解重縮合の条件
で異るが、一般には数lθ℃の幅があり、十分余裕を持
って制御することができる。すなわち、この工程での温
度領域は、工業的に好ましと思われる該工程所要時間を
5分〜4時間とした場合には約350℃〜約400℃の
範囲にあり、特に良好なのは、約360℃〜約390℃
の範囲である。このような温度領域に保持することは、
前段の工程で高温になっているピッチを冷却しつつ保温
することで、特に大きな熱量を加えて制御する必要がな
いので容易である。
The temperature is low enough that the molecular weight of mesophase molecules that have already been formed is unlikely to increase, and the entire system is liquid, maintaining a viscosity that allows the mesophase to grow, coalesce, and settle quickly. It is necessary to choose a sufficiently high temperature. Such a temperature range varies depending on the raw materials and the conditions of the thermal decomposition polycondensation in the previous step, but generally has a range of several lθ°C and can be controlled with sufficient margin. That is, the temperature range in this step is approximately 350° C. to approximately 400° C., assuming that the required time for this step is 5 minutes to 4 hours, which is considered to be industrially preferable. 360℃~about 390℃
is within the range of Maintaining it in this temperature range means
By cooling the pitch, which has become hot in the previous step, and keeping it warm, there is no need to add or control a particularly large amount of heat, which is easy.

該熟成沈積反応では、上述のように工業的に好ましいと
思われる該熟成沈積工程の所要処理時間を5分〜4時間
とした場合には一般に350℃以下の温度では明瞭な分
離が認められないが、もしより長時間、例えば15時間
又はそれ以上の時間を費やすことが許容される場合には
、350℃以下の温度にて該工程を達成することが可能
°である。一方、400℃を越えると、沈積中にメソ相
ピッチが変性し軟化点が高くなる傾向があり適当でない
In the aging precipitation reaction, when the required treatment time for the aging precipitation step is 5 minutes to 4 hours, which is considered to be industrially preferable as mentioned above, clear separation is generally not observed at temperatures below 350°C. However, it is possible to accomplish the process at temperatures below 350° C. if it is acceptable to spend a longer time, for example 15 hours or more. On the other hand, if the temperature exceeds 400°C, the mesophase pitch tends to denature during deposition and the softening point tends to increase, which is not suitable.

該熟成沈積工程は木質的にはピッチの液相を攪拌せずに
完全に静置することによって目的を達成し得るが、該工
程の初期の段階では系全体の温度分布及び成分分布を均
一化する目的で攪拌を行なうことがよく、又極めてゆっ
くりした攪拌を終始性なうこともできる。
In terms of wood quality, the aging and sedimentation process can achieve its purpose by allowing the liquid phase of the pitch to stand completely still without stirring, but in the early stages of the process, it is necessary to homogenize the temperature distribution and component distribution of the entire system. Stirring is preferably carried out for the purpose of stirring, and very slow stirring can also be carried out throughout.

該工程の実質的所要時間は約360℃〜約390℃のよ
うな適当な温度域では5分〜4時間の範囲にわたって自
由に選ぶことができるが、時間が十分長いと分離された
メソ相が100%となるが軟化点は高くなる傾向にあり
一方時間が短いと軟化点は低いが、非メソ相を多く包含
したものが分離される傾向がある6図面に従って説明す
ると、該熟成沈積・分離工程では、前段工程で既に生成
したメソ相は一般に直径200JLm以下の球状で分散
している状態である(第1図)が、これが本工程で次第
に成長合体しつつ底部へ沈積し、底部でさらに合体して
大きな塊状となり(第2図)、それがさらに合体して、
さらに大きな液体の層を形づくり(第3図)、ついには
上層の非メソ相(微小なメソ相法を若干含む)と明瞭な
平面状の界面を隔して分離した状態の下層となる(第4
図)、このような状態に達したとき、熟成沈積槽の下部
に取りつけたバルブを開き、下層を静かに流出させ目的
とするピッチ製品(第5図)を回収する。この場合、上
層を先に抜き出して分離することも技術的には可能であ
る。また抜き出し作業に際して上層と下層の境界に至っ
たことは、両者の粘度がかなり異ることから抜き出しパ
イプ中の差圧と流量の関係から容易に検知することがで
きる。又、該工程において必らずしも完全に100%メ
ソ相のピッチでなく、90%以上のメソ相を含有する実
質上均質なメソ相ピッチを得る目的であれば二層が明瞭
に分離する以前のまだ1球状のメソ相が下層で十分合体
していないが、それがほぼ沈積分離した状態(第2図又
は第3図)の段階で下層を抜き出してもよい。
The actual time required for this step can be freely selected from 5 minutes to 4 hours at an appropriate temperature range of about 360°C to about 390°C, but if the time is long enough, the separated mesophase 100%, but the softening point tends to be high. On the other hand, if the time is short, the softening point is low, but a substance containing a large amount of non-meso phase tends to be separated. In the process, the mesophase that has already been generated in the previous step is generally dispersed in a spherical shape with a diameter of 200 JLm or less (Figure 1), but in this process, it gradually grows and coalesces, depositing at the bottom, and further forming at the bottom. They coalesce into a large lump (Figure 2), which then coalesces further,
An even larger liquid layer forms (Figure 3), and finally a lower layer separates from the upper non-meso phase (including some small meso phase) through a clear planar interface (Fig. 3). 4
(Fig. 5), when this state is reached, the valve attached to the bottom of the maturation sedimentation tank is opened, the lower layer is gently drained out, and the target pitch product (Fig. 5) is recovered. In this case, it is technically possible to extract and separate the upper layer first. Furthermore, the fact that the boundary between the upper layer and the lower layer has been reached during the extraction operation can be easily detected from the relationship between the differential pressure in the extraction pipe and the flow rate, since the viscosities of the two layers are considerably different. In addition, in this process, the two layers are not necessarily completely 100% mesophase pitch, but if the purpose is to obtain a substantially homogeneous mesophase pitch containing 90% or more mesophase, the two layers can be clearly separated. Although the previous spherical mesophase has not yet fully coalesced in the lower layer, the lower layer may be extracted at a stage when it is almost sedimented and separated (FIG. 2 or 3).

熟成沈積・分離工程において、形成される非メソ相を主
成分とする上層部分は再度、熟成沈積・分離工程あるい
は、前段の熱分解重縮合工程へ戻して使用することがで
きる。すなわち下層を分離した後、もはやわずかの微小
球状(104m〜20pLmの直径)のメソ相を含有す
る非メソ相を主成分とした上層部分を、再度塾成沈積分
離工程にかけると、球状メソ相がまた成長し沈降合体し
て1回目よりもやや収率は減少するが再び下層に沈積し
たメソ相を形成することがわかった。更にこの2回目に
製造したメソ相ピッチは1回目のものよりも軟化点が低
くなることを認めた。このことは、熟成沈積−分離工程
が、前段の熱分解重縮合工程で生成したメソ相の単純な
沈降分離を生ぜしめるものではなく、非メソ相に溶存し
ているメソ相となりうるピッチ成分分子を、会合させ、
又は既に生成しているメソ相の液滴の中へとり込み。
In the aging sedimentation/separation step, the upper layer portion formed mainly of a non-meso phase can be returned to the aging sedimentation/separation step or the preceding pyrolysis polycondensation step for use. In other words, after separating the lower layer, if the upper layer, which is mainly composed of non-meso phase and contains only a small amount of microspherical (104 m to 20 pLm diameter) meso phase, is subjected to the sedimentation separation process again, a spherical meso phase is obtained. was found to grow again, settle and coalesce, forming a mesophase that was deposited in the lower layer again, although the yield was slightly lower than the first time. Furthermore, it was observed that the mesophase pitch produced in the second run had a lower softening point than the mesophase pitch produced in the first run. This means that the ripening-sedimentation-separation step does not simply result in sedimentation and separation of the meso phase generated in the previous pyrolysis polycondensation step, but rather that the pitch component molecules that can become the meso phase are dissolved in the non-meso phase. to meet,
Or incorporated into the mesophase droplets that have already been generated.

次第にメソ相を大きく成長させる作用、更に分散してい
るメソ相を合体させ大きく沈降しやすいメソ相に熟成さ
せる作用を与えていることを示している。
This shows that it has the effect of gradually growing the mesophase to a larger size, and furthermore, it has the effect of coalescing the dispersed mesophases and ripening them into a large mesophase that tends to settle.

また、上記非メソ相を主成分とした上層部分を、前段の
熱分解重縮合工程に戻すと短時間でメソ相含有率が大き
くなり、メソ相球晶も直径が大きく生成するので、その
後、これを該熟成沈積φ分離工程へ移し、下層を分離す
ると実質上均質な低軟化点のメソ相ピッチが収率よ〈得
られる。
In addition, when the upper layer portion mainly composed of the non-meso phase is returned to the previous pyrolysis polycondensation step, the meso phase content increases in a short time, and meso phase spherulites with a large diameter are also formed. When this is transferred to the aging sedimentation φ separation step and the lower layer is separated, a substantially homogeneous mesophase pitch with a low softening point is obtained in a high yield.

従って、本発明は、該熟成沈積拳分離工程における上層
の非メソ相を主成分とするピッチを再循環して実質上均
質な低軟化点メソ相ピッチを収率よ〈製造する方法を包
含する。
Therefore, the present invention encompasses a method for producing a substantially homogeneous low-softening-point mesophase pitch in a high yield by recycling the pitch mainly composed of the non-mesophase in the upper layer in the aged sedimentation separation process. .

本発明の方法によって製造されるピッチは、メソ相部分
を約90°%〜約100%含有し、実質上均質なメソ相
ピッチでありながら、従来の技術では得難かった極めて
低い軟化点(約り30℃〜約320℃)を有し、従って
十分に低い溶融紡糸適合温度(約り90℃〜約380℃
)を有するピッチである。またこのピッチを用いて常法
に従って炭素繊維を調製すると、極めて高性能の炭素繊
維゛  が安定性良く得られることがわかった。即ち、
以下に述べる実施例にて分るように1本発明に係・る方
法で得た低軟化点の実質上均質のメソ相ピッチ(メソ相
約90%〜約100%含有)は、約380℃以下の温度
で通常の溶融紡糸が容易であり。
The pitch produced by the method of the present invention contains about 90% to about 100% mesophase portion, and is a substantially homogeneous mesophase pitch, but has an extremely low softening point (approximately 30°C to about 320°C), and thus a sufficiently low melt-spinning compatible temperature (about 90°C to about 380°C).
). It has also been found that when carbon fibers are prepared using this pitch according to conventional methods, extremely high-performance carbon fibers can be obtained with good stability. That is,
As can be seen in the examples described below, the substantially homogeneous mesophase pitch (containing about 90% to about 100% mesophase) with a low softening point obtained by the method according to the present invention is below about 380°C. Ordinary melt spinning is easy at a temperature of .

糸切れ頻度が少なく、高速で引取り可能で、繊維直径が
平均5pm〜12ILmのものが得られる。
The frequency of yarn breakage is low, the yarn can be taken up at high speed, and fibers with an average diameter of 5 pm to 12 ILm can be obtained.

次に実施例に則して本発明を説明する。Next, the present invention will be explained based on examples.

実施例1 ナフサの水蒸気分解で得られる残渣油を常圧に換算して
450℃まで減圧蒸留して得たタールを原料とした。こ
のものの特性値は、炭素含有量92.8wt%、水素含
有量7.0wt%、比重1.12.キノリンネ溶分θ%
、数平均分子量650、最高分子量12000の常温で
粘稠な液体であった。
Example 1 Tar obtained by distilling residual oil obtained by steam cracking of naphtha under reduced pressure to 450° C. in terms of normal pressure was used as a raw material. The characteristic values of this product are carbon content 92.8wt%, hydrogen content 7.0wt%, and specific gravity 1.12. Quinoline solubility θ%
It was a viscous liquid at room temperature with a number average molecular weight of 650 and a maximum molecular weight of 12,000.

この原料タール400gと原料タールに対し5wt%の
ニッケル舎モリブデン系触媒を攪拌装置内の内容MIJ
Iのオートクレーブに張り込み、十分に攪拌しながら2
℃/ m i nの速度で370℃迄昇温後、370℃
で2時間、水素圧力150kg / c rn”・Gで
水素添加分解反応を行なった0次いで、水素添加分解生
成物を常圧に換算して415℃迄減圧蒸留を行ない軽質
油を除去し、予備処理タールを得た。
400g of this raw material tar and 5wt% Nickelsha molybdenum catalyst based on the raw material tar are contained in the stirring device MIJ
Place it in the autoclave of I and stir it thoroughly.
After increasing the temperature to 370℃ at a rate of ℃/min, 370℃
The hydrogen cracking reaction was carried out for 2 hours at a hydrogen pressure of 150 kg/c rn"・G. Next, the hydrogen cracking product was converted to normal pressure and vacuum distilled to 415°C to remove light oil. A treated tar was obtained.

この予備処理を行なったタールは、炭素含有量92.1
wt%、水素含有量7.8%、比重1゜07、キノリン
ネ溶分θ%、数平均分子量450、最高分子量2800
の常温で粘稠な液体であった。原料タールに対し42%
の収率であった。
The tar subjected to this pretreatment has a carbon content of 92.1
wt%, hydrogen content 7.8%, specific gravity 1°07, quinoline solubility θ%, number average molecular weight 450, maximum molecular weight 2800
It was a viscous liquid at room temperature. 42% of raw material tar
The yield was .

この原料タール1000100O,45M内容積の反応
器に入れ、常圧、窒素ガス気流下で十分攪拌しながら4
30℃で2時間熱処理し、軟化点224℃、比重1.3
1.粘度11 poises (300℃)、数平均分
子量950、最高分子量13゜000、キノリンネ溶分
15wt%で偏光顕微鏡観察すると等方性の母相に直径
が2001Lm以下でほぼ全体が真球状のメソ相小球体
を面積比で約50%含むピッチを、原料タールに対し1
768wt%の収率で得た。
This raw material tar 1000100O was placed in a reactor with an internal volume of 45M, and was heated under atmospheric pressure and a nitrogen gas flow with thorough stirring.
Heat treated at 30℃ for 2 hours, softening point 224℃, specific gravity 1.3
1. When observed under a polarizing microscope with a viscosity of 11 poises (300°C), a number average molecular weight of 950, a maximum molecular weight of 13°000, and a quinoline solubility of 15 wt%, a small mesophase with a diameter of 2001 Lm or less and an almost entirely spherical shape was observed in the isotropic matrix. A pitch containing about 50% of spheres in terms of area ratio is 1% to the raw material tar.
Obtained with a yield of 768 wt%.

このピッチを内径3 c m 、長さ10cmアルミ製
小型容器にとり、窒素雰囲気下380℃で2時間攪拌せ
ずに静的状態に保ち1次いで冷却固化後金器のまま鉛直
方向にピッチを研摩し、断面を偏−光顕微鏡観察したと
ころ、ピッチは上層と下層の二層に明確に分離しており
、上層のピッチは直径が20#Lm以下の真球状のメソ
相小球体を面積比で約lO%含む大部分が非メソ相で、
軟化点198℃、比重1−27.キノリンネ溶分4wt
%であった。下層のピッチは、大きな流れ模様の100
%メソ相で、軟化点272℃、比重1.33、キノリン
ネ溶分38wt%であった。ピッチの収率は、張込量に
対し上層の非メソ相ピッチが6o 、5wt%、下層の
100%メソ相ピッチが39.5wt%であった。
This pitch was placed in a small aluminum container with an inner diameter of 3 cm and a length of 10 cm, and kept in a static state without stirring at 380°C in a nitrogen atmosphere for 2 hours. After cooling and solidifying, the pitch was ground vertically in the metal container. When the cross-section was observed under a polarized light microscope, the pitch was clearly separated into two layers, an upper layer and a lower layer, and the pitch of the upper layer was approximately 20 mm in diameter, consisting of true spherical mesophase spherules with a diameter of about 20 #Lm or less. The majority including 1O% is non-meso phase,
Softening point: 198°C, specific gravity: 1-27. Quinoline dissolved content 4wt
%Met. The pitch of the lower layer is 100 with a large flow pattern.
% meso phase, the softening point was 272°C, the specific gravity was 1.33, and the quinolinated content was 38 wt%. The yield of pitch was 6°, 5 wt % for the non-meso phase pitch in the upper layer, and 39.5 wt % for the 100% meso phase pitch in the lower layer, based on the amount of filling.

このようにして得られた実質状均質なメソ相ピッチを直
径0.5mmのノズルをもった紡糸器で、340℃の紡
糸温度、200 m m Hg以下の窒素圧下で紡糸し
た。このピッチ繊維を酸素雰囲気中240℃で30分間
不融化処理を施し、次に不活性ガス中で30℃/分の速
度で1,500℃まで昇温後放冷して炭素li1雑を得
た。
The substantially homogeneous mesophase pitch thus obtained was spun using a spinning machine having a nozzle with a diameter of 0.5 mm at a spinning temperature of 340° C. and under a nitrogen pressure of 200 mm Hg or less. This pitch fiber was subjected to infusibility treatment at 240°C for 30 minutes in an oxygen atmosphere, then heated to 1,500°C at a rate of 30°C/min in an inert gas, and then left to cool to obtain carbon li1. .

本発明によるメソ相ピッチから、紡糸性良く。The mesophase pitch according to the present invention has good spinnability.

また紡糸中のピッチの変性酸も少く、引っ張り強度2.
7X109Pa、引張り弾性率2.6XlOPaで糸径
10ILmの炭素繊維が得られた。
In addition, the amount of modifying acid in the pitch during spinning is small, and the tensile strength is 2.
Carbon fibers with a thread diameter of 10 ILm and a tensile modulus of 7X109Pa and a tensile modulus of 2.6XlOPa were obtained.

比較例1 ナフサの水蒸気分解で得られる残渣油を常圧に換算して
450℃まで減圧蒸留して得たタールを原料とした。
Comparative Example 1 Tar obtained by distilling residual oil obtained by steam cracking of naphtha under reduced pressure to 450° C. in terms of normal pressure was used as a raw material.

原料の特性は、炭素含有量92.8wt%、水素含有量
7.0wt%、比重1.12、キノリンネ溶分O%、数
平均分子量650、最高分子112.000の常温で粘
稠な液体であった。この原料タールl 、000grを
1.45文内容積の反応器に入れ、常圧、窒素ガス気流
下で十分攪拌しながら430℃で2時間熱処理し、軟化
点345℃、比重l、29、粘度450 poises
 (380℃)、数平均分子量2300、最高分子量4
8゜000、キノリンネ溶分17wt%で偏光顕微鏡観
察すると等方性の母相に直径が50pm以下でほぼ全体
が真球状のメソ相小球体を面積非で約30%含むピッチ
を、原料タールに対し39wt%の収率で得た。
The characteristics of the raw material are: carbon content 92.8 wt%, hydrogen content 7.0 wt%, specific gravity 1.12, quinoline soluble content 0%, number average molecular weight 650, maximum molecular weight 112,000, and is a viscous liquid at room temperature. there were. This raw material tar, 1,000 gr, was placed in a reactor with an internal volume of 1.45 kg, and heat-treated at 430°C for 2 hours with sufficient stirring under a nitrogen gas flow at normal pressure.The softening point was 345°C, the specific gravity was 29, and the viscosity was 450 poises
(380℃), number average molecular weight 2300, maximum molecular weight 4
When observed with a polarized light microscope at 8°000 and a quinoline solubility of 17 wt%, the raw tar contained pitch containing about 30% by area of mesophase spherules with a diameter of 50 pm or less and an almost entirely spherical shape in an isotropic matrix. The yield was 39 wt%.

このピッチを内径3cm、長さ10cmアルミ製小型製
器型容器、窒素雰囲気下380”Oで2時間攪拌せずに
静的状態に保ち、次いで冷却固化後容器のまま鉛直方向
にピッチを研摩し、断面を偏光顕微鏡観察したところ、
明瞭には二層に分離できなかった。
This pitch was placed in a small aluminum vessel-shaped container with an inner diameter of 3 cm and a length of 10 cm, and kept in a static state without stirring for 2 hours at 380" O in a nitrogen atmosphere. Then, after cooling and solidifying, the pitch was ground vertically in the container. , when the cross section was observed with a polarizing microscope,
It could not be clearly separated into two layers.

該ピッチを実施例1と同じ紡糸容器で、380℃〜41
0℃の紡糸速度で紡糸を行なったが糸切れが激しく、紡
糸不可能であった。
The pitch was heated at 380°C to 41°C in the same spinning vessel as in Example 1.
Although spinning was carried out at a spinning speed of 0° C., yarn breakage was severe and spinning was impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はいずれもピッチの断面を研摩し1反射
型偏光顕微鏡で直交ニコルの状態で倍率50倍で撮影し
た顕微鏡写真である。 第1図は、熱分解重縮合工程のみを経た適量の球状メソ
相の分散したピッチ、第2図は、第1図のピッチを38
0℃で10分間静置した時の底部、第3図は、第1図の
ピッチを380℃で30分間静置した時の二層界面部、
第4図は、第1図のピッチを380℃で2時間静置した
時の二層界面部、第5図は、実施例2で抜き出した下層
ピッチを示している。 代理人  弁理士 倉 橘  暎 区 派 区 区 Cつ 城 区 −を 派 手続補正書(方式) %式% 事件の表示 昭和60年特許願第292351、 発明の名称 メソ相ピッチの製造方法 補正をする者 事件との関係   特許出願人 住 所   東京都千代田区−ツ橋−丁目一番一号名 
称   東亜燃料工業株式会社 鈴エビル (電話 459−8309)昭和61年4月
22日(発送日) (−)「明細書」を次のように補正する。 「図面の簡単な説明」の欄を削除する。即ち、明細書第
31頁第18行から第32頁第1θ行までを削除する。 (ニ)「図面」を次のように補正する。 「第1図」から「第5図」を全て削除する。
FIGS. 1 to 5 are micrographs of polished pitch cross-sections taken using a single-reflection polarizing microscope at a magnification of 50 times in crossed nicols. Figure 1 shows the pitch in which an appropriate amount of spherical mesophase is dispersed through only the pyrolysis polycondensation process, and Figure 2 shows the pitch of Figure 1 at 38 cm.
Figure 3 shows the bottom part when the pitch in Figure 1 is left at 380°C for 30 minutes,
FIG. 4 shows the two-layer interface when the pitch shown in FIG. 1 was left at 380° C. for 2 hours, and FIG. 5 shows the lower layer pitch extracted in Example 2. Agent Patent Attorney Tachibana Kura Ai Ku Ku Ku Ku C Tsujo Ku - Written amendment (method) % formula % Display of the case 1985 Patent Application No. 292351, Name of the invention Case of a person amending the manufacturing method of mesophase pitch Relationship with Patent applicant address No. 1, Tsuhashi-chome, Chiyoda-ku, Tokyo
Name: Suzue Building, Toa Fuel Industry Co., Ltd. (Telephone: 459-8309) April 22, 1986 (shipment date) (-) The "Description" is amended as follows. Delete the "Brief description of drawing" column. That is, the text from page 31, line 18 to page 32, line 1θ is deleted. (d) “Drawings” shall be amended as follows. Delete all “Figure 5” from “Figure 1”.

Claims (1)

【特許請求の範囲】 1)メソ相ピッチ製造用原料に水素添加分解反応による
予備処理を施し、該予備処理を行なったメソ相ピッチ製
造用原料を熱分解重縮合せしめるようにしたことを特徴
とするメソ相ピッチの製造方法。 2)メソ相ピッチ製造用原料に水素添加分解反応による
予備処理を施し、該予備処理を行なったメソ相ピッチ製
造用原料を加熱して熱分解重縮合させ、重縮合物中のメ
ソ相ピッチ部分が体積で約20%〜約80%の含有率と
なるようにしたのち、当該重縮合物を約400℃以下で
保持しながら静置し、下層に密度の大きいメソ相ピッチ
部分を成長熟成させつつ集積し、当該メソ層ピッチ部分
を上層の密度の小さい非メソ相が大部分を占めるピッチ
部分から分離して取り出すことを特徴とするメソ相ピッ
チの製造方法。 3)メソ相ピッチ製造用原料が約400℃以上の沸点を
有する炭化水素を主成分として含有するものである特許
請求の範囲第2項記載のメソ相ピッチの製造方法。 4)約380℃〜約460℃の範囲の温度でメソ相ピッ
チ製造用原料を熱分解重縮合させる特許請求の範囲第2
項記載のメソ相ピッチの製造方法。 5)約410℃〜約440℃の範囲の温度でメソ相ピッ
チ製造用原料を熱分解重縮合させる特許請求の範囲第4
項記載のメソ相ピッチの製造方法。 6)重縮合物を約350℃〜約400℃の範囲の温度で
保持しながら所要時間静置し、下層に密度の大きいメソ
相ピッチ部分を成長熟成させつつ集積する特許請求の範
囲第2項記載のメソ相ピッチの製造方法。 7)重縮合物を約360℃〜約390℃の範囲の温度で
保持しながら熟成沈積を行なわせる特許請求の範囲第6
項記載のメソ相ピッチの製造方法。 8)体積で約90%〜約100%のメソ相ピッチ部分を
含有し、約320℃以下の軟化点を有する特許請求の範
囲第2項記載のメソ相ピッチの製造方法。 9)重縮合物中のメソ相ピッチ部分が体積含有率で約4
0%〜約70%となるようにメソ相ピッチ製造用原料を
熱分解重縮合させる特許請求の範囲第2項記載のメソ相
ピッチの製造方法。 10)非メソ相ピッチ部分を主成分とする上層部分を熱
分解重縮合工程又は熟成沈積分離工程に再循環させるこ
とから成る特許請求の範囲第2項記載のメソ相ピッチの
製造方法。
[Scope of Claims] 1) The raw material for producing mesophase pitch is pretreated by hydrogenolysis reaction, and the pretreated raw material for producing mesophase pitch is subjected to pyrolysis polycondensation. A method for producing mesophase pitch. 2) The raw material for producing meso-phase pitch is pre-treated by hydrogenolysis reaction, the pre-treated raw material for producing meso-phase pitch is heated and subjected to pyrolysis polycondensation, and the meso-phase pitch portion in the polycondensate is After adjusting the content of the polycondensate to be about 20% to about 80% by volume, the polycondensate is left to stand while being maintained at about 400°C or less, and a mesophase pitch portion with a high density is grown and aged in the lower layer. A method for producing mesophase pitch, the method comprising: collecting the mesophase pitch, and separating and extracting the mesolayer pitch portion from the pitch portion in which the non-mesophase with a low density in the upper layer occupies the majority. 3) The method for producing mesophase pitch according to claim 2, wherein the raw material for producing mesophase pitch contains as a main component a hydrocarbon having a boiling point of about 400° C. or higher. 4) Pyrolytic polycondensation of the raw material for producing mesophase pitch at a temperature in the range of about 380°C to about 460°C.
A method for producing mesophase pitch as described in . 5) Pyrolytic polycondensation of the raw material for producing mesophase pitch at a temperature in the range of about 410°C to about 440°C.
A method for producing mesophase pitch as described in . 6) The polycondensate is maintained at a temperature in the range of about 350° C. to about 400° C. and allowed to stand for a required period of time to grow and mature the mesophase pitch portion with a high density in the lower layer, as claimed in claim 2. A method for producing the mesophase pitch described. 7) Claim 6, wherein the polycondensate is aged and deposited while being maintained at a temperature in the range of about 360°C to about 390°C.
A method for producing mesophase pitch as described in . 8) A method for producing a mesophase pitch according to claim 2, which contains a mesophase pitch portion of about 90% to about 100% by volume and has a softening point of about 320° C. or less. 9) The mesophase pitch portion in the polycondensate has a volume content of approximately 4
3. The method for producing mesophase pitch according to claim 2, wherein the raw material for producing mesophase pitch is subjected to pyrolysis polycondensation so that the concentration is 0% to about 70%. 10) The method for producing mesophase pitch according to claim 2, which comprises recycling the upper layer portion mainly consisting of a non-mesophase pitch portion to a pyrolysis polycondensation step or an aging sedimentation separation step.
JP60292351A 1985-12-26 1985-12-26 Production of mesophase pitch Granted JPS61241392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292351A JPS61241392A (en) 1985-12-26 1985-12-26 Production of mesophase pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292351A JPS61241392A (en) 1985-12-26 1985-12-26 Production of mesophase pitch

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55099646A Division JPS57119984A (en) 1980-07-21 1980-07-21 Preparation of meso-phase pitch

Publications (2)

Publication Number Publication Date
JPS61241392A true JPS61241392A (en) 1986-10-27
JPS6250515B2 JPS6250515B2 (en) 1987-10-26

Family

ID=17780672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292351A Granted JPS61241392A (en) 1985-12-26 1985-12-26 Production of mesophase pitch

Country Status (1)

Country Link
JP (1) JPS61241392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106863A (en) * 2022-01-27 2022-03-01 克拉玛依市先进能源技术创新有限公司 Spinning mesophase pitch and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411330A (en) * 1973-12-11 1979-01-27 Union Carbide Corp Improled method for producing carbon fiber from meso phase pitch
JPS54160427A (en) * 1977-07-08 1979-12-19 Exxon Research Engineering Co Production of optically anisotropic* deformable pitch* optical anisotropic pitch* and pitch fiber
JPS57119984A (en) * 1980-07-21 1982-07-26 Toa Nenryo Kogyo Kk Preparation of meso-phase pitch
JPS57168988A (en) * 1981-04-13 1982-10-18 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS57168987A (en) * 1981-04-13 1982-10-18 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS5887187A (en) * 1981-11-18 1983-05-24 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS5887188A (en) * 1981-11-18 1983-05-24 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS60190492A (en) * 1984-03-10 1985-09-27 Kawasaki Steel Corp Preparation of precursor pitch for carbon fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411330A (en) * 1973-12-11 1979-01-27 Union Carbide Corp Improled method for producing carbon fiber from meso phase pitch
JPS54160427A (en) * 1977-07-08 1979-12-19 Exxon Research Engineering Co Production of optically anisotropic* deformable pitch* optical anisotropic pitch* and pitch fiber
JPS57119984A (en) * 1980-07-21 1982-07-26 Toa Nenryo Kogyo Kk Preparation of meso-phase pitch
JPS57168988A (en) * 1981-04-13 1982-10-18 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS57168987A (en) * 1981-04-13 1982-10-18 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS5887187A (en) * 1981-11-18 1983-05-24 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS5887188A (en) * 1981-11-18 1983-05-24 Nippon Oil Co Ltd Raw pitch for carbon fiber
JPS60190492A (en) * 1984-03-10 1985-09-27 Kawasaki Steel Corp Preparation of precursor pitch for carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106863A (en) * 2022-01-27 2022-03-01 克拉玛依市先进能源技术创新有限公司 Spinning mesophase pitch and preparation method thereof

Also Published As

Publication number Publication date
JPS6250515B2 (en) 1987-10-26

Similar Documents

Publication Publication Date Title
JPS6138755B2 (en)
EP0084237B1 (en) Process for the manufacture of carbon fibers and feedstock therefor
US5614164A (en) Production of mesophase pitches, carbon fiber precursors, and carbonized fibers
JPS62270685A (en) Production of mesophase pitch
US4874502A (en) Method of purifying coal tars for use in the production of carbon products
US4283269A (en) Process for the production of a feedstock for carbon artifact manufacture
JPS6249913B2 (en)
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
JPH0699693B2 (en) Optically anisotropic carbonaceous pitch and its manufacturing method
JPS61241392A (en) Production of mesophase pitch
US4810437A (en) Process for manufacturing carbon fiber and graphite fiber
JPS6224036B2 (en)
JPS61241391A (en) Production of mesophase pitch
JPH01247487A (en) Production of mesophase pitch
JPS61241390A (en) Production of mesophase pitch
JPH0415274B2 (en)
JPH01249887A (en) Production of mesophase pitch
JPH032298A (en) Production of meso-phase pitch
JPH0418127A (en) Production of carbon fiber
JPH03167291A (en) Optically anisotropic pitch and its manufacture
JPH0418126A (en) Production of carbon fiber and graphite fiber
JPH0411024A (en) Production of carbon fiber and graphite fiber
JPS5988923A (en) Manufacture of carbon fiber
JPH01254797A (en) Production of mesophase pitch
JPH01268788A (en) Production of mesophase pitch for carbon fiber