JPS62159015A - Measuring instrument for intake air quantity - Google Patents

Measuring instrument for intake air quantity

Info

Publication number
JPS62159015A
JPS62159015A JP61001774A JP177486A JPS62159015A JP S62159015 A JPS62159015 A JP S62159015A JP 61001774 A JP61001774 A JP 61001774A JP 177486 A JP177486 A JP 177486A JP S62159015 A JPS62159015 A JP S62159015A
Authority
JP
Japan
Prior art keywords
intake air
fuel
fuel mist
air quantity
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61001774A
Other languages
Japanese (ja)
Inventor
Tsuneo Sekiguchi
関口 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP61001774A priority Critical patent/JPS62159015A/en
Publication of JPS62159015A publication Critical patent/JPS62159015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the intake air quantity with high accuracy without being influenced by dust, carbon, etc., by calculating a cross-correlation function of damped waveform signals by two light emitting photodetectors and a flying time of a fuel mist with respect to an interval of the peaks and measuring the intake air quantity. CONSTITUTION:A fuel feeder 2 is provided at the upstream side of a throttle valve 5 in an internal combustion engine. Two light sources 3 with small luminous fluxs are provided at a prescribed interval mutually with respect to the direction of the inlet flow on an inlet pipe between the feeder 2 and the valve 5 and the photodetectors 4 are arranged at the positions in opposition respectively. Then, the respective damped waveform signals generating by the passing of the fuel mist are inputted to a detected signal processing circuit 6 and the cross-correlation function of two damped waveform signals is calculated and a time lag between the signals of two photodetectors 4 with respect to the peak value is calculated. In this way, the flow velocity of the fuel mist is detected and the intake air quantity is calculated from the flow velocity of the fuel mist.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、自動車用内燃機関の吸入空気量測定装置に関
するものである。 【従来の技術】 従来、空燃比制御のための吸入空気量測定装置としては
多くの手段が用いられており、現在使用されているもの
としては、第6図に示すようなL−ジェトロ等の7ラツ
パ方式、第7図に示すようなり一ジエトロ等の圧力計測
方式、第8図に示すようなホットワイヤ方式、および第
9図に示すようなカルマン渦方式による流速計などが知
られている。 フラッパ方式は、吸入空気のもつ運動エネルギで7ラツ
パを回動させ、その空気流量に応じた回動角度をポテン
ショメータで取出寸ようにしたものである。また、圧力
計測方式は、スロットルバルブ下流側の吸気圧を検出し
て、この検出された吸気圧によって空気量に換痒するよ
うにしたものである。さらに、ホットワイヤ方式は、ホ
イートストーンブリッジの熱線でなる一辺を吸気流中に
挿入し、その冷却度に応じた抵抗変化を検出することに
より、空気速度を検出するようにしたものである。そし
てカルマン渦方式は、吸気管内に渦発生端を介挿し、そ
の後流で発生するカルマン渦の振動数を超音波検出器等
によって検出し、空気速度を測定するものである。なお
、タービン型流速計や、イオン検出型流速計なども開発
されつつあるが、いまだに実用化されていない。
[Industrial Application Field 1] The present invention relates to an intake air amount measuring device for an internal combustion engine for an automobile. [Prior Art] Conventionally, many means have been used as intake air amount measuring devices for air-fuel ratio control, and the ones currently in use include the L-JETRO as shown in Figure 6. Known current meters include the 7 Ratsupa method, the pressure measuring method such as the Nari-Jietro shown in Fig. 7, the hot wire method shown in Fig. 8, and the Karman vortex method shown in Fig. 9. . In the flapper system, seven flaps are rotated using the kinetic energy of the intake air, and a potentiometer is used to adjust the rotation angle according to the air flow rate. In addition, the pressure measurement method detects the intake pressure on the downstream side of the throttle valve, and uses the detected intake pressure to adjust the amount of air. Furthermore, in the hot wire method, one side of the hot wire of the Wheatstone bridge is inserted into the intake air flow, and the air velocity is detected by detecting a change in resistance depending on the degree of cooling. In the Karman vortex method, a vortex generating end is inserted into the intake pipe, and the frequency of the Karman vortex generated in its wake is detected by an ultrasonic detector or the like to measure the air velocity. Although turbine-type current meters and ion detection-type current meters are being developed, they have not yet been put into practical use.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

上記のような従来の吸入空気量測定装置において、フラ
ッパ方式ではフラッパの慣性による応答遅れがあり、圧
力計測方式ではEGR等の外乱に対応することができず
測定誤差となる。また、ホットワイヤ方式ではゴミ、汚
れ等による熱線の断線、経時変化が生じる。さらに、カ
ルマン渦方式では応答性に限界があり、タービン型では
タービン翼の慣性による応答遅れがあり、イオン検出型
ではコロナ放電のための消費電力が増大する。 以上のように、従来の吸入空気量測定装置にあっては、
それぞれ問題があった。 本発明は、上記のような問題点を解消するためになされ
たもので、空気流量測定の精度を向上させると共に、吸
気系の流路抵抗を増加させず、しかも、ゴミやカーボン
等の影響を受けない吸入空気量測定装置を得ることを目
的とするものである。
In the conventional intake air amount measuring device as described above, the flapper method has a response delay due to the inertia of the flapper, and the pressure measurement method cannot respond to disturbances such as EGR, resulting in measurement errors. Further, in the hot wire method, the hot wire may break due to dust, dirt, etc., and may change over time. Furthermore, the Karman vortex type has a limited response, the turbine type has a response delay due to the inertia of the turbine blades, and the ion detection type increases power consumption due to corona discharge. As mentioned above, in the conventional intake air amount measuring device,
Each had their own problems. The present invention was made to solve the above-mentioned problems, and it improves the accuracy of air flow measurement, does not increase the flow path resistance of the intake system, and eliminates the influence of dust, carbon, etc. The purpose of this invention is to obtain an intake air amount measuring device that does not receive airflow.

【問題点を解決するための手段】[Means to solve the problem]

上記の目的を達成するため、本発明は、スロットル弁の
上流側に燃料供給装置を有する内燃機関において、上記
燃料供給装置とスロットル弁との間の吸気管に、光束が
小さな2つの光源を吸気流方向に対して所定距離互いに
離して設置し、この光源にそれぞれ対向する位置に受光
器を配置し、燃料ミストの通過によって生じるそれぞれ
の減衰波形信号を検出信号処理回路に入力して、この2
つの減衰波形信号の相互相関関数φb2を求め、そのピ
ーク値に対する2つの上記受光器の信号間の時間遅れτ
を算出し、この算出された時間遅れτによって燃料ミス
トの流速を検出し、この燃料ミスト流速から吸入空気量
を求めるようにしたことを特徴とするものである。
In order to achieve the above object, the present invention provides an internal combustion engine having a fuel supply device upstream of a throttle valve, in which two light sources with small luminous flux are installed in an intake pipe between the fuel supply device and the throttle valve. The two light sources are installed at a predetermined distance apart from each other in the flow direction, and light receivers are placed at positions facing each of the light sources, and the respective attenuated waveform signals generated by the passage of the fuel mist are input to the detection signal processing circuit.
Find the cross-correlation function φb2 of the two attenuated waveform signals, and find the time delay τ between the two optical receiver signals with respect to its peak value.
The present invention is characterized in that the fuel mist flow velocity is detected based on the calculated time delay τ, and the intake air amount is determined from the fuel mist flow velocity.

【作   用】[For production]

本発明による吸入空気量測定装置においては、吸気管路
に配設された2つの光源からの光束内に燃料供給装置か
らの燃料ミストが入ると、対向して配置されたそれぞれ
の受光器の信号には減衰波形が生ずる。この減衰波形信
号は、所定距離互いに離れて配置された2つの受光器信
号間の時間遅れτをもった同一周波数成分の多いものと
なり、この2つの減衰波形信号の相互相関関数φb2を
検出信号処理回路のマイクロコンピュータで求め、その
求められた相互相関関数φ1,2のピーク値に対する両
受光器からの減衰波形信号間の時間遅れτを算出し、こ
の算出された時間遅れτから燃料ミストの流速、すなわ
ち吸入空気量を検出する。
In the intake air amount measuring device according to the present invention, when the fuel mist from the fuel supply device enters the light flux from the two light sources disposed in the intake pipe, a signal is sent to each of the light receivers disposed opposite to each other. A damped waveform is generated. This attenuated waveform signal has many same frequency components with a time delay τ between two receiver signals placed a predetermined distance apart, and the cross-correlation function φb2 of these two attenuated waveform signals is detected and signal processing is performed. The microcomputer in the circuit calculates the time delay τ between the attenuation waveform signals from both receivers with respect to the peak values of the cross-correlation functions φ1 and 2, and the flow velocity of the fuel mist is determined from the calculated time delay τ. , that is, the amount of intake air is detected.

【実 施 例】【Example】

第1図は本発明の一実施例を示すシステム図。 第2図はその検出部の詳細構成図である。これらの図に
おいて、符号1はエアクリーナ、2は燃料を吸気流中に
噴出する燃料供給装置、3は燃料供給装置2の下流側吸
気管壁に設置される2つの光源3a、 3bで、4は光
源3a、 3bから照射される光束を受光するそれぞれ
の受光器で、吸気管の他側壁に対向して配置されるフォ
トトランジスタ4a、 4bで構成される。5はスロッ
トル弁、6は検出信号処理回路で、増幅器7a、 7b
、 A/D変換器8a、 8b。 およびマイクロコンピュータ9で構成されている。 10はエンジン制御ユニット(空燃比制御装置)である
。 次に、上記のように構成された吸入空気量測定装置の動
作について説明する。まず、燃料供給袋@2の噴射弁か
ら供給された燃料ミストは、エアクリーナ1からの新気
と共に吸入管内をスロットル弁5を経てエンジンへと送
られる。そして吸入管に設置された光源3による光束内
にこの燃料ミストが入ると、第3図り)に示すように、
受光器4の信号には減衰波形が生じる。この減衰波形は
、光源3a、 3bおよび受光器4a、 4bが所定距
離りだけ離れて設置されているので、第3図の)に示す
ように、上流側減衰信号から距lll1tLを吸気流速
Vで除算した時間でだけ遅れて下流側の受光器4bにも
発生する。今、2つの光束間の距離が比較的小さく、例
えば数m1Vlとすると、同一ミストが2つの光束を通
過する確率は高くなり、すなわち2つの受光器4a、 
4bの信号は時間遅れτをもった同一周波数成分の多い
減衰波形信号となる。そこで、受光器4a。 4bの信号は、それぞれ検出信号処理回路6の増幅器7
a、 7bで差分増幅され、A/D変換器8a、 8b
でA/D変換されてマイクロコンピュータ9に入力され
る。このマイクロコンピュータ9において、受光器4a
、 4bからの信号S1 (t >、S2 (t )の
相互相関関数φ1,2 (7,)を、次式で求めるが、
φI+2 =1 ’閘(1/2T)f″5t(t)T〜
閃         −− XSt  (t+τ)dt   ・・・  (1)φl
、2 =1 im (’/ T ) fooS 1(t
 )τ〜Oつ XS2  (j+τ)dt   ・・・  (2)しか
し、実際にはA/D変換器8a、 8bにお【ノるA/
D変換速度と、バッファ(メモリ)に制約されるので、
近似式を用いる。今、A/D変換速度をΔt(SeG)
、バッファ容量をN個(データ数)とすると、N・Δt
(SeC)間に、N個のデータが取込まれることになる
。そこで、それぞれのデータをディメンションで Sl (t )=St  [11,81[2]・・・S
t  [N]Sz  (t  )=82 [1] 、S
t  [2]・・・St  [N]のように表わすと、
Sl (t)と5t(t)の相互相関関数は下式により
近似できる。 XSz  [il   ・・・  (3)n =0.1
,2.・・・N これより、φ、、2[n ]の最大値を示すn′を求め
ることで、81(t)と5z(t)の遅れ時間で=Δt
  −n= が、例えば第5図に示す制御フローによって求められる
。このプログラムは、先ずプログラムにおいて、両受光
器4a、 4bによる信号S1.SzをA/D変換し、
次にブロックBにおいて、上流側信号S1を繰返し波形
と近似し、ディメンションアドレスをステップ分移動さ
せる。次いで、ブロックCにおいて、両信号S1とSz
の積の和を算出する。そしてブロックDにおいて、相互
相関関数φ1,2からφ、、2maxを求め、この時の
ステップ数にデータサンプリング間隔(A/D変換速度
)を乗することで、φ5□l1laxにおける上、下流
側受光器信号S1.Sl間の遅れ時間τが、第3図(C
)のように求まる。なお、この処理フローのブロック図
的なものを第4図に示す。 燃料供給装置2から噴霧された微小燃料ミストは、重量
の影響をほとんど受けずに新気と同じ速度で流れると考
えてよいので、エンジンへの吸入空気量Qaは、 Qa =A−Va =A−Vd =A−L/τ  ・・・  (4) ここで、Vd:ミスト飛翔速度 ■a :吸入空気流速 [、:光束間距−1 A :吸入管断面積 で求められる。この求められた吸入空気ff1Qaの信
号は、制御ユニット〈空燃比制御装置)10へ送られ、
ここで所定の空燃比が得られるような燃料噴射量が演算
され、この演陣結果に応じたパルス幅の駆動信号が燃料
供給装置2へ送られ、空燃比が最適に制御される。 このように構成された吸入空気量測定装置の検出部は、
測定のためのバイパス管路などを必要とせず、光源3お
よび受光器4は吸気管内に突出していないので、吸気系
の流路抵抗を増大させることはな(、また、ゴミやカー
ボン等も一種のミストとなるので、これ等によって計測
に影響を受けることはない。 【発明の効果] 本発明は以上説明したとおり、2つの発・受光器による
減衰波形信号の相互相関関数を求め、そのピーク間に対
する両信号間の遅れ時間、すなわち燃料ミストの飛翔時
間を求め、これに基づいて吸入空気量の測定を行うよう
に構成したので、ゴミやカーボン等の影響を受けること
なく吸入空気量を高精度に測定することができ、センサ
も通常の半導体素子で良いのでシステムを安価に構成で
き、しかも吸気系に外乱を与えることはないという効果
が得られる。
FIG. 1 is a system diagram showing an embodiment of the present invention. FIG. 2 is a detailed configuration diagram of the detection section. In these figures, reference numeral 1 is an air cleaner, 2 is a fuel supply device that injects fuel into the intake air flow, 3 is two light sources 3a and 3b installed on the intake pipe wall on the downstream side of the fuel supply device 2, and 4 is an air cleaner. Each light receiver receives the light flux emitted from the light sources 3a and 3b, and is composed of phototransistors 4a and 4b arranged opposite to the other side wall of the intake pipe. 5 is a throttle valve, 6 is a detection signal processing circuit, and amplifiers 7a and 7b.
, A/D converters 8a, 8b. and a microcomputer 9. 10 is an engine control unit (air-fuel ratio control device). Next, the operation of the intake air amount measuring device configured as described above will be explained. First, fuel mist supplied from the injection valve of the fuel supply bag @2 is sent to the engine through the throttle valve 5 in the intake pipe together with fresh air from the air cleaner 1. When this fuel mist enters the light beam from the light source 3 installed in the suction pipe, as shown in the third diagram),
An attenuated waveform occurs in the signal from the photoreceiver 4. Since the light sources 3a, 3b and the receivers 4a, 4b are installed a predetermined distance apart, this attenuation waveform is generated by changing the distance lll1tL from the upstream attenuation signal to the intake flow velocity V, as shown in () in Fig. 3. It also occurs in the downstream light receiver 4b with a delay of the divided time. Now, if the distance between the two light beams is relatively small, for example several m1Vl, the probability that the same mist will pass through the two light beams will be high, that is, the two light receivers 4a,
The signal 4b becomes an attenuated waveform signal having many same frequency components with a time delay τ. Therefore, the light receiver 4a. The signals 4b are each sent to the amplifier 7 of the detection signal processing circuit 6.
a, 7b, and A/D converters 8a, 8b.
The signal is A/D converted and input to the microcomputer 9. In this microcomputer 9, the light receiver 4a
, 4b, the cross-correlation function φ1,2 (7,) of the signal S1 (t >, S2 (t)) is determined by the following equation,
φI+2 = 1 'Lock (1/2T) f''5t(t)T~
Flash -- XSt (t+τ)dt... (1)φl
, 2 = 1 im ('/T) fooS 1(t
)τ~O XS2 (j+τ)dt... (2) However, in reality, the A/D converters 8a and 8b are
Because it is limited by the D conversion speed and buffer (memory),
Use an approximate formula. Now, the A/D conversion speed is Δt(SeG)
, if the buffer capacity is N (number of data), then N・Δt
During (SeC), N pieces of data will be captured. Therefore, each data is divided into dimensions Sl (t) = St [11, 81 [2]...S
t[N]Sz(t)=82[1],S
When expressed as t [2]...St [N],
The cross-correlation function between Sl (t) and 5t(t) can be approximated by the following formula. XSz [il... (3)n = 0.1
,2. ...N From this, by finding n', which indicates the maximum value of φ,,2[n], = Δt with the delay time of 81(t) and 5z(t)
-n= is determined by the control flow shown in FIG. 5, for example. In this program, first, the signals S1 . A/D convert Sz,
Next, in block B, the upstream signal S1 is approximated to a repetitive waveform, and the dimension address is moved by a step. Then, in block C, both signals S1 and Sz
Calculate the sum of the products. Then, in block D, obtain the cross-correlation functions φ, 2max from φ1, 2, and multiply the number of steps at this time by the data sampling interval (A/D conversion speed) to obtain the upper and downstream light reception at φ5□l1lax. device signal S1. The delay time τ between Sl is shown in Fig. 3 (C
). A block diagram of this processing flow is shown in FIG. The fine fuel mist sprayed from the fuel supply device 2 can be considered to flow at the same speed as fresh air without being affected by weight, so the amount of air intake Qa into the engine is: Qa = A - Va = A -Vd=A-L/τ... (4) Here, Vd: Mist flight speed ■a: Intake air flow rate [,: Distance between light beams -1 A: Determined by suction pipe cross-sectional area. The obtained intake air ff1Qa signal is sent to the control unit (air-fuel ratio control device) 10,
Here, a fuel injection amount that will provide a predetermined air-fuel ratio is calculated, and a drive signal with a pulse width corresponding to this result is sent to the fuel supply device 2 to optimally control the air-fuel ratio. The detection section of the intake air amount measuring device configured in this way is
There is no need for a bypass pipe for measurement, and the light source 3 and receiver 4 do not protrude into the intake pipe, so they do not increase the flow resistance of the intake system (and are free from dust, carbon, etc.) This mist does not affect the measurement. [Effects of the Invention] As explained above, the present invention calculates the cross-correlation function of the attenuated waveform signals from the two light emitters and receivers, and calculates the peak The delay time between both signals, that is, the flight time of the fuel mist, is determined, and the amount of intake air is measured based on this, so it is possible to increase the amount of intake air without being affected by dust or carbon. Since measurements can be made with high precision and the sensor can be made of a normal semiconductor element, the system can be constructed at low cost, and the effect is that no disturbance is caused to the intake system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示ずシステム図、第2図は
その検出部の詳細構成図、第3図(2)ないし第3図(
C)は検出信号処理回路における波形のタイムチャート
図、第4図は検出信号処理回路の概略動作を示すフロー
チャート図、第5図はその具体的動作の一例を示すフロ
ーチャート図、第6図ないし第9図は従来の吸入空気量
測定装置を示す概略図である。 2・・・燃料供給装置、3・・・光源、4・・・受光器
、6・・・検出信号処理回路、7a、 7b・・・増幅
器、8a、 8b・・・A/D変換器、9・・・マイク
ロコンピュータ、10・・・制御ユニット。 特許出願人    富士重工業株式会社代理人 弁理士
  小 橋 信 浮 量  弁理士  村 井   進 第2図 −b 第4図 第6図 (L−仁゛ヱトロJ 第6図 り本−y)−ワ介〕 第7図 第9図 〔ツシノムマユ、5尚〕
Fig. 1 is a system diagram that does not show one embodiment of the present invention, Fig. 2 is a detailed configuration diagram of its detection section, and Figs. 3 (2) to 3 (
C) is a time chart of waveforms in the detection signal processing circuit, FIG. 4 is a flowchart showing the general operation of the detection signal processing circuit, FIG. 5 is a flowchart showing an example of its specific operation, and FIGS. FIG. 9 is a schematic diagram showing a conventional intake air amount measuring device. 2... Fuel supply device, 3... Light source, 4... Light receiver, 6... Detection signal processing circuit, 7a, 7b... Amplifier, 8a, 8b... A/D converter, 9...Microcomputer, 10...Control unit. Patent Applicant: Fuji Heavy Industries Co., Ltd. Agent, Patent Attorney: Makoto Kobashi, Patent Attorney: Susumu Murai, Figure 2-b, Figure 4, Figure 6 (L-Nitro J, Figure 6, Diagram-y) - Wa-suke] Figure 7 Figure 9 [Tsushinomumayu, 5th Sho]

Claims (1)

【特許請求の範囲】[Claims] スロットル弁の上流側に燃料供給装置を有する内燃機関
において、上記燃料供給装置とスロットル弁との間の吸
気管に、光束が小さな2つの光源を吸気流方向に対して
所定距離互いに離して設置し、この光源にそれぞれ対向
する位置に受光器を配置し、燃料ミストの通過によって
生じるそれぞれの減衰波形信号を検出信号処理回路に入
力して、この2つの減衰波形信号の相互相関関数φ_1
_、_2を求め、そのピーク値に対する2つの上記受光
器の信号間の時間遅れτを算出し、この算出された時間
遅れτによって燃料ミストの流速を検出し、この燃料ミ
スト流速から吸入空気量を求めるようにしたことを特徴
とする吸入空気量測定装置。
In an internal combustion engine having a fuel supply device upstream of a throttle valve, two light sources with a small luminous flux are installed in an intake pipe between the fuel supply device and the throttle valve at a predetermined distance from each other in the direction of intake flow. , a light receiver is arranged at a position facing each of the light sources, and each attenuated waveform signal generated by passage of the fuel mist is inputted to a detection signal processing circuit, and a cross-correlation function φ_1 of these two attenuated waveform signals is obtained.
Find _, _2, calculate the time delay τ between the signals of the two light receivers with respect to their peak values, detect the flow velocity of fuel mist using this calculated time delay τ, and calculate the intake air amount from this fuel mist flow velocity. An intake air amount measuring device characterized by determining the amount of air.
JP61001774A 1986-01-08 1986-01-08 Measuring instrument for intake air quantity Pending JPS62159015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001774A JPS62159015A (en) 1986-01-08 1986-01-08 Measuring instrument for intake air quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001774A JPS62159015A (en) 1986-01-08 1986-01-08 Measuring instrument for intake air quantity

Publications (1)

Publication Number Publication Date
JPS62159015A true JPS62159015A (en) 1987-07-15

Family

ID=11510920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001774A Pending JPS62159015A (en) 1986-01-08 1986-01-08 Measuring instrument for intake air quantity

Country Status (1)

Country Link
JP (1) JPS62159015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592103A (en) * 2013-11-11 2014-02-19 浙江大学 Mini-channel liquid-solid two-phase flow parameter measurement device and method based on laser extinction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592103A (en) * 2013-11-11 2014-02-19 浙江大学 Mini-channel liquid-solid two-phase flow parameter measurement device and method based on laser extinction method

Similar Documents

Publication Publication Date Title
US4386520A (en) Flow rate measuring apparatus
CN1411534A (en) Method and device for determining throughput of flowing medium
JPS62159015A (en) Measuring instrument for intake air quantity
JPS649317A (en) Exhaust gas flow rate detector
US4831883A (en) Double bluff body vortex meter
CN207963973U (en) A kind of ultrasonic flowmeter unit and device
JPS5829853B2 (en) Mass flow measuring device
JPS62129723A (en) Suction air flow meter
CN205785289U (en) A kind of temperature and pressure flow measuring apparatus
JPH09196959A (en) Wind direction/speed indicator
JPH06265385A (en) Air flow rate measuring instrument
CN202631024U (en) Self-calibration heat-precession vortex combined-type gas flow-rate measuring device
JPS6053811A (en) Output-signal processing device of karman vortex sensor
JPS6212256Y2 (en)
JPS6256963B2 (en)
JPS6327648B2 (en)
JPS61164115A (en) Karman's vortex street type air flow rate measuring instrument
JPS5912568Y2 (en) Karman vortex flow meter
JPH08278179A (en) Exothermic resistance type air flow measuring device
JPH0624738Y2 (en) Correlation flow meter
CN108318091A (en) A kind of ultrasonic flowmeter unit and device
JPH10185639A (en) Flowmeter
JPS63256817A (en) Karman type air flow rate sensor
CN114966097A (en) Flue gas flow velocity field measuring system and method based on invasive electrostatic sensor array
Li et al. Multi-channel rotational speed measurement: a software based approach