JPS62160772A - Semiconductor pressure sensor and pressure measuring device - Google Patents

Semiconductor pressure sensor and pressure measuring device

Info

Publication number
JPS62160772A
JPS62160772A JP305386A JP305386A JPS62160772A JP S62160772 A JPS62160772 A JP S62160772A JP 305386 A JP305386 A JP 305386A JP 305386 A JP305386 A JP 305386A JP S62160772 A JPS62160772 A JP S62160772A
Authority
JP
Japan
Prior art keywords
resistor
impurity layer
pressure
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP305386A
Other languages
Japanese (ja)
Other versions
JPH0560672B2 (en
Inventor
Mayumi Nomiyama
野見山 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP305386A priority Critical patent/JPS62160772A/en
Publication of JPS62160772A publication Critical patent/JPS62160772A/en
Publication of JPH0560672B2 publication Critical patent/JPH0560672B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a voltage proportional to the change in pressure, by providing another diffused layer in one diffused layer, which has specified concentration and area, on a diaphragm formed with a silicon semiconductor, forming a synthesized resistor body, reducing the change in pressure sensitivity dependent on the change in temperature, and constituting a bridge circuit using four pieces of the semiconductor pressure sensors. CONSTITUTION:A first impurity layer 2 is formed on a silicon semiconductor 3 by epitaxial growing and the like. A second impurity layer 5 is formed in the first diffused layer by the similar means. Terminals 4 and 4a are formed thereon with a specified interval being provided. An SiO2 layer 6 is provided on the first and second impurity layers in order to insulate both terminals. The first diffused layer 2 and the second diffused layer 5 are considered to be an assembled body of two kinds of resistors in the longitudinal and lateral directions. A pressure measuring device using these parts includes a Whetstone bridge circuit in order to pickup detected signal as enlarged and accurately as possible. A constant voltage source 14 is connected between input terminals 12 and 13. An output voltage is picked from between output terminals 15 and 16. Thus the temperature dependency of pressure sensitivity can be reduced.

Description

【発明の詳細な説明】 イ、「発明の目的」 (産業上の利用分野) 本発明は、半導体圧力センサの温度特性の改善及びこの
半導体圧力センサを用いた圧力測定装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention (Field of Industrial Application) The present invention relates to an improvement in the temperature characteristics of a semiconductor pressure sensor and a pressure measuring device using this semiconductor pressure sensor.

(従来の技術) 圧力を電気信号に変換する手段として、半導体を用いた
センサが近年注目されるようになった。
(Prior Art) Sensors using semiconductors have recently attracted attention as a means of converting pressure into electrical signals.

圧力センサとして要求される条件である低価格性、高信
頼性、小型化等を満たす点で、シリコン半導体を利用し
たものが、特に有望と見られている。
Products using silicon semiconductors are considered particularly promising in that they meet the requirements of pressure sensors, such as low cost, high reliability, and miniaturization.

半導体圧力センサは、ピエゾ抵抗効果を利用したものが
一般的である。このピエゾ抵抗効果を利用したセンサは
、外力による歪みで半導体の結晶内に応力変化が生じ、
これに起因して電子エネルギ一単位が変化する。その結
果、抵抗値が変るのでアル。従って、この抵抗値の変化
を1測することで、加えられた圧力を測定しようとする
ものである。
Semiconductor pressure sensors generally utilize piezoresistance effects. Sensors that utilize this piezoresistance effect generate stress changes within the semiconductor crystal due to strain caused by external forces.
Due to this, one unit of electronic energy changes. As a result, the resistance value changes. Therefore, by measuring one change in this resistance value, the applied pressure can be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、半導体圧力センサは温度依存性が強いため、圧
力を精度良く測定するためには、温度補償回路が必要と
される。温度の影響には2つの形がある。一つは出力電
圧の温度変動であり、他方は、最小圧力に対する出力電
圧の温度変動である。
However, since semiconductor pressure sensors have strong temperature dependence, a temperature compensation circuit is required to accurately measure pressure. There are two types of temperature effects. One is the temperature variation of the output voltage, and the other is the temperature variation of the output voltage relative to the minimum pressure.

一般に前者はスパン変動、侵者はオフセット変動と呼ば
れる。
Generally, the former is called span variation, and the invader is called offset variation.

従来の半導体圧力センサでは、この2つの温度変動を補
償するための回路を設けざるをえないが、そのため回路
が複雑となり、価格の上昇と信頼性の点で問題があった
In conventional semiconductor pressure sensors, a circuit must be provided to compensate for these two temperature fluctuations, but this complicates the circuit, causing problems in terms of increased cost and reliability.

この点を解決するため、特公昭57−26430号[シ
リコンスドレンゲージ」の発明(以下先願1と記す〉や
本出願人が出願した特願昭60−138591号[半導
体圧力センサおよび圧力測定装置」の出願(以下、先願
2と記す)がある。
In order to solve this problem, the invention of Japanese Patent Publication No. 57-26430 [Silicon Drain Gauge] (hereinafter referred to as Prior Application 1) and Japanese Patent Application No. 60-138591 filed by the present applicant [Semiconductor pressure sensor and pressure measurement] There is an application (hereinafter referred to as "Prior Application 2") for "Device".

本発明は、これらの先願に係る手段とは別の手段を用い
て、上記従来の技術が有していた問題点を解決するもの
である。
The present invention solves the problems of the above-mentioned conventional techniques by using means different from those of these prior applications.

口、「発明の構成」 〔問題点を解決するための手段〕 本発明は、上記問題点を解決するためにシリコン半導体
で形成したダイアフラムの上に所定の濃度と面積を有す
る第1の不純物層を形成し、前記第1の不純物層中に第
2の不純物層を形成し、前記第2の不純物層の適当な箇
所を結んで抵抗体を形成し、前記抵抗体の形状、前記ダ
イアフラム上での抵抗体の配置、抵抗体の形成方向とダ
イアフラムの結晶軸との方向の関係を用いて、前記抵抗
体における圧力感度の温度変化分が小さくなるように構
成し、また、この半導体圧力センサを4つ用いてブリッ
ジ回路を構成し、このブリッジ回路の入力端子間に定電
圧源から電流を加えて、ブリッジ回路の出力端子間から
圧力の変化に比例した電圧を1qるようにしたものであ
る。
``Structure of the Invention'' [Means for Solving the Problems] In order to solve the above problems, the present invention provides a first impurity layer having a predetermined concentration and area on a diaphragm formed of a silicon semiconductor. A second impurity layer is formed in the first impurity layer, a resistor is formed by connecting appropriate locations of the second impurity layer, and the shape of the resistor is determined on the diaphragm. By using the arrangement of the resistor and the relationship between the formation direction of the resistor and the crystal axis of the diaphragm, the semiconductor pressure sensor is configured so that the temperature change in the pressure sensitivity of the resistor is small. A bridge circuit is constructed using four of them, and a current is applied from a constant voltage source between the input terminals of this bridge circuit, so that 1q of voltage proportional to the change in pressure is applied between the output terminals of the bridge circuit. .

なお、本発明が先願1に係る技術と異なる点は、先願1
の技術は抵抗体の不純物濃度をある特定の値に限定する
ことが必要であるが、本発明は、この不純物濃度をある
特定の値に限定せずとも上記の従来例が持っていた問題
点を解決することが出来る点で異なっている。
The difference between the present invention and the technology related to Prior Application 1 is that
The above technology requires limiting the impurity concentration of the resistor to a specific value, but the present invention solves the problems of the above-mentioned conventional example without limiting the impurity concentration to a specific value. They are different in that they can solve the problem.

また、本発明が先願2に係かる技術と異なる点は、先願
2の技術は2本の抵抗体が独立に形成されていたのに対
し1本発明は1つの拡散層中にもう1つの拡散層を設け
、合成抵抗体としている点である。
Further, the difference between the present invention and the technology related to Prior Application 2 is that in the technology of Prior Application 2, two resistors are formed independently, whereas in the present invention, one resistor is formed in one diffusion layer. The difference is that two diffusion layers are provided to form a composite resistor.

(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明に係る半導体圧力センサの一構成例を示
した平面図(イ)と断面図(ロ)、第2図は第1図の半
導体圧力センサに示した端子間の抵抗に対する電流のバ
スの分布を模式的に示した図、第3図は第2図に示す抵
抗分布を等価回路で示す図、第4図は半導体圧力センサ
を4つ用いてブリッジ回路を構成した場合の本発明に係
る圧力測定@置を示した図、第5図は第1図に示した半
導体圧力センサに圧力が加わって歪みが生じている様子
を示した図、第6図はダイアフラムの薄肉部の上に配置
された半導体圧力センサを示す断面図(イ)と平面図(
ロ)、第7図は他の実施例を示す平面図、第8図は表面
濃度とピエゾ係数との関係を示した因、第9@はn型シ
リコンの温度とピエゾ係数の成分π1.との関係を示し
た図、第10図はn型シリコンの温度とピエゾ係数の成
分π44との関係を示した図、第11図はn型シリコン
・ピエゾ係数の成分π11の1度係数と電子濃度との関
係を示す図であり、これは第9図のグラフの勾配より求
めたものである。第12図はn型シリコン・ピエゾ係数
の成分π44の温度係数とホール濃度との関係を示す図
、第13図はn型シリコンの抵抗温度係数と比゛抵抗と
の関係を示す図、第14図はn型シリコンの抵抗温度係
数と比抵抗との関係を示す図である。なお、第13図と
第14図の出県は5olid  5tate  ele
ctron、 11  pp  639〜646. f
eb(1968)である。第15図は第9図又は第10
図から求めたピエゾ係数の成分πI++πd4と表面電
子濃度又は表面ホール濃度との関係を示す図、第16図
は第13図又は第14図において異なる濃度でありなが
ら同じ抵抗温度係数を示す2つの電子濃度又はホールl
N!度が存在することを示す図、第17図はダイアフラ
ム上に抵抗体2,5を配置した時ピエゾ係数の符号が異
なることを示す図であり、(C)、(d)は結晶軸と抵
抗体方位との関係を示す図である。
FIG. 1 is a plan view (a) and a cross-sectional view (b) showing a configuration example of a semiconductor pressure sensor according to the present invention, and FIG. 2 is a current with respect to resistance between terminals shown in the semiconductor pressure sensor of FIG. Figure 3 is an equivalent circuit diagram of the resistance distribution shown in Figure 2, Figure 4 is a diagram schematically showing the distribution of the bus in Figure 2, and Figure 4 is a diagram showing a bridge circuit using four semiconductor pressure sensors. Figure 5 is a diagram showing the pressure measurement @ arrangement according to the invention, Figure 5 is a diagram showing how the semiconductor pressure sensor shown in Figure 1 is distorted due to pressure being applied, and Figure 6 is a diagram showing the thin part of the diaphragm. Cross-sectional view (A) and plan view (A) showing the semiconductor pressure sensor placed above
B), FIG. 7 is a plan view showing another example, FIG. 8 is a diagram showing the relationship between surface concentration and piezo coefficient, and FIG. Figure 10 is a diagram showing the relationship between n-type silicon temperature and piezo coefficient component π44, and Figure 11 is a diagram showing the relationship between n-type silicon piezo coefficient component π11's 1 degree coefficient and electron 9 is a diagram showing the relationship with concentration, which was determined from the slope of the graph in FIG. 9. Figure 12 is a diagram showing the relationship between the temperature coefficient of n-type silicon piezoelectric coefficient component π44 and hole concentration, Figure 13 is a diagram showing the relationship between the resistance temperature coefficient of n-type silicon and specific resistance, and Figure 14 is a diagram showing the relationship between the temperature coefficient of resistance and specific resistance of n-type silicon. The figure is a diagram showing the relationship between the resistance temperature coefficient and specific resistance of n-type silicon. In addition, the starting prefectures in Figures 13 and 14 are 5olid 5tate ele
ctron, 11 pp 639-646. f
eb (1968). Figure 15 is Figure 9 or 10
A diagram showing the relationship between the component πI++πd4 of the piezo coefficient obtained from the figure and the surface electron concentration or surface hole concentration. Figure 16 is a diagram showing the relationship between the piezo coefficient component πI++πd4 and the surface electron concentration or surface hole concentration. concentration or hole l
N! Figure 17 is a diagram showing that the sign of the piezo coefficient is different when resistors 2 and 5 are placed on the diaphragm, and (C) and (d) are diagrams showing that the crystal axis and the resistance It is a figure showing the relationship with body direction.

なお、第8〜第10図はJ 、 of apply、p
hys、34、no、2  pp313〜318jeb
y1963から抜粋したものである。
In addition, Figs. 8 to 10 are J, of apply, p
hys, 34, no, 2 pp313-318jeb
This is an excerpt from y1963.

第1図(イ)、(ロ)において、3はシリコン半導体で
あり、2はシリコン半導体3の上に熱拡散、イオン注入
、エピタキシャル成長等の手段により形成した第1の不
純物層、5は第1の拡散層の中に第1の不純物層2と同
様の手段により形成した第2の不純物層、4,4aは第
2の不純物層5の上に所定の間隔を隔てて形成された端
子、6は第1.第2の不純物層の上に形成され端子間を
絶縁するためのSiO□層である。
In FIGS. 1(a) and (b), 3 is a silicon semiconductor, 2 is a first impurity layer formed on the silicon semiconductor 3 by means such as thermal diffusion, ion implantation, epitaxial growth, etc., and 5 is a first impurity layer. a second impurity layer formed in the diffusion layer by the same means as the first impurity layer 2; terminals 4 and 4a are formed on the second impurity layer 5 at a predetermined interval; is the first. This is a SiO□ layer formed on the second impurity layer to insulate between terminals.

このような構成においては、第1の拡散層2と、第2の
拡散層5をみたとき縦方向、横方向の2種類の抵抗体の
組合わせと考えることが出来る。この場合、出力端子4
,48間の電流のバスは第2図に示すようにX成分の抵
抗体10と、Y成分の抵抗体20に分割して考えること
ができ、第3図に示すような等価回路に置きかえること
ができる。
In such a configuration, when looking at the first diffusion layer 2 and the second diffusion layer 5, they can be considered as a combination of two types of resistors, one in the vertical direction and the other in the horizontal direction. In this case, output terminal 4
, 48 can be divided into a resistor 10 for the X component and a resistor 20 for the Y component as shown in Figure 2, and can be replaced with an equivalent circuit as shown in Figure 3. I can do it.

半導体圧力センサで得られる抵抗の変化(検出信号)は
僅かなものである。このため圧力測定装置においては、
この検出信号をできるだけ大きく精度良く取出すため、
通常は、第4図のように、ホイートストン・ブリッジ(
以下単にブリッジと記す)回路を組んでいる。
The change in resistance (detection signal) obtained by a semiconductor pressure sensor is small. For this reason, in pressure measuring devices,
In order to extract this detection signal as large and accurately as possible,
Usually, as shown in Figure 4, Wheatstone Bridge (
A circuit (hereinafter simply referred to as a bridge) is constructed.

第1図(イ)、(ロ)では、1つの抵抗体のみ示してい
るが、ブリッジ回路を組むときは4ペアの抵抗体が形成
される。第3図で示す等価回路の抵抗体10の抵抗値を
”Is抵抗体20の抵抗値をr2、各ブリッジ辺の並列
抵抗をR1−R4とすると、 R+ =R2−R3−R
a −1/ (r + +r2 ) −RM である。そして、ブリッジ回路として機能するように対
辺同士(R+とR4、R2とR3)が印加圧力に対応し
て同方向に抵抗変化し、隣接同士が逆方向に抵抗変化す
るように構成する。
Although only one resistor is shown in FIGS. 1A and 1B, four pairs of resistors are formed when forming a bridge circuit. If the resistance value of the resistor 10 in the equivalent circuit shown in FIG.
a −1/(r + +r2 ) −RM. Then, so as to function as a bridge circuit, opposite sides (R+ and R4, R2 and R3) are configured so that their resistance changes in the same direction in response to applied pressure, and adjacent sides change their resistance in opposite directions.

入力端子12.13間には定電圧源14が接続されてお
り、出力端子15.16間からは出力電圧eOが取出さ
れる。
A constant voltage source 14 is connected between input terminals 12 and 13, and output voltage eO is taken out between output terminals 15 and 16.

第4図に示したフルブリッジ回路による圧力測定装置の
動作を説明するために、基本構成である第3図を用いて
動作の説明をする。
In order to explain the operation of the pressure measuring device using the full bridge circuit shown in FIG. 4, the operation will be explained using FIG. 3 which shows the basic configuration.

抵抗体10.20は、ともに単結晶ダイアフラムに歪み
が加わった際に、歪抵抗体として動作する位置に配置し
であるものとする。例えば、第5図のように、歪みのな
い状態Bがら歪みが加わった状態Cに変化した時、抵抗
体に応力が加わるような配置になっている。
It is assumed that the resistors 10 and 20 are both arranged at positions where they operate as strain resistors when strain is applied to the single crystal diaphragm. For example, as shown in FIG. 5, the arrangement is such that stress is applied to the resistor when the state B changes from no strain to the state C where strain is applied.

一般に、歪抵抗体の感度は、ピエゾ係数π(Cn12/
 dyn ) T;表mgれ、定義GE (1) 式テ
アル。
Generally, the sensitivity of a strain resistor is determined by the piezo coefficient π (Cn12/
dyn) T; Table mg, Definition GE (1) Formula theal.

Δρ/ρ−π・σ            (+)ここ
で、ρ:比抵抗(Ωcm > Δρ:比抵抗変化(Ωcm ) σ:抵抗体に加わった応力(dyn /cm2)これを
抵抗体の抵抗Iff rで表現すると、抵抗体の形状変
化の項が加わるが、半導体の場合、πの値が大きいので
(2)式としてよい。
Δρ/ρ−π・σ (+) Here, ρ: Specific resistance (Ωcm > Δρ: Change in specific resistance (Ωcm) σ: Stress applied to the resistor (dyn/cm2) This can be expressed as the resistance Ifr of the resistor. Expressing this, a term for the shape change of the resistor is added, but in the case of semiconductors, the value of π is large, so equation (2) may be used.

Δr/r−(1+2ν)ε+π・σ 〜π畢σ           (2)ここで、シ:ボ
アソン比 ε:歪量 このピエゾ係数πの温度係数を(3)式のように定式化
する。
Δr/r−(1+2ν)ε+π·σ 〜π畢σ (2) Here, σ: Boisson's ratio ε: strain amount The temperature coefficient of this piezo coefficient π is formulated as in equation (3).

π −π o   (1−ト β T  )     
                       (3
)ここで、β:ビエゾ係数の温度係数(dcg−’ )
π0:基準温度Toでのピエゾ係数 T:TohHう測定した温度 また、抵抗体の抵抗値自体の温度係数を(4)式のよう
に置く。
π −π o (1-t β T )
(3
) Here, β: temperature coefficient of Biezo coefficient (dcg-')
π0: Piezo coefficient at reference temperature To: T: TohH measured temperature Also, the temperature coefficient of the resistance value of the resistor itself is set as shown in equation (4).

r −r、  (1+ a T )         
  (4)ここで、α:抵抗の温度系rIl(deg−
’)ro :!3準温度TOでの抵抗値 抵抗体に応力が加わって、かつ温度が変った場合の抵抗
値の変化は(2)、(3)式から次式のようになる。
r − r, (1+ a T )
(4) Here, α: resistance temperature system rIl(deg-
')ro:! 3 Resistance value at quasi-temperature TO When stress is applied to the resistor and the temperature changes, the change in resistance value is expressed by the following equation from equations (2) and (3).

Δγ/γ−π・σ−πo  (1+βT)σ  (5)
また、第4図のように第3図に示す抵抗を4つ用いて、
ブリッジ回路を構成し、端子12.13に定電圧源14
を接続した時、出力端子15.16に現れる電圧eoは
(6)式で示される。
Δγ/γ−π・σ−πo (1+βT)σ (5)
Also, as shown in Fig. 4, using four resistors shown in Fig. 3,
A bridge circuit is configured, and a constant voltage source 14 is connected to terminals 12 and 13.
When connected, the voltage eo appearing at the output terminals 15 and 16 is expressed by equation (6).

ムγ eo−−・E(6) ア E:定電圧源14の電圧E 従って、温度による出力電圧eoの変化、即ち、圧力セ
ンサ(圧力測定装置)としての温度依存性Δγ を問題にするときは’7を考えれば良い。
M γ eo - E (6) A: Voltage E of constant voltage source 14 Therefore, when considering the change in output voltage eo due to temperature, that is, the temperature dependence Δγ as a pressure sensor (pressure measuring device). You can think of '7.

π1 :抵抗体10のピエゾ係数 π2 :抵抗体20のピエゾ係数 爛1東依存性を考慮すると、 πlo * ’IO・・・温度Toでの抵抗体10のピ
エゾ係数及び抵抗値 πzo l r、。・・・温度Toでの抵抗体20のピ
エゾ係数及び抵抗値 β嘗、α1・・・抵抗体10のピエゾ係数の温度係数と
抵抗値の温度係数 β2.α2・・・抵抗体20のピエゾ係数の温度係数と
抵抗値の温度係数 σ1.σ2・・・抵抗体に加わる応力 ここでα及びβの値は、抵抗体がn型シリコンの場合は
第11.第13図より、n型シリコンの場合は第12図
、第14図より求めることができる。
π1: Piezo coefficient of the resistor 10 π2: Considering the dependence of the piezo coefficient of the resistor 20 on the east, πlo*'IO...The piezo coefficient and resistance value πzo l r of the resistor 10 at the temperature To. ...Piezo coefficient and resistance value β1 of the resistor 20 at temperature To, α1...Temperature coefficient of the piezo coefficient and temperature coefficient β2 of the resistance value of the resistor 10. α2...Temperature coefficient of piezo coefficient of resistor 20 and temperature coefficient of resistance value σ1. σ2... Stress applied to the resistor Here, the values of α and β are the 11th when the resistor is n-type silicon. From FIG. 13, in the case of n-type silicon, it can be found from FIGS. 12 and 14.

第13図、14図において、αは比抵抗が1O−20C
1の所で極小値をとるから、第16図のように、成るα
の値に対応する比抵抗は2つ存在する。
In Figures 13 and 14, α has a specific resistance of 1O-20C.
Since the minimum value is taken at 1, α becomes as shown in Figure 16.
There are two resistivities corresponding to the values of .

第16図で旧、(2)に対応する不純物m度を抵抗体の
不純物′a度として選択しておくと、α1−α2(9) 一□・((π1゜σl+mπ2oσ2)1十気 +(π10 σI”β1 +m7r、。β2−β2)T
〕・・・0ω ここで00)式の第1項をA1第2項を8とすると、A
=π、。−cyl+mπZ。・cy2 ”−Q    
   (11)ヨ九」−・(π、。、σ、+mπυσ2
)1  1千慎 となり、応力により抵抗値は変化するが、温度では抵抗
値が変化しない抵抗体素子を得ることができる。
In Figure 16, if we select the m degree of impurity corresponding to (2) as the degree of impurity 'a of the resistor, α1 - α2 (9) π10 σI”β1 +m7r,.β2−β2)T
]...0ω Here, if the first term of equation 00) is A1 and the second term is 8, then A
=π,. -cyl+mπZ.・cy2”-Q
(11) Yo9”−・(π,.,σ,+mπυσ2
)11,000, and it is possible to obtain a resistor element whose resistance value changes with stress but whose resistance value does not change with temperature.

次に、以上の抵抗体素子を用いて実際の圧力センサを構
成する場合、上述したような関係になるように構成し、
圧力感度における温度依存性を小さくすることができる
旨を具体例を持って証明する。
Next, when constructing an actual pressure sensor using the above resistor elements, it is constructed so that the relationship as described above is established,
We will use a concrete example to prove that the temperature dependence of pressure sensitivity can be reduced.

例えば、第6図に示すようなダイアフラムに抵抗体を配
置したとすると、ダイアフラムの結晶面や抵抗体の配置
方向により、(10)式のπ1゜。
For example, if a resistor is arranged on a diaphragm as shown in FIG. 6, the angle of π1° in equation (10) will depend on the crystal plane of the diaphragm and the direction in which the resistor is arranged.

πz0のピエゾ係数は変化する。例えば、第11゜12
図より(12)式を満たすためには、β1くO1β2く
0であるから、 (π1゜・σ+ ) ・(m7rzo・(72) <Q
    (13)でなければならない。これは、以下の
手段により実現することができる。
The piezo coefficient of πz0 changes. For example, the 11th and 12th
From the figure, in order to satisfy equation (12), β1 × O1 β2 × 0, so (π1°・σ+ ) ・(m7rzo・(72) <Q
It must be (13). This can be achieved by the following means.

(1)  抵゛抗体の配置方向(ダイアフラム上で接線
方向と放射線方向)・・・即ち、ピエゾ係数πIQ +
 πlOの極性を正、負とする手段、 例えば、(1)の手段により本発明を実現する場合は、
第17図のように(100)面のダイアフラム上の(1
10)方向に2種の抵抗体を配置する。
(1) The arrangement direction of the resistor (tangential direction and radial direction on the diaphragm)...that is, piezo coefficient πIQ +
When realizing the present invention by means of making the polarity of πlO positive or negative, for example, the means of (1),
As shown in Fig. 17, the (1
10) Arrange two types of resistors in the direction.

このときχ成分、y成分の抵抗体のピエゾ係数の値は、
第17図の(c)、(d)のように、π1゜〉0.πz
o<Oとなり、(13)式が満たされる。
At this time, the piezo coefficient values of the resistor for the χ and y components are:
As shown in (c) and (d) of FIG. 17, π1゜〉0. πz
o<O, and formula (13) is satisfied.

従って、(12)式の形から、B=Oとなる条件が存在
する。 ここで、π1゜・σ1・βl+mπzo・σ2
・β2=Oを実際に達成する手段の一例を述べる。
Therefore, from the form of equation (12), there is a condition that B=O. Here, π1゜・σ1・βl+mπzo・σ2
- An example of means for actually achieving β2=O will be described.

予め、上式が満足されるように抵抗体の抵抗値、シリコ
ン半導体ダイアフラム上での配置、抵抗体の形成方向と
ダイアフラムの結晶軸との方向の関係、不純物a度の組
合せ等を定めて製造する。
The resistance value of the resistor, its arrangement on the silicon semiconductor diaphragm, the relationship between the formation direction of the resistor and the crystal axis of the diaphragm, the combination of impurity a degree, etc. are determined in advance so that the above formula is satisfied. do.

ここで、抵抗体をシリコン半導体ダイアフラムに形成し
た瞬間に、πIQ  、π101 σ嘗、σ2゜β1.
β2の値は決定されてしまうものである。
Here, at the moment when the resistor is formed on the silicon semiconductor diaphragm, πIQ, π101 σ嘗, σ2°β1.
The value of β2 is determined.

従って、調整手段としては、抵抗比mを調整することが
行なわれる。この抵抗比mの調整は経験的方法で行うこ
とが出来る。例えば、抵抗体を複数個形成し、良い抵抗
体を選択すること、又は、第1.第2の拡散層の形状や
、その端子の取り方等で調整することが出来る。
Therefore, the adjustment means is to adjust the resistance ratio m. This resistance ratio m can be adjusted by an empirical method. For example, forming a plurality of resistors and selecting a good resistor, or the first. It can be adjusted by changing the shape of the second diffusion layer, how to connect its terminals, etc.

第7図は他の実施例を示すもので、この例においては拡
散層2を比較的広い面積で形成し、この第2の拡散層に
複数の端子40a〜40eを設け、それらの端子のうち
最適な抵抗体となる端子(例えば40aと40eを結ぶ
ように構成したものである。
FIG. 7 shows another embodiment. In this example, the diffusion layer 2 is formed to have a relatively wide area, and a plurality of terminals 40a to 40e are provided in this second diffusion layer. A terminal (for example, configured to connect 40a and 40e) serves as an optimal resistor.

以上の具体的説明は本発明を実施する場合の一例であり
、これに限定するものではない。例えば、n型シリコン
でも可能であり、また、結晶面や抵抗体の配置方向も種
々の組合せが可能である。
The above specific explanation is an example of implementing the present invention, and the present invention is not limited thereto. For example, n-type silicon can be used, and various combinations of crystal planes and resistor arrangement directions are possible.

また、以上では、(9)式においてα冨−α2と仮定し
たが、これが成立しなくても、圧力感度の温度依存性が
ないピエゾ抵抗素子を(qることができる。
Further, in the above, it is assumed that α-value − α2 in equation (9), but even if this does not hold, it is possible to create a piezoresistance element (q) whose pressure sensitivity does not depend on temperature.

ハ、「本発明の効果」 以上述べたように、本発明によれば、次の効果が得られ
る。
C. "Effects of the Present Invention" As described above, according to the present invention, the following effects can be obtained.

■ 歪み感度を有するとともに、歪み感度の温度依存性
が小さい半導体圧力センサを比較的簡単に実現できる。
(2) A semiconductor pressure sensor with strain sensitivity and low temperature dependence of strain sensitivity can be realized relatively easily.

■ 応力と抵抗値変化の非直線性が改善できる。■ Non-linearity of stress and resistance value changes can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体圧力センサの一構成例を示
した平面図(イ)と断面図(ロ)、第2図は第1図の半
導体圧力センサに示した端子間の抵抗の抵抗分布を模式
的に示した図、第3図は第2図に示ず抵抗分布を等価回
路で示す図、第4図は半導体圧力センサを4つ用いてブ
リッジ回路を構成した場合の本発明に係る圧力測定装置
を示した図、第5図は第1図に示した半導体圧力センサ
に圧力が加わって歪みが生じている様子を示した図、第
6図はダイアフラムの薄肉部の上に配置された半導体圧
力センサを示寸断面図(イ)と平面図(ロ)、第7図は
他の実施例を示す平面図、第8図は表面濃度とピエゾ係
数との関係を示した図、第9図はn型シリコンの温度と
ピエゾ係数の成分π11との関係を示した図、第10図
はn型シリコンの温度とピエゾ係数の成分π44との関
係を示した図、第11図はn型シリコン・ピエゾ係数の
成分πI+の温度係数と電子濃度との関係を示す図、 
第12図はn型シリコン・ピエゾ係数の成分π44の温
度係数とホールm度との関係を示す図、 第13図はn
型シリコンの抵抗温度係数と比抵抗との関係を示す図、
 第14図はn型シリコンの抵抗温度係数と比抵抗との
関係を示す図、 第15図は第7図又は第8図から求め
たピエゾ係数の成分π1管、π44と表面電子11度又
は表面ホール濃度との関係を示す図、 第16図は第1
3図又は第14図において異なる濃度でありながら同じ
抵抗温度係数を示す2つの電子11度又はホールsiが
存在することを示す図、第17図(a)、(b)はダイ
アフラム上に抵抗体を配置した時その抵抗の半径方向成
分、垂直成分のピエゾ係数の符号が異なることを示ず図
であり、(C)、(d)は結晶軸と抵抗体方位との関係
を示す図である。 10.20・・・抵抗°体、3・・・シリコン単結晶、
14・・・定電圧源。 第1図 箸3図 ゛73 第5図    第7図 第6図 第9図 温度°C 第10図 遥度°C 第13図 Hm ja JI’[<rl−Cfi )第14図 じじ1氏2に(n−cm)
FIG. 1 is a plan view (a) and a cross-sectional view (b) showing a configuration example of a semiconductor pressure sensor according to the present invention, and FIG. 2 is a resistance between terminals shown in the semiconductor pressure sensor of FIG. FIG. 3 is a diagram schematically showing the resistance distribution, which is not shown in FIG. A diagram showing such a pressure measuring device, FIG. 5 is a diagram showing how pressure is applied to the semiconductor pressure sensor shown in FIG. 1 and distortion occurs, and FIG. 6 is a diagram showing the semiconductor pressure sensor shown in FIG. FIG. 7 is a plan view showing another embodiment, and FIG. 8 is a diagram showing the relationship between surface concentration and piezo coefficient. Figure 9 is a diagram showing the relationship between the temperature of n-type silicon and the component π11 of the piezo coefficient, Figure 10 is a diagram showing the relationship between the temperature of n-type silicon and the component π44 of the piezo coefficient, and Figure 11 is a diagram showing the relationship between the temperature of n-type silicon and the component π44 of the piezo coefficient. A diagram showing the relationship between the temperature coefficient of the component πI+ of the n-type silicon piezo coefficient and the electron concentration,
Figure 12 is a diagram showing the relationship between the temperature coefficient of n-type silicon piezoelectric coefficient component π44 and Hall m degrees, and Figure 13 is n
A diagram showing the relationship between the temperature coefficient of resistance and specific resistance of type silicon,
Figure 14 is a diagram showing the relationship between the temperature coefficient of resistance and specific resistance of n-type silicon, Figure 15 is the piezo coefficient component π1 tube, π44, and surface electron 11 degree or surface electron coefficient determined from Figure 7 or Figure 8. Figure 16 shows the relationship with hole concentration.
Figure 3 or Figure 14 shows the existence of two electrons or holes si that have the same temperature coefficient of resistance despite having different concentrations. Figures 17 (a) and (b) show the presence of a resistor on the diaphragm. (C) and (d) are diagrams showing the relationship between the crystal axis and the resistor orientation. . 10.20...Resistance body, 3...Silicon single crystal,
14... constant voltage source. Figure 1 Chopsticks 3 Figure 73 Figure 5 Figure 7 Figure 6 Figure 9 Temperature °C Figure 10 Radiation °C Figure 13 Hm ja JI'[<rl-Cfi] Figure 14 Jiji 1 Mr. 2 in (n-cm)

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン半導体で形成したダイアフラムの上に所
定の濃度と面積を有する第1の不純物層を形成し、前記
第1の不純物層中に第2の不純物層を形成し、前記第2
の不純物層の適当な箇所を結んで抵抗体を形成し、前記
抵抗体の形状、前記ダイアフラム上での抵抗体の配置、
抵抗体の形成方向とダイアフラムの結晶軸との方向の関
係を用いて、前記抵抗体における圧力感度の温度変化分
が小さくなるように構成した半導体圧力センサ。
(1) A first impurity layer having a predetermined concentration and area is formed on a diaphragm made of a silicon semiconductor, a second impurity layer is formed in the first impurity layer, and a second impurity layer is formed in the first impurity layer.
A resistor is formed by connecting appropriate locations of the impurity layer, and the shape of the resistor, the arrangement of the resistor on the diaphragm,
A semiconductor pressure sensor configured such that a temperature change in pressure sensitivity in the resistor is reduced by using the relationship between the direction in which the resistor is formed and the crystal axis of the diaphragm.
(2)シリコン半導体で形成したダイアフラムの上に所
定の濃度と面積を有する第1の不純物層を形成し、前記
第1の不純物層中に第2の不純物層を形成し、前記第2
の不純物層の適当な箇所を結んで抵抗体を形成した半導
体圧力センサを4つ用いてブリッジ回路を構成し、この
ブリッジ回路の入力端子間に定電圧源から電圧を加えて
、ブリッジ回路の出力端子間から圧力の変化に比例した
電圧を得るようにした圧力測定装置。
(2) forming a first impurity layer having a predetermined concentration and area on a diaphragm formed of a silicon semiconductor; forming a second impurity layer in the first impurity layer; and forming a second impurity layer in the first impurity layer;
A bridge circuit is constructed using four semiconductor pressure sensors in which resistors are formed by connecting appropriate points of the impurity layer of A pressure measuring device that obtains a voltage between terminals that is proportional to the change in pressure.
JP305386A 1986-01-10 1986-01-10 Semiconductor pressure sensor and pressure measuring device Granted JPS62160772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP305386A JPS62160772A (en) 1986-01-10 1986-01-10 Semiconductor pressure sensor and pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP305386A JPS62160772A (en) 1986-01-10 1986-01-10 Semiconductor pressure sensor and pressure measuring device

Publications (2)

Publication Number Publication Date
JPS62160772A true JPS62160772A (en) 1987-07-16
JPH0560672B2 JPH0560672B2 (en) 1993-09-02

Family

ID=11546578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP305386A Granted JPS62160772A (en) 1986-01-10 1986-01-10 Semiconductor pressure sensor and pressure measuring device

Country Status (1)

Country Link
JP (1) JPS62160772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064807B2 (en) 2001-01-15 2006-06-20 Asml Netherlands B.V. Lithographic apparatus
US7113258B2 (en) 2001-01-15 2006-09-26 Asml Netherlands B.V. Lithographic apparatus
US20120048028A1 (en) * 2010-08-27 2012-03-01 Hitachi, Ltd. Apparatus for measuring a mechanical quantity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064807B2 (en) 2001-01-15 2006-06-20 Asml Netherlands B.V. Lithographic apparatus
US7084955B2 (en) 2001-01-15 2006-08-01 Asml Netherlands B.V. Lithographic apparatus
US7113258B2 (en) 2001-01-15 2006-09-26 Asml Netherlands B.V. Lithographic apparatus
US20120048028A1 (en) * 2010-08-27 2012-03-01 Hitachi, Ltd. Apparatus for measuring a mechanical quantity
US8528414B2 (en) * 2010-08-27 2013-09-10 Hitachi, Ltd. Apparatus for measuring a mechanical quantity

Also Published As

Publication number Publication date
JPH0560672B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
WO2011010571A1 (en) Semiconductor pressure sensor, pressure sensor device, electronic apparatus, and method for manufacturing semiconductor pressure sensor
JPS59217375A (en) Semiconductor mechanic-electric conversion device
JPH0691265B2 (en) Semiconductor pressure sensor
Kumar et al. Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor: an experimental study
JP2015015390A (en) Offset voltage correction method of hall device and hall sensor employing the same
US5432372A (en) Semiconductor pressure sensor
JPH06213743A (en) Semiconductor pressure sensor
JP5866496B2 (en) Semiconductor pressure sensor
JPS62160772A (en) Semiconductor pressure sensor and pressure measuring device
JPS59158566A (en) Semiconductor acceleration sensor
EP3336503B1 (en) Pressure sensor having a multiple wheatstone bridge configuration of sense elements
JP2715738B2 (en) Semiconductor stress detector
JPH0582805A (en) Pressure detecting chip of semiconductor pressure detector
JP2001165797A (en) Semiconductor pressure sensor device
JPS59217374A (en) Semiconductor strain converter
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPS61295672A (en) Semiconductor pressure sensor and pressure measurement device
JPH0682844B2 (en) Semiconductor strain converter
JPH01259264A (en) Semiconductor acceleration sensor
JPH01199476A (en) Pressure sensor
JP2001272203A (en) Distortion measuring apparatus
JPH0412236A (en) Distortion resistance device
JPS61243337A (en) Semiconductor pressure sensor
JP3509336B2 (en) Integrated sensor
JP2737479B2 (en) Semiconductor stress detector