JPH01199476A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH01199476A
JPH01199476A JP24707388A JP24707388A JPH01199476A JP H01199476 A JPH01199476 A JP H01199476A JP 24707388 A JP24707388 A JP 24707388A JP 24707388 A JP24707388 A JP 24707388A JP H01199476 A JPH01199476 A JP H01199476A
Authority
JP
Japan
Prior art keywords
pressure sensor
diaphragm
thin film
resistors
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24707388A
Other languages
Japanese (ja)
Inventor
Aki Tabata
亜紀 田畑
Atsushi Tachika
田近 淳
Hiroshi Inagaki
宏 稲垣
Yukio Kobayashi
小林 諭樹夫
Asatake Suzuki
朝岳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP24707388A priority Critical patent/JPH01199476A/en
Publication of JPH01199476A publication Critical patent/JPH01199476A/en
Priority to EP19890910199 priority patent/EP0407587A4/en
Priority to US07/490,565 priority patent/US5191798A/en
Priority to PCT/JP1989/000923 priority patent/WO1990003664A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enable the constitution of resistors included in a compensation circuit without increasing resistor elements and processes such as soldering and the like in number by a method wherein resistors of the compensation circuit formed of the same material as a distortion gauge are constructed on a diaphragm. CONSTITUTION:A thin film pressure sensor is provided, where a distortion gauge 3 is provided to the rear of a diaphragm pressure sensing face through an insulating film 2 and compensation resistance circuits R5 and R6, formed of the same material as the distortion gauge 3, for temperature, a zero point, and the like are provided onto the face where the gauge 3 is formed. For instance, the resistors R5 and R6 are provided between contact points of electrode wirings E4 and E6 and an applied voltage source Vin onto the face of the diaphragm 1 where the distortion gauge 3 (R1-R4) is formed. In this process, the thin film pressure sensor is structured in such a manner that the SiO2 film 2 is laminated on a stainless steel 1 as an insulating film, next the distortion gauge 3 and the resistors R5 and R6 are formed of a polycrystalline silicon thin film, and wiring patterns (E1-E5) of an electrode 4 are formed thereon. A transistor Tr is connected between the wirings E4 and E6 and with wiring E7 and E8 in an externally attaching manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 半導体に歪を加えると大きな抵抗変化を示すというピエ
ゾ効果を利用した半導体歪ゲージを用いて、各種のセン
サが開発されている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) Various sensors have been developed using semiconductor strain gauges that utilize the piezo effect, which shows a large resistance change when strain is applied to a semiconductor.

その1つとして、ステンレスなどの金属でダイヤフラム
を構成し、このダイヤフラム上に絶縁膜を介してアモル
ファスシリコン薄膜等の半導体薄膜からなる歪ゲージを
形成した薄膜圧力センサがある。
One of them is a thin film pressure sensor in which a diaphragm is made of metal such as stainless steel, and a strain gauge made of a semiconductor thin film such as an amorphous silicon thin film is formed on the diaphragm with an insulating film interposed therebetween.

本発明は、前記fll膜圧上センサ歪ゲージの温度ある
いは零点を補償する回路において、その抵抗素子を歪ゲ
ージと同材料で形成した補償回路、の構造と圧力センサ
の受圧部と拘束部を遠ざけ拘束による受圧部への悪影響
を少なくする構造に関するものである。
The present invention provides a circuit for compensating the temperature or zero point of the FLL film pressure sensor strain gauge, in which the structure of the compensation circuit whose resistance element is made of the same material as the strain gauge, and the pressure receiving part and restraint part of the pressure sensor are kept apart. This invention relates to a structure that reduces the adverse effects of restraint on a pressure receiving part.

(従来の技術) 薄膜圧力センサについて説明する。(Conventional technology) A thin film pressure sensor will be explained.

第6図(a)に、薄膜圧力センサの断面図を示すように
、fiF!圧カセフカセンサテンレス製のダイヤフラム
lと該ダイヤフラムlの表面に絶縁膜としての酸化シリ
コン(S i Ot ) III 2を介して形成され
た多結晶シリコン層パターンからなる歪ゲージ3と、該
歪ゲージ3に給電するためのアルミニウム層パターンか
らなる電極4と、歪ゲージ3と電極4とからなるセンサ
部5を被膜保護するための窒化シリコン層からなるバッ
シベーシッン堕6とから構成されている。そして同図(
b)に示すように、センサ部5は4つの歪ゲージ3のパ
ターンR,〜R4とこれらに給電するための6つの電極
4の配線パターンE、〜E、とから構成されている。こ
のセンサ部5を等価回路で示すと、同図(C)に示すよ
うに、ブリッジ回路を構成しており、圧力に起因した歪
による歪ゲージ3の抵抗変化によって生じる電極配線パ
ターンE8とE。
As shown in FIG. 6(a), a cross-sectional view of the thin film pressure sensor, fiF! A strain gauge 3 consisting of a diaphragm 1 made of stainless steel, a polycrystalline silicon layer pattern formed on the surface of the diaphragm 1 via a silicon oxide (S i Ot ) III 2 as an insulating film, and the strain gauge. 3, and a bassinet base 6 made of a silicon nitride layer to protect the sensor part 5 made of the strain gauge 3 and the electrode 4. And the same figure (
As shown in b), the sensor section 5 is composed of patterns R, -R4 of four strain gauges 3 and wiring patterns E, -E of six electrodes 4 for feeding these. When this sensor section 5 is shown in an equivalent circuit, as shown in FIG. 2(C), it constitutes a bridge circuit, in which electrode wiring patterns E8 and E are generated due to a change in resistance of the strain gauge 3 due to strain caused by pressure.

との間の電圧変化を検出することにより、圧力を測定す
るようになっている。
The pressure is measured by detecting the voltage change between the two.

ところで、半導体素子には、特性の温度依存性が大きい
という欠点がある。しかし温度に対する繰り返し再現性
は(憂れており、補償後はこの特性が逆に素子の信頼性
を高める結果になつている。
Incidentally, semiconductor elements have a drawback in that their characteristics are highly dependent on temperature. However, the repeatability with respect to temperature is poor, and after compensation, this characteristic actually increases the reliability of the device.

半導体薄膜圧力センサの場合、歪ゲージの抵抗値は該歪
ゲージの固有の抵抗値と、圧力による抵抗の変化ととも
に、温度で変化する。従って歪ゲージを組みあわせたブ
リッジ回路では、圧力感度と零点とが、ともに温度によ
って変化してしまう。
In the case of a semiconductor thin film pressure sensor, the resistance value of the strain gauge changes with temperature as well as the inherent resistance value of the strain gauge and the change in resistance due to pressure. Therefore, in a bridge circuit that combines strain gauges, both the pressure sensitivity and the zero point change depending on the temperature.

温度補償をいかに上手に行うかで圧力センサの精度が決
まるために、従来から種々様々な方法が試みられてきた
Since the accuracy of a pressure sensor is determined by how well temperature compensation is performed, various methods have been tried in the past.

次に示す方法は、定電圧駆動する圧力センサにおいて、
トランジスタと抵抗を組み合わせて歪ゲージの感度の温
度変動を相殺するものである。
The following method uses a constant voltage driven pressure sensor.
It uses a combination of transistors and resistors to offset temperature fluctuations in strain gauge sensitivity.

第7図に温度補償用回路7を組み込んだ圧力センサの等
価回路図を示すが、ili[+配線パターンE4、E、
の接点とE、との間に、トランジスタTrと抵抗Rs、
Raとを接続する。
FIG. 7 shows an equivalent circuit diagram of a pressure sensor incorporating the temperature compensation circuit 7.
A transistor Tr and a resistor Rs,
Connect with Ra.

薄膜圧力センサの感度は、第8図(a)に示すように、
温度が高(なるにつれて直線的に低下してしまう(イ)
、ここで感度とは、圧力センサが受ける圧力の大きさと
、それによって生じる抵抗値の変化率である。つまり、 となり、感度が高い方が精度が向上する。
The sensitivity of the thin film pressure sensor is as shown in Figure 8(a).
The temperature is high (it decreases linearly as it gets higher) (a)
, where sensitivity refers to the magnitude of the pressure that the pressure sensor receives and the rate of change in resistance value caused by it. In other words, the higher the sensitivity, the higher the accuracy.

いっぽう、温度補償に用いられているトランジスタの電
圧降下は、温度が高くなるにつれて低くなる。つまり入
力端子を一定にしておけば第8図(b)に示すように、
トランジスタを介してセンサ部に印加される電圧が高く
なっていく (ロ)。
On the other hand, the voltage drop of the transistor used for temperature compensation decreases as the temperature increases. In other words, if the input terminal is kept constant, as shown in Figure 8(b),
The voltage applied to the sensor section via the transistor increases (b).

センサ部に印加される電圧が高くなると温度によるセン
サ部の感度低下分と相殺され、結局温度が上昇しても一
定な感度を保つことができる(第8図(ago)。この
ように温度補償用の素子を組み込んだ薄膜圧力センサは
温度によって感度が変化しない信頼性の高いものとなる
。  −このような温度補償用の素子は、第9図に示す
ように薄膜圧力センサの外部に組み込まれている。
When the voltage applied to the sensor section increases, it cancels out the decrease in sensitivity of the sensor section due to temperature, and in the end, it is possible to maintain constant sensitivity even if the temperature rises (Fig. 8 (ago). In this way, temperature compensation A thin film pressure sensor incorporating an element for temperature compensation is highly reliable and its sensitivity does not change due to temperature. - Such a temperature compensation element is incorporated outside the thin film pressure sensor as shown in Figure 9. ing.

薄膜圧力センサ100はケース101に組み込まれ、そ
のケース101と共に外部回路用のケース!02に組み
込まれる。同ケース+02の内部にはアンプ105と温
度補償用素子106が接続されたプリント基板104が
あり、同ケース102はJi103によって閉じられて
いる。プリント基板104上の温度補償用素子106に
よって温度補償されたlll5圧カセンサ100の出力
は、アンプ105によって増幅され、外部回路(図示せ
ず)に出力される。
The thin film pressure sensor 100 is built into a case 101, and together with the case 101, it is a case for external circuits! It will be incorporated into 02. Inside the case +02 is a printed circuit board 104 to which an amplifier 105 and a temperature compensation element 106 are connected, and the case 102 is closed by a Ji 103. The output of the Ill5 pressure sensor 100, temperature compensated by the temperature compensating element 106 on the printed circuit board 104, is amplified by the amplifier 105 and output to an external circuit (not shown).

また、従来はセンサモジュールを圧力変換器や他の被測
定体に組み込む際、センサモジエールを拘束する位置は
受圧面とほぼ同一面上にあった(第5図(b))。
Furthermore, conventionally, when a sensor module is incorporated into a pressure transducer or other object to be measured, the position where the sensor module is restrained is almost on the same plane as the pressure receiving surface (FIG. 5(b)).

(発明が解決しようとする課題) 上記で説明した温度補償用の回路において、使用してい
るトランジスタの温度による電圧降下の変化率と、歪ゲ
ージの温度による感度低下の変化率とは必ずしも一致し
ない、そこで、抵抗素子R5、R6を2個用いて、その
抵抗素子の2個の抵抗の比を変えることにより、前記電
圧降下の温度依存性の値を自由に変えることができるの
で、歪ゲージの感度低下の変化率と一致させて、精度良
く感度補正を行う。
(Problem to be Solved by the Invention) In the temperature compensation circuit described above, the rate of change in voltage drop due to temperature of the transistor used does not necessarily match the rate of change in sensitivity decrease due to temperature of the strain gauge. Therefore, by using two resistance elements R5 and R6 and changing the ratio of the two resistances of the resistance elements, the value of the temperature dependence of the voltage drop can be freely changed. To accurately correct sensitivity by matching the rate of change in sensitivity reduction.

従来この抵抗素子は、薄膜圧力センサの外部のプリン1
!板!04に接続されていた。薄膜圧力センサは大0変
小さいので、プリント基板104にトランジスタとさら
に抵抗素子2個をハンダ付けで接続したり、圧力センサ
の電極と接続したりするのは困難であった。そして、抵
抗素子2個を接続するために、部品点数と工程が増える
ということは、工程上の歩留り低下の要因、部品の不良
や部品の接触不良等による歩留り低下の要因が大きく増
えるということであった。
Conventionally, this resistive element is connected to the external print 1 of the thin film pressure sensor.
! Board! It was connected to 04. Since the thin film pressure sensor is very small, it is difficult to connect the transistor and two resistive elements to the printed circuit board 104 by soldering, or to connect it to the electrodes of the pressure sensor. Furthermore, the increase in the number of parts and processes required to connect two resistive elements means that the factors that reduce yield in the process, as well as factors that reduce yield due to defective parts or poor contact between parts, greatly increase. there were.

又、圧力センサを拘束し圧力を印加すると、拘束箇所の
形状が変化し、第5図(c)に示すように拘束位置がず
れる。従来のように拘束部が受圧面に近いと少しの拘束
位置のずれでもダイヤフラム上の応力“分布が大きく変
化する(第5図(b))、この結果圧力に対する出力特
性の直線性に悪影響を及ぼすという問題があった。
Furthermore, when the pressure sensor is restrained and pressure is applied, the shape of the restrained area changes, and the restraint position shifts as shown in FIG. 5(c). If the restraining part is close to the pressure-receiving surface as in the past, even a slight shift in the restraining position will cause a large change in the stress distribution on the diaphragm (Figure 5 (b)), which will have a negative effect on the linearity of the output characteristics with respect to pressure. There was a problem with the impact.

(課題を解決するための手段及び作用)(+)薄幕圧力
センサの温度補1貫のための抵抗は、抵抗素子を用いて
構成するのではなく、該薄膜圧力センサの歪ゲージを構
成している材料を用いる。
(Means and effects for solving the problem) (+) The resistance for temperature compensation of the thin film pressure sensor is not constructed using a resistance element, but is constructed as a strain gauge of the thin film pressure sensor. Use materials that are

つまり、歪ゲージを形成する際、多結晶シリコン111
9等を[Jし、そしてパターニングを行うが、それ七同
時に、抵抗もパターニングして設ける。
In other words, when forming a strain gauge, polycrystalline silicon 111
9 etc., and patterning is performed, and at the same time, a resistor is also patterned and provided.

センサ部と抵抗との配線も、センサ部の電極配線パター
ンと同材料で同時に形成する。
The wiring between the sensor section and the resistor is also formed at the same time using the same material as the electrode wiring pattern of the sensor section.

抵抗部を形成した多結晶シリコン薄膜等は、形状を任意
にかえることにより、所望の抵抗値を得ることができ、
従って、抵抗素子を用いることなく、トランジスタの電
圧降下の温度依存性の値を歪ゲージの感度低下の変化率
と一致させることができる。
A desired resistance value can be obtained by arbitrarily changing the shape of the polycrystalline silicon thin film etc. that forms the resistance part.
Therefore, the value of the temperature dependence of the voltage drop of the transistor can be matched with the rate of change of the sensitivity reduction of the strain gauge without using a resistance element.

(2)ダイヤフラム受圧面の裏側に絶縁膜を介して歪ゲ
ージを設けている薄膜圧力センサにおいて、ダイヤフラ
ムの拘束面とダイヤフラム受圧面とに段差を設けた、つ
まり拘束面を受圧面から遠ざけることにより、圧力印加
時の拘束位置変化による影響が及ばなくする。
(2) In a thin film pressure sensor in which a strain gauge is provided on the back side of the diaphragm pressure-receiving surface via an insulating film, a step is provided between the diaphragm restraining surface and the diaphragm pressure-receiving surface, that is, by moving the restraining surface away from the pressure-receiving surface. , to eliminate the influence of changes in the restraint position when pressure is applied.

(実施例) 以下、本発明の実施例を図面に従って説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

始めに補償用抵抗に関して説明する。First, the compensating resistor will be explained.

第1実施例 第1図に本発明の第一の実施例の(a)平面図と、(b
)断面図を示す、第1図(a)に示すように、ダイヤフ
ラムlの歪ゲージ3(R1〜R,)の形成面に、抵tA
 15% + Rhを、電極配線E4、E、の接点と印
加電圧rjIXVin(図示せず)との間に形成する。
First Embodiment FIG. 1 shows (a) a plan view and (b) a plan view of the first embodiment of the present invention.
) As shown in FIG. 1(a), which shows a cross-sectional view, a resistor tA is placed on the forming surface of the strain gauges 3 (R1 to R,) of the diaphragm l.
15% + Rh is formed between the contacts of the electrode wirings E4, E, and the applied voltage rjIXVin (not shown).

第1図(b)に示すように、この実施例において、薄膜
圧力センサは、ステンレスl上に絶縁膜としてS i 
Oを膜2を積層し、次に歪ゲージ3と抵抗R2、R,と
を多結晶シリコン薄膜で形成し、その上にtli4の配
線パターン(E、〜Elが形成されて構成されている。
As shown in FIG. 1(b), in this embodiment, the thin film pressure sensor is made of Si as an insulating film on stainless steel.
A film 2 of O is laminated, then a strain gauge 3 and resistors R2, R, are formed of a polycrystalline silicon thin film, and a wiring pattern of tli4 (E, to El) is formed thereon.

トランジスタTrは、E4〜E、間と、E、、E、とに
外付けで接続される(図示せず)、この薄膜圧力センサ
の等価回路は第7図と同様である。
The transistor Tr is externally connected between E4 and E, and between E, , and E (not shown). The equivalent circuit of this thin film pressure sensor is the same as that shown in FIG.

第2図(a)〜(e)に本発明の第一の実施例の工程図
を示し、説明する。
FIGS. 2(a) to 2(e) show process diagrams of the first embodiment of the present invention and will be described.

(1)第2図(a)に示すように、ステンレスのダイヤ
フラムl上に、!!a111としてS i Oz N’
lをプラズマCVD法で約7μm積層する。
(1) As shown in Figure 2 (a), on the stainless steel diaphragm l,! ! a111 as S i Oz N'
1 is laminated to a thickness of about 7 μm by plasma CVD.

(2)第2図(b)に示すように、該S i Oを膜上
に多結晶シリコン薄膜をプラズマCVD法でシランガス
を原料に用いて約0.5μm積層する。
(2) As shown in FIG. 2(b), a polycrystalline silicon thin film of approximately 0.5 μm is deposited on the S i O film by plasma CVD using silane gas as a raw material.

(3)第2図(c)に示すように、積層した多結晶シリ
コン薄膜を、フォトリングラフィ工程を用いて、歪ゲー
ジ3パターン(R,〜R,)と抵抗パターン(Rs、R
−)を形成する。この時、抵抗パターンの形をかえるこ
とにより、所望の抵抗値が得られ、補償用回路のトラン
ジスタの温度依存性の値を変えることができる。
(3) As shown in Fig. 2(c), three strain gauge patterns (R, ~R,) and resistance patterns (Rs, R,
−) is formed. At this time, by changing the shape of the resistance pattern, a desired resistance value can be obtained and the temperature dependence value of the transistor of the compensation circuit can be changed.

向、この抵抗パターン(Rs、R6)は、歪を生じると
抵抗値が変化してしまうので、一定の値を保つため、圧
力によって歪を生じないダイヤフラムの周辺の位置に形
成しなくてはならない。
The resistance value of this resistance pattern (Rs, R6) changes when strain occurs, so in order to maintain a constant value, it must be formed at a position around the diaphragm that will not be strained by pressure. .

(4)第2図(d)に示すように、歪ゲージ(R1〜R
,)と抵抗(Rs、R,)を形成した上に、アルミニウ
ム(Al)等の金kI4電極4を屑着し、フォトリング
ラフィ工程により配線パターン(E1〜E−)を形成し
、配線する。
(4) As shown in Figure 2(d), strain gauges (R1 to R
, ) and resistors (Rs, R, ) are formed, a gold kI4 electrode 4 made of aluminum (Al) or the like is scraped, and a wiring pattern (E1 to E-) is formed by a photolithography process for wiring. .

(5)第2図(e)に示すように、歪ゲージ、抵抗、配
線パターンを保護するために、パッシベーション膜とし
てSiN++I!をプラズマCVD法で5000人程度
積層する。
(5) As shown in FIG. 2(e), SiN++I! is used as a passivation film to protect the strain gauge, resistor, and wiring pattern. Approximately 5,000 layers will be stacked using the plasma CVD method.

以−Fで、薄膜圧力センサは完成する。そして、この薄
膜圧力センサは第9図に示したと同様に、ケース101
に組み込まれ、そのケース101と′  共に外部回路
用のケース102に組み込まれる。
The thin film pressure sensor is completed through steps F-F. This thin film pressure sensor is constructed in a case 101 as shown in FIG.
The case 101 and ' are incorporated into a case 102 for an external circuit.

同ケース102の内部にはアンプ105と温度補償用の
トランジスタが接続されたプリント基板104があり、
同ケース102は蓋103によって閉じられる。プリン
ト基板104上のトランジスタと、iIM圧カ圧力サの
電極E4〜E1間、El、E、はボンディングワイヤ(
図示せず)等で接続され、温度補償用回路は完成し、圧
力センサの出力はアンプ105によって増幅され、外部
回路(図示せず)に出力され−る。
Inside the case 102 is a printed circuit board 104 to which an amplifier 105 and a temperature compensation transistor are connected.
The case 102 is closed by a lid 103. Between the transistor on the printed circuit board 104 and the electrodes E4 to E1 of the iIM pressure sensor, El and E are bonding wires (
(not shown), the temperature compensation circuit is completed, and the output of the pressure sensor is amplified by the amplifier 105 and output to an external circuit (not shown).

このような構成の’389圧カセンサにすることにより
、温度補償用回路を構成する場合、部品、工程を増やす
ことなく、抵抗が形成できる。
By using the '389 pressure sensor having such a configuration, when configuring a temperature compensation circuit, a resistor can be formed without increasing the number of parts and processes.

本実施例は、感度に対する温度補償用の回路について説
明したが、これに限ることなく、例えば、零点に対する
温度補償用の回路、各歪ゲージ間のバラツキによる零点
補償用の回路等にも通用可能である。
Although this embodiment describes a circuit for temperature compensation for sensitivity, it is not limited to this, and can also be applied to, for example, a circuit for temperature compensation for zero points, a circuit for zero point compensation for variations between strain gauges, etc. It is.

第2実施例 第3図に第2の実施例として、感度に対する温度補償用
の回路の抵抗Rs、Riと、各歪ゲージ間のバラツキに
よる零点補償用抵抗R7を、薄膜圧力センサのダイヤフ
ラム上に形成した実施例の(a)平面図と(b)断面図
と(C)温度補償素子としてトランジスタを外部接続し
た場合の等価回路図を示す、ダイヤフラムl上に、絶i
in*を積層しく図示せず)、その上に歪ゲージ(R,
〜R1)と、感度に対する温度補償用の抵抗Rs、R4
と各歪ゲージ間のバラツキによる零点補償用回路の抵抗
R1として、多結晶シリコンを積層し、パターニングす
る。そしてA歪などの金属を積層しパターニングして、
電極配線(El −Es )を形成し、パッシベーショ
ン膜(図示せず)を積IMして薄膜圧力センサは完成す
る0本実施例ではE、とE、を結線し、その接点とE、
の電極から電圧を出力させることにより、R1に零点粗
調紙(に2個を、Rイに零点微調抵抗を加えたことにな
る。
Second Embodiment As a second embodiment shown in FIG. 3, the resistances Rs and Ri of the circuit for temperature compensation for sensitivity and the resistance R7 for zero point compensation due to variations between each strain gauge are placed on the diaphragm of a thin film pressure sensor. (a) A plan view, (b) a cross-sectional view, and (C) an equivalent circuit diagram when a transistor is externally connected as a temperature compensation element of the formed example.
in* (not shown), and strain gauges (R,
~R1) and resistances Rs and R4 for temperature compensation for sensitivity.
Polycrystalline silicon is laminated and patterned as a resistor R1 of a circuit for zero point compensation due to variations between strain gauges. Then, we layer and pattern metals such as A-strain,
The thin film pressure sensor is completed by forming electrode wiring (El-Es) and laminating a passivation film (not shown). In this embodiment, E and E are connected, and the contact point and E,
By outputting a voltage from the electrode, two coarse zero point adjustment resistors are added to R1 and a fine zero adjustment resistor is added to R1.

第3実施例 第4図は本発明の第3の実施例の(a)平面図と(b)
断面図である。温度補償素子を外部接続した場合の等価
回路図は第2の実施例と同様(第3図(C))である0
本実施例では第4図(a)に示すように歪ゲージ3(R
1〜R,)は実質長尺パターンなので抵抗が高く、これ
に伴って零点補償用抵抗Rtも高抵抗化する。従って本
発明の第2の実施例のように、零点補償抵抗をくの字形
などの実質幅広パターンにする必要はない。
Third Embodiment FIG. 4 shows (a) a plan view and (b) a plan view of the third embodiment of the present invention.
FIG. The equivalent circuit diagram when the temperature compensation element is externally connected is the same as the second embodiment (Fig. 3(C)).
In this embodiment, as shown in FIG. 4(a), the strain gauge 3 (R
1 to R,) have a high resistance because they are substantially long patterns, and accordingly, the zero point compensation resistor Rt also has a high resistance. Therefore, unlike the second embodiment of the present invention, it is not necessary to form the zero point compensation resistor into a substantially wide pattern such as a dogleg shape.

又、本実施例では零点補償用粗調抵抗R1をダイヤフラ
ムlの中心に対して同一円周上に配置したので、感圧層
成膜時の膜厚分布(ダイヤフラム中心が最も厚く外側に
向かって薄くなる)を無視できる。そのため、複数個に
区切られた粗調抵抗1個当たりの抵抗値のバラツキを低
減でき、精度の良い補償ができる。
In addition, in this example, since the coarse adjustment resistor R1 for zero point compensation is arranged on the same circumference with respect to the center of the diaphragm l, the film thickness distribution when forming the pressure sensitive layer (the thickness at the center of the diaphragm is thickest and toward the outside). thinning) can be ignored. Therefore, it is possible to reduce the variation in the resistance value per coarse adjustment resistor divided into a plurality of pieces, and to perform compensation with high accuracy.

尚、本実施例では第4図(b)に示すように絶1i11
2はSiO□−層であるが、ステンレスダイヤフラムl
と絶縁M2の間に両者の線膨張係数の差を緩和するため
のバッファ層として中間の線膨張係数を持つ1ll(例
えばノンドープ多結晶シリコン膜0.3μm程度)を積
層してもよい。
In this embodiment, as shown in FIG. 4(b),
2 is a SiO□-layer, but the stainless steel diaphragm l
1ll (for example, a non-doped polycrystalline silicon film with a thickness of about 0.3 μm) having an intermediate coefficient of linear expansion may be laminated between the insulator M2 and the insulation M2 as a buffer layer to alleviate the difference in coefficient of linear expansion between the two.

第4実施例 次に圧力センサの出力特性の直線性の改善に関して説明
する。
Fourth Embodiment Next, improvement of the linearity of the output characteristics of the pressure sensor will be explained.

第5図に圧力センサのダイヤフラムl上の応力分布の拘
束位置依存性を、(a)本発明によるダイヤフラム、(
b)従来のダイヤフラム、について各々示している。
FIG. 5 shows the constraint position dependence of the stress distribution on the diaphragm l of the pressure sensor.
b) A conventional diaphragm is shown.

第5図(b)は従来のダイヤフラムの断面形状であり、
拘束位置1aとダイヤフラム受圧部1bはほぼ同じ高さ
にあり、拘束部が■、■5■、■と少しその位置がずれ
ることにより応力分布が大きく変わることを示し、第5
図(a)は本発明のダイヤフラムの断面形状であり、拘
束位置!aとダイヤフラム受圧部1bには段差が設けて
あり、拘束位置1aとダイヤフラム受圧部1bは離れて
いる0本発明の構造であると、拘束部が■、■とその位
置がずれても応力分布に変化はない。
Figure 5(b) shows the cross-sectional shape of a conventional diaphragm.
The restraint position 1a and the diaphragm pressure receiving part 1b are at almost the same height, and the stress distribution changes greatly when the restraint part shifts slightly from ■, ■5■, ■.
Figure (a) shows the cross-sectional shape of the diaphragm of the present invention, and shows the restraint position! There is a step between a and the diaphragm pressure receiving part 1b, and the restraint position 1a and the diaphragm pressure receiving part 1b are separated.0 With the structure of the present invention, even if the restraint part is shifted from ■ to ■, the stress distribution will be maintained. There is no change in

従って、圧力印加時、第5図(C)に示すように拘束位
置がずれても、拘束部が受圧部に悪影響を及ぼさないの
で直線性は大幅に改善される。実施例では非直線性は約
1/3に低減された(第5図(d))。
Therefore, even if the restraint position shifts as shown in FIG. 5(C) when pressure is applied, the restraint part does not have an adverse effect on the pressure receiving part, and the linearity is greatly improved. In the example, the nonlinearity was reduced to about ⅓ (FIG. 5(d)).

(発明の効果) 本発明の特許請求の範囲第1項の発明によれば補償用回
路の抵抗をダイヤフラム上に歪ゲージと同材料で形成し
ているので、抵抗素子の部品点数を増やすことなく、ま
た、ハンダ付等の工程数を増やすことなく、補償用回路
の抵抗を構成することができる。そのため、ハンダ付等
の工程中におこる不良、接触不良等による歩留り低下な
どの要因がなくなるため、歩留りは向上する。さらに、
抵抗は歪ゲージと同材料で、同工程で形成されるので、
薄膜圧力センサの工程を変えることなく、抵抗を形成す
ることができるので、抵抗を形成することによっての工
程の時間数は全く増加しない。
(Effects of the Invention) According to the invention set forth in claim 1 of the present invention, the resistance of the compensation circuit is formed on the diaphragm using the same material as the strain gauge, so there is no need to increase the number of components of the resistance element. Furthermore, the resistor of the compensation circuit can be constructed without increasing the number of steps such as soldering. Therefore, factors such as a decrease in yield due to defects, poor contact, etc. that occur during processes such as soldering are eliminated, and the yield is improved. moreover,
The resistor is made of the same material and formed in the same process as the strain gauge, so
Since the resistor can be formed without changing the process of the thin film pressure sensor, the process time is not increased at all by forming the resistor.

本発明の特許請求の範囲第2項の発明によれば圧力印加
時に拘束位置がずれても、ダイヤフラムの応力分布に変
化がなくなり、圧力センサの出力特性の直線性が向上す
る。
According to the invention set forth in claim 2 of the present invention, even if the restraining position shifts during pressure application, there is no change in the stress distribution of the diaphragm, and the linearity of the output characteristics of the pressure sensor is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明筒1の実施例の薄膜圧力センサの(a)
平面図と(b)断面図 第2図は同工程図 第3図は本発明筒2の実施例の薄膜圧力センサの(a)
平面図と(b)断面図(c)等価回路図第4図は本発明
や第3の実施例の薄膜圧力センサの(a)平面図と(b
)断面図 第5図(a)は本発明による1119圧カセンサのダイ
ヤフラムの応力分布の拘束位置依存性を示すグラフ、第
5図(b)は従来の薄膜圧力センサの一ダイヤフラムの
応力分布の拘束位置依存性を示すグラフ、第5図(C)
は圧力印加時のダイヤフラム拘束位置のずれを表す図、
第5図(d)は本発明による直線性の改善を示すグラフ
である。 第6図は従来の71 gllツカセンサ(a)断面図と
(b)平面図と(C)等価回路図 第7図は補償用回路を組み込んだ′d4膜圧カセンサの
等価回路図 第8図(a)は薄膜圧力センサの感度と温度の関係を示
す図、第8図(b)は温度補償用素子を介してセンサ部
に印加される電圧と温度との関係を示す図 第9図は薄膜圧力センサと回路等をケースに組み込んだ
図である。 l・・・ダイヤフラム 4・・・電極 la・・・拘束位置 lb・・・ダイヤフラム受圧部 2・・・絶縁膜    5・・・センサ部3・・・歪ゲ
ージ 6・・・バンシベーシッン膜 7・・・温度補償用回路 R7・・・零点補償用の抵抗
FIG. 1 is (a) of a thin film pressure sensor according to an embodiment of the cylinder 1 of the present invention.
FIG. 2 is a plan view and (b) a cross-sectional view; FIG. 3 is a process diagram;
A plan view, (b) a sectional view, and (c) an equivalent circuit diagram.
) Cross-sectional view FIG. 5(a) is a graph showing the constraint position dependence of the stress distribution of the diaphragm of the 1119 pressure sensor according to the present invention, and FIG. 5(b) is a graph showing the constraint of the stress distribution of one diaphragm of the conventional thin film pressure sensor. Graph showing position dependence, Figure 5 (C)
is a diagram showing the deviation of the diaphragm restraint position when pressure is applied,
FIG. 5(d) is a graph showing the improvement in linearity according to the present invention. Figure 6 shows a conventional 71 gll pressure sensor (a) cross-sectional view, (b) plan view, and (C) equivalent circuit diagram. a) is a diagram showing the relationship between the sensitivity and temperature of a thin film pressure sensor; FIG. 8(b) is a diagram showing the relationship between temperature and voltage applied to the sensor section via a temperature compensation element; It is a diagram in which a pressure sensor, a circuit, etc. are assembled into a case. l...Diaphragm 4...Electrode la...Restriction position lb...Diaphragm pressure receiving part 2...Insulating film 5...Sensor part 3...Strain gauge 6...Bancibasin film 7...・Temperature compensation circuit R7...Resistance for zero point compensation

Claims (2)

【特許請求の範囲】[Claims] (1)ダイヤフラム受圧面の裏側に、絶縁膜を介して歪
ゲージを設けている薄膜圧力センサにおいて、前記歪ゲ
ージ形成面に歪ゲージと同材料で形成されている温度、
零点等の補償の抵抗回路を設けたことを特徴とする圧力
センサ。
(1) In a thin film pressure sensor in which a strain gauge is provided on the back side of a diaphragm pressure receiving surface via an insulating film, the temperature of the strain gauge formed on the strain gauge forming surface is
A pressure sensor characterized by being provided with a resistance circuit for compensating for zero points, etc.
(2)ダイヤフラム受圧面の裏側に、絶縁膜を介して歪
ゲージを設けている薄膜圧力センサにおいて、ダイヤフ
ラムの拘束面とダイヤフラム受圧面とに段差を設けたこ
とを特徴とする圧力センサ。
(2) A thin film pressure sensor in which a strain gauge is provided on the back side of a diaphragm pressure receiving surface via an insulating film, characterized in that a step is provided between the restraining surface of the diaphragm and the diaphragm pressure receiving surface.
JP24707388A 1987-10-28 1988-09-30 Pressure sensor Pending JPH01199476A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24707388A JPH01199476A (en) 1987-10-28 1988-09-30 Pressure sensor
EP19890910199 EP0407587A4 (en) 1988-09-30 1989-09-07 Pressure sensor
US07/490,565 US5191798A (en) 1988-09-30 1989-09-07 Pressure sensor
PCT/JP1989/000923 WO1990003664A1 (en) 1988-09-30 1989-09-07 Pressure sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27259087 1987-10-28
JP62-272590 1987-10-28
JP24707388A JPH01199476A (en) 1987-10-28 1988-09-30 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH01199476A true JPH01199476A (en) 1989-08-10

Family

ID=26538042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24707388A Pending JPH01199476A (en) 1987-10-28 1988-09-30 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH01199476A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677089A1 (en) * 2005-01-03 2006-07-05 Delphi Technologies, Inc. Integrated pressure sensor and method of manufacture
US7670893B2 (en) 1992-04-08 2010-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Membrane IC fabrication
US8035233B2 (en) 1997-04-04 2011-10-11 Elm Technology Corporation Adjacent substantially flexible substrates having integrated circuits that are bonded together by non-polymeric layer
CN102445301A (en) * 2011-11-23 2012-05-09 无锡芯感智半导体有限公司 SOI (silicon on insulator) pressure sensor with self- temperature drift compensation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820469B2 (en) 1992-04-08 2010-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Stress-controlled dielectric integrated circuit
US7911012B2 (en) 1992-04-08 2011-03-22 Taiwan Semiconductor Manufacturing Co., Ltd. Flexible and elastic dielectric integrated circuit
US7670893B2 (en) 1992-04-08 2010-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Membrane IC fabrication
US7763948B2 (en) 1992-04-08 2010-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Flexible and elastic dielectric integrated circuit
US8035233B2 (en) 1997-04-04 2011-10-11 Elm Technology Corporation Adjacent substantially flexible substrates having integrated circuits that are bonded together by non-polymeric layer
US8796862B2 (en) 1997-04-04 2014-08-05 Glenn J Leedy Three dimensional memory structure
US8841778B2 (en) 1997-04-04 2014-09-23 Glenn J Leedy Three dimensional memory structure
US8907499B2 (en) 1997-04-04 2014-12-09 Glenn J Leedy Three dimensional structure memory
US8928119B2 (en) 1997-04-04 2015-01-06 Glenn J. Leedy Three dimensional structure memory
US8933570B2 (en) 1997-04-04 2015-01-13 Elm Technology Corp. Three dimensional structure memory
US9401183B2 (en) 1997-04-04 2016-07-26 Glenn J. Leedy Stacked integrated memory device
US7117747B2 (en) 2005-01-03 2006-10-10 Delphi Technologies, Inc. Integrated pressure sensor and method of manufacture
EP1677089A1 (en) * 2005-01-03 2006-07-05 Delphi Technologies, Inc. Integrated pressure sensor and method of manufacture
CN102445301A (en) * 2011-11-23 2012-05-09 无锡芯感智半导体有限公司 SOI (silicon on insulator) pressure sensor with self- temperature drift compensation

Similar Documents

Publication Publication Date Title
US5567880A (en) Semiconductor accelerometer
US4990986A (en) Semiconductor acceleration sensor
KR900004369B1 (en) Bridge circuit
JP4617943B2 (en) Mechanical quantity measuring device
KR960013675B1 (en) Strain sensor using a strain guage circuit and method for manufacturing the same and load cell balance using the strain sensor
US5191798A (en) Pressure sensor
US5432372A (en) Semiconductor pressure sensor
WO2020175155A1 (en) Pressure sensor
JPH11153503A (en) Pressure sensor apparatus
JPH01199476A (en) Pressure sensor
JPS59217374A (en) Semiconductor strain converter
JP2003083820A (en) Bearing pressure sensor
JP2006524795A (en) High-pressure sensor that measures temperature independently of pressure
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0455542B2 (en)
JPS6222272B2 (en)
JPS6155263B2 (en)
JP2000315805A (en) Strain detecting element and manufacture of the same
JPS63102377A (en) Manufacture of thin film pressure sensor
JP2512220B2 (en) Multi-function sensor
JPH0830716B2 (en) Semiconductor acceleration detector
JPS6124836B2 (en)
JPH0419494B2 (en)
JPH0196522A (en) Thin film pressure sensor
JP2002039888A (en) Method of setting position of gage resistance of semiconductor pressure sensor