JPS6215957B2 - - Google Patents

Info

Publication number
JPS6215957B2
JPS6215957B2 JP7581379A JP7581379A JPS6215957B2 JP S6215957 B2 JPS6215957 B2 JP S6215957B2 JP 7581379 A JP7581379 A JP 7581379A JP 7581379 A JP7581379 A JP 7581379A JP S6215957 B2 JPS6215957 B2 JP S6215957B2
Authority
JP
Japan
Prior art keywords
write
circuit
digital line
writing
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7581379A
Other languages
Japanese (ja)
Other versions
JPS5693A (en
Inventor
Takeshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7581379A priority Critical patent/JPS5693A/en
Publication of JPS5693A publication Critical patent/JPS5693A/en
Publication of JPS6215957B2 publication Critical patent/JPS6215957B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits

Landscapes

  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 この発明は、電気的に書込み可能な不揮発性メ
モリ素子の書込み動作を安定に行うための回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit for stably performing a write operation of an electrically writable nonvolatile memory element.

従来、電気的に書込み可能な不揮発性メモリ素
子を2個以上用いた書込み回路は、第1図のよう
な回路構成になつている。
Conventionally, a write circuit using two or more electrically writable nonvolatile memory elements has a circuit configuration as shown in FIG.

図の説明を行うが、以後の説明は全てnチヤン
ネル型トランジスタを例にとる。
Although the drawings will be explained, all subsequent explanations will be based on an n-channel transistor as an example.

絶縁ゲート電界効果トランジスタ(以下
IGFETと記す)M1は書込み電源VPをドレイ
ン、書込み信号VWをゲート、メモリ素子が接続
されるデジツト線Dをソースにする構成になり、
メモリ素子M2,M3はそれぞれドレインを共通
にしてデジツト線Dに接続して、ゲートをそれぞ
れVA,VBのメモリ素子選択信号に接続し、ソー
スはそれぞれ接地する。書込み信号VWが高レベ
ル、すなわち“High”の時に書込みが行なわ
れ、低レベル、すなわち“Low”の時に書込みが
行なわれない。VA又はVBが“High”の時メモ
リ素子M2又はM3の書込みが始まる。
Insulated gate field effect transistor (hereinafter referred to as
(referred to as IGFET) M1 has a configuration in which the write power supply V P is the drain, the write signal V W is the gate, and the digital line D to which the memory element is connected is the source.
Memory elements M2 and M3 each have a common drain and are connected to digital line D, gates are connected to memory element selection signals V A and V B , respectively, and sources are grounded. Writing is performed when the write signal V W is at a high level, ie, "High", and writing is not performed when the write signal V W is at a low level, ie, "Low". When V A or V B is "High", writing to memory element M2 or M3 begins.

第2図のようなタイミングで書込みを行うと、
書込み時間t1ではメモリ素子M2の選択書込みを
行い、書込み時間t2ではメモリ素子M3の選択書
込みを行う。
If you write at the timing shown in Figure 2,
At write time t1 , selective writing is performed on memory element M2, and at writing time t2 , selective writing is performed on memory element M3.

デジツト線の電位VDの変化は、初期はGND
(接地)電位、VWとVAが“High”に印加される
とM1とM2の抵抗比により決定された電圧まで
上昇しこれによりM2の書込みが始まりM2に書
込まれフローテイングゲートに電子が注入され閾
値電圧VTM2が上昇して、デジツト線の電位VD
上昇する。
Changes in the potential V D of the digital line are initially GND
When the (ground) potentials V W and V A are applied to “High”, they rise to the voltage determined by the resistance ratio of M1 and M2, and this starts writing to M2, and electrons are written to M2 and sent to the floating gate. is injected, the threshold voltage V TM2 rises, and the potential V D of the digital line rises.

次にM3を選択するとM3の初期の閾値電圧V
TM3及び抵抗比により1度電位が下がり、書込ま
れるに従い徐々に上昇してくる。
Next, when M3 is selected, the initial threshold voltage V of M3
The potential drops once due to TM3 and the resistance ratio, and gradually rises as it is written.

メモリ素子の閾値電圧VTMのシフト量(書込後
と初期の閾値電圧VTの変化量)はドレイン電圧
に大きく依存する。このような従来の書込み回路
では、先に述べたようにデジツト線の電圧が大き
く変動するために、書込後のメモリ素子の特性
(VTMなど)が大きくばらつく。特にメモリ素子
が多数になると顕著である。この事は書込み特性
だけでなく当然消去特性のバラツキを招く。
The amount of shift of the threshold voltage V TM of the memory element (the amount of change in the threshold voltage V T after writing and at the initial stage) largely depends on the drain voltage. In such a conventional write circuit, as described above, the voltage of the digit line fluctuates greatly, so the characteristics (such as V TM ) of the memory element after writing vary widely. This is particularly noticeable when the number of memory elements increases. This naturally causes variations in not only write characteristics but also erase characteristics.

このように、この書込み回路を用いたメモリ素
子は書込特性及び消去特性が大きくバラツキ、安
定で一様な特性をもつという事が困難であるとい
う欠点がある。
As described above, the memory element using this write circuit has the drawback that the write characteristics and erase characteristics vary widely, and it is difficult to have stable and uniform characteristics.

この発明の目的はそれぞれデプレーシヨン及び
エンハンスメント型のIGFETを2個用いる事に
よりデジツト線の電圧をある電圧でクランプして
安定で一様な書込み特性及び消去特性をもつバラ
ツキの少ないメモリ素子を実現する書込み回路を
提供することにある。
The purpose of this invention is to clamp the digital line voltage at a certain voltage by using two depletion and enhancement type IGFETs, thereby realizing a memory element with stable and uniform write and erase characteristics with little variation. The purpose is to provide circuits.

本発明によれば、電気的に書込み可能な
IGFETを不揮発性メモリ素子として複数個有
し、それぞれのメモリ素子のドレインは共通のデ
ジツト線にゲートは番地選択信号線に、ソースは
共通接地にそれぞれ接続され、前記デジツト線に
接続された書込み選択回路を有する不揮発性メモ
リの書込み回路において、前記デジツト線にクラ
ンプ回路が接続されていることを特徴とする不揮
発性メモリの書込み回路が得られる。
According to the invention, an electrically writable
It has a plurality of IGFETs as non-volatile memory elements, the drain of each memory element is connected to a common digital line, the gate is connected to an address selection signal line, the source is connected to a common ground, and a write selection signal line connected to the digital line is connected. In the nonvolatile memory write circuit having a circuit, there is obtained a nonvolatile memory write circuit characterized in that a clamp circuit is connected to the digital line.

次に本発明の一実施例を図面を用いて説明す
る。
Next, one embodiment of the present invention will be described with reference to the drawings.

第3図は本発明の一実施例を示す回路接続図で
書込選別用IGFET M1とメモリ素子M2,M3
とデプレーシヨン型IGFET M4とエンハンスメ
ント型IGFET M5により構成され、M1のドレ
インは書込み電源、ゲートは書込み信号、ソース
はデジツト線、M2,M3のドレインはデジツト
線、ゲートは選択信号、ソースは接地にしてM4
はドレインをデジツト線、ゲート及びソースはM
5のドレインと接続、ゲート及びソースは接地す
る。
FIG. 3 is a circuit connection diagram showing one embodiment of the present invention, which includes a write selection IGFET M1 and memory elements M2 and M3.
It consists of a depletion type IGFET M4 and an enhancement type IGFET M5, the drain of M1 is the write power supply, the gate is the write signal, the source is the digital line, the drains of M2 and M3 are the digital line, the gate is the selection signal, and the source is grounded. M4
The drain is connected to the digital line, and the gate and source are connected to the M
Connected to the drain of No. 5, and its gate and source are grounded.

M4とM5とでクランプ回路を構成したもので
第4図のタイミングで書込みで行う場合、書込み
時間t1はメモリ素子M2の選択書込みを行い、書
込み時間t2はメモリ素子M3の選択書込みを行
う。
When M4 and M5 constitute a clamp circuit and write is performed at the timing shown in FIG. 4, selective writing is performed to memory element M2 at writing time t1 , and selective writing is performed to memory element M3 at writing time t2 . .

デジツト線の電位は初期はGND電位、次にVW
とVAが“High”に印加されるとM1とM2の抵
抗比により決定された電圧まで上昇し、M2のド
レイン電圧でもあるデジツト線の電圧が上昇する
事によりM2の書込みが始まりM2のフローテイ
ングゲートに電子が注入され閾値電圧VTM2が上
昇して、デジツト線の電圧は更に上昇し続ける。
この時M5のゲートは接地であるからM5には電
流が流れていない。デジツト線と節点Eの電位が
上昇し、Eの電位がM5のドレイン耐圧以上にな
るとM5に電流が流れ始める。この時M4のトラ
ンジスタの大きさにより電流値が決定される。こ
の電流によりデジツト線の電位はほぼ一定に保た
れるが、この電位の最大値はM5のドレイン耐圧
及びM4,M5のトランジスタの特性により決定
されるので設計上又は製造上容易に制御できる。
The potential of the digital line is initially GND potential, then V W
When V A is applied to "High", the voltage increases to the voltage determined by the resistance ratio of M1 and M2, and as the voltage of the digital line, which is also the drain voltage of M2, increases, writing to M2 starts and the flow of M2 starts. As electrons are injected into the counting gate, the threshold voltage V TM2 rises, and the voltage on the digital line continues to rise.
At this time, since the gate of M5 is grounded, no current flows through M5. When the potential of the digital line and node E increases and the potential of E exceeds the drain breakdown voltage of M5, a current begins to flow through M5. At this time, the current value is determined by the size of the transistor M4. This current keeps the potential of the digital line almost constant, and since the maximum value of this potential is determined by the drain breakdown voltage of M5 and the characteristics of the transistors M4 and M5, it can be easily controlled in design or manufacturing.

次にt2の時、M3の選択書込みを行うと、1度
デジツト線の電位は下がるがM2の時と同様にし
て徐々に上りある値で一定になる。
Next, at time t2 , when selective writing is performed on M3, the potential of the digital line drops once, but as in the case of M2, it gradually rises and becomes constant at a certain value.

このように、デジツト線の電位は所定値にクラ
ンプされてほぼ一定になるので、ほぼ同一条件で
それぞれのメモリ素子の書込みが行なわれ、書込
後の特性もほぼ一様になる。
In this way, the potential of the digital line is clamped to a predetermined value and becomes substantially constant, so that writing is performed in each memory element under substantially the same conditions, and the characteristics after writing are also substantially uniform.

なお、クランプ回路はゲートとソースを共通接
続されたエンハンスメント型IGFET1個のみ又は
必要に応じて複数個直列又は並列に接続してもよ
いし、その他所望電位にクランプしうる回路であ
れば何でもよいことはいうまでもない。又、メモ
リ素子の数、書込選択回路を構成するIGFETの
数は任意でよいし、Pチヤンネル型IGFETを用
いた回路に本発明を適用しうることは当然のこと
である。
Note that the clamp circuit may consist of only one enhancement type IGFET whose gate and source are commonly connected, or may include multiple IGFETs connected in series or parallel as necessary, or any other circuit that can clamp the IGFET to the desired potential. Needless to say. Further, the number of memory elements and the number of IGFETs constituting the write selection circuit may be arbitrary, and it goes without saying that the present invention can be applied to a circuit using P-channel type IGFETs.

以上説明したようにクランプ回路を利用した本
発明の書込み回路は従来に比較して安定に書込み
が行なわれ、書込み特性及び消去特性が一様にな
り全体的なバラツキが少なく、更にドレイン耐圧
を可変する事により書込み特性及び消去特性を容
易に制御できるという利点がある。
As explained above, the write circuit of the present invention using a clamp circuit performs writing more stably than the conventional one, has uniform write characteristics and erase characteristics, has little overall variation, and has variable drain breakdown voltage. This has the advantage that writing characteristics and erasing characteristics can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の書込み回路を示す回路接続図、
第2図は従来回路の書込み信号波形を示すタイム
チヤート、第3図は本発明の書込み回路の一実施
例を示す回路接続図、第4図はその書込み信号波
形を示すタイムチヤートである。なお第3図の破
線部分は従来の書込み回路である。 なお図において、M1,M5……エンハンスメ
ント型IGFET、M4……デプレーシヨン型
IGFET、VP……書込み電圧、VW書込み選択信
号、D……デジツト線、VA,VB……メモリ素子
選択信号、M2,M3……メモリ素子。
Figure 1 is a circuit connection diagram showing a conventional write circuit.
FIG. 2 is a time chart showing the write signal waveform of a conventional circuit, FIG. 3 is a circuit connection diagram showing an embodiment of the write circuit of the present invention, and FIG. 4 is a time chart showing the write signal waveform. Note that the broken line portion in FIG. 3 is a conventional write circuit. In the figure, M1, M5...enhancement type IGFET, M4...depletion type IGFET
IGFET, V P ...Write voltage, VW write selection signal, D...Digital line, V A , V B ...Memory element selection signal, M2, M3...Memory element.

Claims (1)

【特許請求の範囲】[Claims] 1 電気的に書込み可能な絶縁ゲート電界効果ト
ランジスタを不揮発性メモリ素子として複数個有
しそれぞれのメモリ素子のドレインは共通のデジ
ツト線に、ゲートは番地選択信号線に、ソースは
共通接地にそれぞれ接続され、前記デジツト線に
接続された書込み選択回路を有する不揮発性メモ
リの書込み回路において、前記デジツト線にクラ
ンプ回路を設け、前記クランプ回路はクランプ電
圧を決定する定電圧素子を含むことを特徴とする
不揮発性メモリの書込み回路。
1 A plurality of electrically writable insulated gate field effect transistors are used as nonvolatile memory elements, and the drain of each memory element is connected to a common digital line, the gate is connected to an address selection signal line, and the source is connected to a common ground. In the write circuit for a nonvolatile memory having a write selection circuit connected to the digital line, the digital line is provided with a clamp circuit, and the clamp circuit includes a constant voltage element for determining a clamp voltage. Non-volatile memory write circuit.
JP7581379A 1979-06-15 1979-06-15 Write-in circuit for non-volatile semiconductor memory Granted JPS5693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7581379A JPS5693A (en) 1979-06-15 1979-06-15 Write-in circuit for non-volatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7581379A JPS5693A (en) 1979-06-15 1979-06-15 Write-in circuit for non-volatile semiconductor memory

Publications (2)

Publication Number Publication Date
JPS5693A JPS5693A (en) 1981-01-06
JPS6215957B2 true JPS6215957B2 (en) 1987-04-09

Family

ID=13586990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7581379A Granted JPS5693A (en) 1979-06-15 1979-06-15 Write-in circuit for non-volatile semiconductor memory

Country Status (1)

Country Link
JP (1) JPS5693A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850700A (en) * 1981-09-21 1983-03-25 Hitachi Ltd Eprom writing circuit
JPS6010497A (en) * 1983-06-29 1985-01-19 Nec Corp Nonvolatile semiconductor memory device
JP2638916B2 (en) * 1988-04-25 1997-08-06 日本電気株式会社 Nonvolatile semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107638A (en) * 1978-02-10 1979-08-23 Sanyo Electric Co Ltd Memory data readout circuit in semiconductor memory unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107638A (en) * 1978-02-10 1979-08-23 Sanyo Electric Co Ltd Memory data readout circuit in semiconductor memory unit

Also Published As

Publication number Publication date
JPS5693A (en) 1981-01-06

Similar Documents

Publication Publication Date Title
KR100454116B1 (en) Bit line setup and discharge circuit for programming non-volatile memory
US5384743A (en) Structure and method for flash eprom memory erasable by sectors
US5276646A (en) High voltage generating circuit for a semiconductor memory circuit
US6118705A (en) Page mode erase in a flash memory array
EP0822557A2 (en) Non-volatile semiconductor memory device with variable source voltage
JP2004514238A (en) Page erasable flash memory and control method thereof
JPH07176698A (en) Semiconductor integrated circuit device
JPH0746515B2 (en) Decoder circuit
US5805499A (en) Channel hot-carrier page write for NAND applications
US4805150A (en) Programmable semiconductor memory device having grouped high voltage supply circuits for writing data
KR900001774B1 (en) The semiconductor memory device involving a bias voltage generator
JP3093655B2 (en) Method for driving word line of multi-value mask ROM and its driving circuit
KR19990036007A (en) Flash memory system and method with reduced interference
US6208564B1 (en) High voltage comparator
JPH065085A (en) Nonvolatile semiconductor memory device
JPS6215957B2 (en)
US6246609B1 (en) Decoder circuit
US6240044B1 (en) High speed address sequencer
JPH0581999B2 (en)
JP2542110B2 (en) Nonvolatile semiconductor memory device
US7042779B2 (en) Method and apparatus for reducing leakage current in a read only memory device using pre-charged sub-arrays
JPS6027118B2 (en) semiconductor memory device
JPH04229655A (en) Erasure system at nonvolatile semiconductor memory device
JPH06267285A (en) Non-volatile semiconductor memory and method for using it
JPH0318275B2 (en)