JPS6215655B2 - - Google Patents

Info

Publication number
JPS6215655B2
JPS6215655B2 JP55012838A JP1283880A JPS6215655B2 JP S6215655 B2 JPS6215655 B2 JP S6215655B2 JP 55012838 A JP55012838 A JP 55012838A JP 1283880 A JP1283880 A JP 1283880A JP S6215655 B2 JPS6215655 B2 JP S6215655B2
Authority
JP
Japan
Prior art keywords
groove
grooves
fibers
knitted fabric
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55012838A
Other languages
Japanese (ja)
Other versions
JPS56112535A (en
Inventor
Junyo Nakagawa
Masaji Asano
Seiji Hirakawa
Yoshishige Noguchi
Takaaki Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1283880A priority Critical patent/JPS56112535A/en
Publication of JPS56112535A publication Critical patent/JPS56112535A/en
Publication of JPS6215655B2 publication Critical patent/JPS6215655B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、表面に微細な溝を有する繊維(含溝
繊維)を30重量%以上含有してなる吸水性の優れ
た織編物に関するものである。 今日、熱可塑性合成繊維とりわけポリエステル
繊維は衣料用繊維素材として極めて広い用途に使
用されているが、吸湿性、吸水性能が劣るという
欠点を有している。そのため、疎水性繊維に親水
性を持たせるための多くの検討がなされてきてい
る。すなわ、(1)疎水性ポリマーにポリアルキレン
グリコールやその誘導体あるいは金属塩を共重合
またはブレンドする方法、(2)多孔質構造を繊維に
持たせる方法あるいは(3)後加工によつて親水性物
質を織編物に付着させる方法等が提案され一部実
施されている。そして、(1)の方法においては繊維
にある程度までの親水性は付与できるが、天然繊
維に匹敵する充分な性能を持たせようとすると改
質量も多くなり、そのため基本ポリマーの繊維物
性が著しく低下して実用性のないものとなる。ま
た、(2)の方法は化学的な親水性を付与するのでは
なく毛管凝縮効果を利用しようとするものであつ
て興味ある一方法であり、確かに高湿度下におい
ての吸湿性は著しく改良されるが、そのためには
繊維のかなりの部分を多孔質構造にする必要があ
り、(1)と同様の問題が生ずる。さらに、(3)の方法
は実用性があり、広く行なわれているが、単に水
にぬれやすいというだけで着用時の着心地まで考
えたときの効果は疑問であり、最大の欠点は耐洗
濯性に劣ることである。 このように、親水性あるいは吸湿性繊維として
今日まで多くの研究提案がなされているが、それ
らは単に繊維の親水性能、吸湿性能を改良しよう
とするものであり、衣料衛生学的な見地から発汗
時の着心地を考え、繊維あるいは織編物を設計し
たというものではなかつた。 本発明者らは、これらの欠点がなくかつ発汗時
に着心地の良い織編物とはいかなる性能を有して
いればよいかについて基礎検討を重ねた結果、従
来とは全く異なる発想から、発汗状態においても
不快感を与えない織編物の提供に成功したもので
ある。本発明者らの研究によれば、発汗時の衣内
気候を考えた場合、衣料素材で独立に変り得るパ
ラメータは(1)吸湿性、(2)表面のぬれやすさ、(3)吸
水性(保水性)および(4))乾燥性、透湿性であ
り、これらのうち本発明者らの目的に対しては(4)
はほとんど関係なく、かつこれまで最も重要と考
えられていた(1)も性能を有していれば望ましいと
いう程度であり、実着用には影響が小さいことが
わかつた。重要なのは(3)の要件であり、(2)につい
ては短時間で(3)の性能を発揮させるために重要で
あることもわかつた。 一般に、発汗機構を考えた場合、衣内気候の変
化は次の4期に分けて考えることができた。すな
わち、第1期は不感蒸泄期であり、発汗量として
は25℃、70%RHの室内で通常生活を営んでいる
時に相当し5〜20g/m2hr程度と考えられる。こ
の状態では衣内湿度は70〜80%以下であり不快感
はない。第2期は温熱発汗開始期であり、発汗量
としては軽労働しているときの状態に相当し20〜
50g/m2hr程度であり、衣内湿度は60〜100%と
なる。この状態を継続した場合、透湿性や吸湿性
の良い肌着では衣内湿度は変らないが、悪いもの
では衣内湿度が増大し不快を感じると考えられて
いる。第3期は時間と共に発汗量が増加する期間
であり、発汗量としては中労働から重労働に相当
し、50〜120g/m2hrと考えられる。この状態で
は衣内はウエツトとなり、肌着が吸汗しないかぎ
り皮膚がぬれ著しく不快感をいだく。第4期は人
体が環境に順応し発汗量が徐々に低下する期間で
あり、肌着としては完全にぬれた状態となり、も
はや肌着を替える以外に不快感をとり除くことは
できない。そして、第1期においては繊維素材の
吸湿性、透湿性が関係するが、発汗量が小さいた
めに素材による差はなく、不快感がないので問題
はない。また第4期においても、上述の理由で素
材間の差はなく、素材の性能設計を議論するとこ
ろではない。従つて、繊維素材により差が出るの
は第2期、第3期である。従来の提案は第2期を
持続させる衣料に主眼をおいたものがほとんどで
あり、したがつて繊維を吸湿化させることが重要
なポイントと考えられていた。しかし、疎水性繊
維に吸湿性を付与することは、非常に難かしい問
題であり、いまだ実用性のあるものが現われてい
ないのが現状である。 本発明者らの実着用テストを行つた結果によれ
ば、第2期は本質的に不快感はなく、不快を感ず
るのは第3期で皮膚がぬれを感ずるときであると
の結論を得た。すなわち、繊維の吸湿性というの
はあまり重要な要素ではなく、皮膚をいかにぬれ
させずにおくかが、重要であつて、その意味で繊
維の吸水性、ぬれやすさが最も重要となるのであ
る。また、ぬれやすさは単に吸水性能を短時間で
発揮させるためにだけ必要なことであり、あまり
ぬれやすいと返つてべとつき感が出て好ましくな
いことも明らかとなつた。 本発明は、繊維の吸湿性は必要ではなく吸水性
能が最も重要であるという従来と異なる観点から
設計し新規な吸水性織編物に到達したものであ
る。すなわち、繊維の表に6本以上の繊維軸方向
に連続した溝を有し、該溝の幅が0.1〜4μ、深
さが2〜10μであり、かつ溝部の割合が潜在含溝
繊維の断面当り10%以上である熱可塑性合成繊維
を30重量%以上含有してなる吸水性に優れた織編
物である。このように、本発明を構成する熱可塑
性合成繊維は溝を有することが必須であつて、さ
らに親水性を付与するための改質剤は必要がない
ため、主体となるポリマーの繊維性能をそのまま
保持し得る利点がある。 本発明の熱可塑性合成繊維を構成するポリマー
の代表的な例としては、ポリエチレン、ポリプロ
ピレン等のポリオレフイン、アイソタクチツクま
たはアタクチツクポリチレン、アルキルまたはハ
ロゲン置換のポリスチレン、6―ナイロン、66―
ナイロンの如きポリアミド、ポリエチレンテレフ
タレートの如きポリエステルおよび第3成分を共
重合してなるポリエステル類、ポリメチルメタア
クリレートの如きポリメタアクリル酸エステル等
があり、それらに前記ポリマーの各種安定剤、顔
料、艶消剤等の添加剤、その他公知の添加物を20
%以下含むものも包含するが、最も好ましい例は
リエステル類である。さらに、これらのポリマー
から構成される繊維は上記の同種あるいは異種ポ
リマーの複合あるいは混合繊維であつてもよい。 本発明者らは、改湿剤を添加せずに繊維に吸水
性を付与する方法として、繊維表面に溝を作つ
て、それによつて毛管上昇の効果を利用すること
がデメリツトがなく、最も好ましい方法であると
の結論に達した。従来から繊維の横断面形状を異
形にして毛細管を作ろうという試みもいくつか提
案されてはいるが、それらは以下に説明される如
く満足できるものではなく、本発明にかかる繊維
表面に少なくとも6本の繊維軸方向に連続した溝
を有し、該溝の幅が0.1〜4μ、深さが2〜10μ
であり、かつ繊維断面における溝部の面積が10%
以上の含溝繊維とすることにより初めて優れた吸
水性を発揮し得るのである。 本発明に言う吸水率、ウイツキング性は下記の
如く測定されるものである。 (1) 吸水率: 筒編地にした試料を25℃の純水中に30分間浸
漬し所定の回転数にセツトした遠心分離器で10
分間脱水を行つた後の重量を測定しW1とす
る。つぎに、同試料を絶乾しW0を測定する。 吸水率=W−W/W×100(%) 脱水力Gは遠心力をg(=980cm/sec2)で割
つた値で示す。 G=(2πr/60)/980×r r:遠心分離器の半径(11.75cmのものを使
用) :は9分後に測定した回転数である(rpm) (2) ウイツキング性: 25℃、65%RHの室内で24時間以上調湿した
試料をガラス板上に水平に張り、10mmの高さか
らビユレツトで0.4c.c.の水滴を落下させ、その
水滴が完全に布を吸収され鏡面反射を示さなく
なるまでに要した時間。 (3) ろ紙吸収水分: ほぼ同一の試料2枚を用意し、吸水率を前記
測定方法で2枚を同時に遠心脱水する。1枚は
そのまま吸水率を測定し、残りの一枚をポリエ
チレンシート(下は水平な板の上にビロードを
置いたもの)の上に置き、さらに50φの穴のあ
いたポリエチレンシートをかぶせ、ろ紙(No.(1)
を穴の上に四枚重ねて置き、上から3g/cm2
荷重を1分間かけ、その時にろ紙に吸収される
水分量。 ここで、吸水性は当然ながらGの大きさにより
変わる。後述の実施例で示す如く、Gが小さい場
合(100以下)にはほとんどの素材が大きな吸水
性を示すが、皮膚に触れると皮膚をぬらし着用時
に不快感を与える。一方、Gが1000以上で大きな
吸水性を示すものは、吸水率が大きいにもかかわ
らず皮膚にぬれを感じさせない。本発明の織編物
は後者の性能を有するものである。 本発明にかかる含溝繊維は繊維軸方向に実質的
に連続した幅0.1〜4μ、深さ2〜10μの溝を単
繊維当り少くとも6本有するものであつて、溝の
占有率が10%以上のものである。ここで、前記溝
の幅が4μを越えると比較例2に示す如くG>
1000での吸水率が低下し、一方0.1μ未満の場
合、および溝の本数が5本以下の場合は繊維断面
における溝部の面積割合すなわち溝占有率(溝占
有率A=溝部の面積/潜在含溝繊維の面積×
100)を10%以上にすることは実質的に不可能と
なり、そのためにG>1000で高い吸水率を得るこ
とはできない。本発明の含溝繊維の形状におい
て、より好ましくは溝の幅が0.5〜2μ、溝の深
さが6〜8.5μであり、溝の本数が8本以上、A
が20%以上の溝が同本数ずつ対向した図示した如
き含溝繊維を用いたときである。さらに本発明の
含溝繊維の形状を最適実施態様として考えるなら
ば、前述の溝本数6本以上、溝の幅0.1〜4μ、
その深さ2〜10μ、溝占有率10%以上の諸要件を
満足する溝対向型の含溝繊維に加えて、対向する
溝の底間の距離が1.5〜4μ、隣接する溝の最も
近い側壁間の距離が2〜3.5μの含溝繊維の場合
である。なお、本発明の含溝繊維を用いた場合、
G>1000において溝占有率Aより大きな吸水率を
示すのは驚くべきことであり、繊維間で二次毛細
管を作るためと考えられ、本発明の織編物の特徴
の一つである。 本発明にかかる上述の含溝繊維を与えうる潜在
含溝繊維の製造法としては、(1)溶剤抽出性の異な
る2種以上のポリマーを複合紡糸し、加工工程で
一成分を溶解または剥離除去して目的とする含溝
繊維を得る、(2)溶解速度に差のある同種あるいは
異種のポリマーを多層張り併わせ方式で複合紡糸
し、加工工程で溶解または剥離処理して一成分ポ
リマーの部分を溝とする方式がある。本発明にか
かる含溝繊維の製法によると、いつたん紡糸した
潜在含溝繊維を製編織前または後で溝を顕在化さ
せることができるので、比較例3や4に見られる
ような加工中に溝がつぶれたり破壊されたりする
ことはないという大きな利点を有する。 本発明にかかる前記の如き織編物はウイツキン
グ性も多少改良され、ぬれやすくなる。さらに、
本発明の織編物は仕上剤の耐久性を著しく向上さ
せるというもう一つの特徴を有している。したが
つて、公知の吸汗性、親水性仕上剤を併用するこ
とによつて人体から発汗した水分を瞬時に吸い上
げ、かつ皮膚にぬれ感を与えない織編物として提
供され、しかもその性能はほぼ恒久的なものであ
る。 本発明の含溝繊維の横断面の形状の例について
第1,2図に示す。本発明に言う溝の幅および深
さは各溝の平均値、溝占有率Aは顕微鏡写真から
算出される。第3,4図はそれぞれ第1,2図の
含溝繊維を得る前の潜在含溝複合繊維であり、紡
糸、延伸、糸加工(たとえば仮撚加工)を行なつ
た後、製編織の前または後に斜線の部分の一部あ
るいは全部を除去することにより第1,2図の繊
維が得られる(この場合、斜線を施していないポ
リマーの一部を、本発明の含溝繊維の規定要性を
満足する範囲内で同時に除去しても差支えな
い。) 以下、実施例および比較例によつて本発明の織
編物の特徴を説明する。 実施例 1 高圧法ポリエチレンと〔η〕=0.68dl/gのポ
リエチレンテレフタレートをそれぞれの押出機か
ら35:65の割合で紡糸頭に導き、ポリマー流を分
配接合することにより第3図に示す如き横断面を
有する繊維を得たのち4倍に延伸して115dr/24
とした。このものを筒編地にしたのち80℃のパ
ークレン浴中でポリエチレンを抽出除去して第1
図に示す断面を有する溝本数10、溝の幅2μ、
溝の深さ8.5μ、溝占有率40%、対向する溝の底
間距離2.5μ、隣接する溝の最短側壁間距離2.1μ
の含溝繊維からなる編地を得た。この編地は第5
〜6図に示す如くG=1200における吸水率が約70
%あり、ろ紙吸収水分率が1.5%であつた。 この結果から、水分を約70%吸収しても、皮膚
にほとんどぬれ感を与えない木綿に近い吸汗性能
を有するものであることがわかる。 実施例2および比較例1、2 ポリエチレンとポリエチレンテレフタレートを
20:80としたこと以外は実施例1と同様の方法で
94dr/24の延伸糸を得たのち同様の方法で筒編
地を作り、ポリエチレンを抽出除去した(実施例
2)。一方、通常のポリエステルフイラメント
75dr/24の筒編地を作つた(比較例1)。ポリ
エチレン抽出後の溝本数が4本、溝の幅6μ、溝
の深さ5.5μである75dr/24からなる筒編地を
を作つた(比較例2)。 これらの結果について実施例1も含めて48番単
糸の精練漂白綿の筒編地と比較して表1に示す。
The present invention relates to a woven or knitted fabric having excellent water absorption properties and containing 30% by weight or more of fibers having fine grooves on the surface (grooved fibers). Nowadays, thermoplastic synthetic fibers, particularly polyester fibers, are used in an extremely wide range of applications as textile materials for clothing, but they have the disadvantage of poor hygroscopicity and water absorption performance. Therefore, many studies have been made to impart hydrophilicity to hydrophobic fibers. In other words, hydrophilicity can be achieved by (1) copolymerizing or blending polyalkylene glycol, its derivatives, or metal salts with a hydrophobic polymer, (2) imparting a porous structure to the fiber, or (3) post-processing. Methods for attaching substances to woven or knitted fabrics have been proposed and partially implemented. In method (1), it is possible to impart hydrophilicity to a certain extent to the fibers, but in order to provide sufficient performance comparable to natural fibers, the amount of modification increases, and as a result, the fiber properties of the basic polymer deteriorate significantly. This makes it impractical. In addition, method (2) is an interesting method as it attempts to utilize the capillary condensation effect rather than imparting chemical hydrophilicity, and it is true that the hygroscopicity under high humidity is significantly improved. However, in order to do so, it is necessary to make a considerable portion of the fibers porous, which causes the same problem as (1). Furthermore, although method (3) is practical and widely used, its effectiveness when considering the comfort of wearing it is questionable simply because it is easy to get wet with water, and the biggest drawback is that it is resistant to washing. It is inferior to sex. As described above, many research proposals have been made to date on hydrophilic or hygroscopic fibers, but these are simply attempts to improve the hydrophilic and hygroscopic properties of fibers, and from the viewpoint of clothing hygiene, sweat wicking The textiles or woven or knitted fabrics were not designed with comfort in mind. The inventors of the present invention have repeatedly conducted basic studies to find out what kind of performance a woven or knitted fabric should have that does not have these drawbacks and is comfortable to wear when sweating. We have succeeded in providing a woven or knitted fabric that does not cause discomfort. According to the research conducted by the present inventors, when considering the climate inside clothing during sweating, the parameters that can be changed independently depending on the clothing material are (1) hygroscopicity, (2) surface wettability, and (3) water absorption. (water retention) and (4)) dryness and moisture permeability. Among these, (4)
It has been found that (1), which has been considered the most important until now, is only desirable if it has good performance, and has little effect on actual use. What is important is requirement (3), and we also found that (2) is important in order to achieve the performance of (3) in a short period of time. Generally speaking, when considering the mechanism of sweating, changes in the climate inside clothing can be divided into the following four periods. That is, the first period is the insensible excretion period, and the amount of sweat is considered to be about 5 to 20 g/m 2 hr, which corresponds to when living a normal life indoors at 25° C. and 70% RH. In this state, the humidity inside the clothing is below 70 to 80% and there is no discomfort. The second period is the period when thermal sweating begins, and the amount of sweat is equivalent to that during light labor, 20~
It is about 50g/m 2 hr, and the humidity inside the batter is 60 to 100%. If this condition continues, it is thought that if the underwear has good moisture permeability or absorbency, the humidity inside the garment will not change, but if the underwear has poor moisture permeability or moisture absorption, the humidity inside the garment will increase and the person will feel uncomfortable. The third period is a period in which the amount of sweat increases with time, and the amount of sweat corresponds to moderate to heavy labor and is considered to be 50 to 120 g/m 2 hr. In this state, the inside of the clothes becomes wet, and unless the underwear absorbs sweat, the skin gets wet and causes extreme discomfort. The fourth stage is a period in which the human body adapts to the environment and the amount of sweat gradually decreases, and the underwear becomes completely wet, and the only way to relieve the discomfort is to change the underwear. In the first period, the hygroscopicity and moisture permeability of the fiber material are relevant, but since the amount of perspiration is small, there is no difference depending on the material, and there is no discomfort, so there is no problem. Also, in the fourth period, there are no differences between materials for the reasons mentioned above, and it is not the place to discuss the performance design of materials. Therefore, it is in the second and third stages that differences occur depending on the fiber material. Most of the previous proposals focused on clothing that lasted for the second period, and therefore making the fiber absorb moisture was considered an important point. However, imparting hygroscopic properties to hydrophobic fibers is a very difficult problem, and at present no practical product has yet appeared. According to the results of the actual wear test carried out by the present inventors, it was concluded that there is essentially no discomfort in the second stage, and discomfort is felt in the third stage, when the skin feels wet. Ta. In other words, the hygroscopicity of the fibers is not a very important factor, but how to keep the skin dry is what is important, and in that sense, the water absorption and wettability of the fibers are the most important. . It has also become clear that wettability is necessary only to exhibit water absorption performance in a short period of time, and that too easy wettability is undesirable because it gives a sticky feeling. The present invention has been designed from a different perspective than the conventional one, in which the hygroscopicity of the fibers is not necessary, but the water-absorbing performance is the most important, and a novel water-absorbing woven or knitted fabric has been achieved. That is, the surface of the fiber has six or more grooves continuous in the fiber axial direction, the width of the groove is 0.1 to 4μ, the depth is 2 to 10μ, and the proportion of the groove is equal to the cross section of the latent groove-containing fiber. It is a woven or knitted fabric with excellent water absorbency, containing 30% by weight or more of thermoplastic synthetic fibers, which is 10% or more per weight. As described above, it is essential that the thermoplastic synthetic fibers that constitute the present invention have grooves, and there is no need for a modifier to further impart hydrophilicity, so the fiber performance of the main polymer can be maintained as is. There are advantages that can be maintained. Typical examples of the polymer constituting the thermoplastic synthetic fiber of the present invention include polyolefins such as polyethylene and polypropylene, isotactic or atactic polyethylene, alkyl- or halogen-substituted polystyrene, 6-nylon, 66-
There are polyamides such as nylon, polyesters copolymerized with polyesters such as polyethylene terephthalate, and polyesters such as polymethacrylates such as polymethyl methacrylate. Additives such as disinfectants and other known additives
% or less, but the most preferred examples are realesters. Furthermore, the fibers made of these polymers may be composite or mixed fibers of the above-mentioned same or different types of polymers. The present inventors have found that as a method of imparting water absorbency to fibers without adding a moisture modifier, it is most preferable to create grooves on the fiber surface and thereby utilize the effect of capillary rise. I came to the conclusion that there is a method. Several attempts have been made to create capillaries by changing the cross-sectional shape of the fibers, but these have not been satisfactory as explained below. It has a continuous groove in the direction of the fiber axis of the book, and the width of the groove is 0.1 to 4μ and the depth is 2 to 10μ.
and the area of the groove in the fiber cross section is 10%
Only by using the above-mentioned groove-containing fibers can excellent water absorbency be exhibited. The water absorption rate and wicking property referred to in the present invention are measured as follows. (1) Water absorption rate: A sample of tubular knitted fabric was immersed in pure water at 25°C for 30 minutes and then heated in a centrifugal separator set at the specified rotation speed for 10 minutes.
After dehydrating for a minute, the weight is measured and defined as W 1 . Next, the same sample is completely dried and W 0 is measured. Water absorption rate = W 1 −W 0 /W 0 ×100 (%) The dehydration force G is expressed as the centrifugal force divided by g (=980 cm/sec 2 ). G=(2πr/60) 2 /980×r r: Radius of centrifuge (11.75 cm was used) : is the rotational speed measured after 9 minutes (rpm) (2) Wicking property: 25℃, A sample that had been kept in a 65% RH room for at least 24 hours was stretched horizontally on a glass plate, and a 0.4 cc water droplet was dropped from a height of 10 mm using a biuret, and the water droplet was completely absorbed by the cloth and exhibited specular reflection. The time it took for it to disappear. (3) Water absorbed by filter paper: Prepare two almost identical samples, and centrifugally dehydrate the two sheets simultaneously using the method described above to measure water absorption. Measure the water absorption rate of one sheet, place the remaining sheet on a polyethylene sheet (the bottom is a velvet sheet placed on a horizontal board), cover it with a polyethylene sheet with a 50φ hole, and place it on a filter paper ( No.(1)
Place four sheets of filter paper on top of each other over the hole, apply a load of 3 g/cm 2 from above for 1 minute, and measure the amount of water absorbed by the filter paper. Here, the water absorbency naturally changes depending on the magnitude of G. As shown in Examples below, when G is small (100 or less), most materials exhibit high water absorption, but when they come into contact with the skin, they wet the skin and cause discomfort when worn. On the other hand, materials with a G value of 1000 or more that exhibit high water absorption do not make the skin feel wet despite having a high water absorption rate. The woven or knitted fabric of the present invention has the latter performance. The groove-containing fiber according to the present invention has at least six grooves per single fiber having a width of 0.1 to 4 μm and a depth of 2 to 10 μ that are substantially continuous in the fiber axis direction, and the occupation rate of the grooves is 10%. That's all. Here, if the width of the groove exceeds 4μ, as shown in Comparative Example 2, G>
If the water absorption rate at 1,000 μm is less than 0.1μ, and if the number of grooves is 5 or less, the area ratio of the grooves in the fiber cross section, that is, the groove occupancy (groove occupancy A = area of the grooves/potential content). Area of groove fiber ×
100) to 10% or more, and therefore it is impossible to obtain a high water absorption rate when G>1000. In the shape of the groove-containing fiber of the present invention, it is more preferable that the width of the groove is 0.5 to 2μ, the depth of the groove is 6 to 8.5μ, the number of grooves is 8 or more,
This is the case when a grooved fiber as shown in the figure in which 20% or more of grooves are facing each other in the same number is used. Furthermore, if the shape of the groove-containing fiber of the present invention is considered as an optimal embodiment, the number of grooves described above is 6 or more, the width of the groove is 0.1 to 4μ,
In addition to groove-containing fibers of the groove-opposing type that satisfy the requirements of a depth of 2 to 10 μm and a groove occupancy rate of 10% or more, the distance between the bottoms of opposing grooves is 1.5 to 4 μm, and the side wall closest to the adjacent grooves. This is the case of groove-containing fibers with a distance of 2 to 3.5μ. In addition, when using the groove-containing fiber of the present invention,
It is surprising that when G>1000, the water absorption rate is greater than the groove occupancy rate A, and this is thought to be due to the creation of secondary capillaries between the fibers, which is one of the characteristics of the woven or knitted fabric of the present invention. The method for producing the latent groove-containing fiber that can provide the above-mentioned groove-containing fiber according to the present invention includes (1) composite spinning of two or more polymers with different solvent extractability, and one component is dissolved or peeled off in the processing step; (2) Multi-layer composite spinning of the same or different types of polymers with different dissolution rates is performed, and the one-component polymer portion is melted or peeled off during the processing process. There is a method that uses the groove as a groove. According to the method for producing groove-containing fibers according to the present invention, grooves can be made apparent in the latent groove-containing fibers before or after spinning, knitting, and weaving. This has the great advantage that the grooves will not be crushed or destroyed. The above-mentioned woven or knitted fabric according to the present invention has somewhat improved wicking properties and becomes easier to wet. moreover,
Another feature of the woven or knitted fabric of the present invention is that it significantly improves the durability of the finishing agent. Therefore, by using a known sweat-absorbing and hydrophilic finishing agent, we can provide a woven or knitted fabric that instantly absorbs sweat from the human body and does not leave the skin feeling wet, and its performance is almost permanent. It is something like that. Examples of the cross-sectional shape of the groove-containing fiber of the present invention are shown in FIGS. 1 and 2. The width and depth of the grooves referred to in the present invention are the average values of each groove, and the groove occupancy rate A is calculated from the micrograph. Figures 3 and 4 show latent groove-containing composite fibers before obtaining the groove-containing fibers shown in Figures 1 and 2, respectively, which have been subjected to spinning, drawing, yarn processing (for example, false twisting), and before knitting and weaving. Alternatively, the fibers shown in FIGS. 1 and 2 can be obtained by later removing part or all of the shaded areas (in this case, the part of the polymer that is not shaded is used as the groove-containing fiber of the present invention). There is no problem in removing them at the same time within a range that satisfies the following.) Hereinafter, the characteristics of the woven or knitted fabric of the present invention will be explained with reference to Examples and Comparative Examples. Example 1 High-pressure polyethylene and [η] = 0.68 dl/g polyethylene terephthalate were introduced into the spinning head at a ratio of 35:65 from each extruder, and the polymer flows were distributed and spliced to form a cross-section as shown in Figure 3. After obtaining a fiber with a plane, it is stretched 4 times to 115 dr/24
And so. After making this into a tubular knitted fabric, the polyethylene was extracted and removed in a perchloren bath at 80°C.
The number of grooves having the cross section shown in the figure is 10, the width of the groove is 2μ,
Groove depth 8.5μ, groove occupancy rate 40%, distance between the bottoms of opposing grooves 2.5μ, minimum distance between adjacent grooves sidewalls 2.1μ
A knitted fabric made of grooved fibers was obtained. This knitted fabric is the fifth
~As shown in Figure 6, the water absorption rate at G = 1200 is approximately 70
%, and the moisture content absorbed by the filter paper was 1.5%. From this result, it can be seen that even if it absorbs about 70% of water, it has a sweat absorption performance similar to that of cotton, leaving almost no wet feeling on the skin. Example 2 and Comparative Examples 1 and 2 Polyethylene and polyethylene terephthalate
The same method as in Example 1 was used except that the time was set at 20:80.
After obtaining a drawn yarn of 94 dr/24, a tubular knitted fabric was made in the same manner, and the polyethylene was extracted and removed (Example 2). Meanwhile, ordinary polyester filament
A tube knitted fabric of 75 dr/24 was made (Comparative Example 1). A tubular knitted fabric made of 75dr/24 having 4 grooves after polyethylene extraction, a groove width of 6 μm, and a groove depth of 5.5 μm was made (Comparative Example 2). These results, including those of Example 1, are shown in Table 1 in comparison with a tube-knitted fabric of single yarn No. 48 scoured bleached cotton.

【表】 表1からわかるように、本発明の繊維は吸湿性
がほとんど改良されていない。しかし、ウイツキ
ング性は木綿に比べると劣るが、丸断面のレギユ
ラー繊維と比べると改良されている。ウイツキン
グ性は溝の幅の小さいもののほうが良好である。 また、脱水力(G)を変更したときの吸水率を
第5図に、各吸水率でのろ紙吸収水分を第6図に
示す。 本発明の特徴は第5,6図に示す吸水率および
ろ紙吸収水分に表われる。すなわ、編物の付着水
がほぼ脱水されるG=1200で比較例1はわずかに
3%であるのに対して実施例2では40%保水して
いる。また、比較例2の如く溝の幅が広いとGが
小さい時の吸水率は良好であるが、G=1200では
10%以下となる。さらに第6図に示される如く、
吸水率が50%を越すとろ紙吸収水分が急激に増大
する。一方、実施例1、2は木綿に近い挙動を示
す。 実施例 3 〔η〕=0.68dl/gのポリエチレンテレフタレ
ートと3,5―ジ(カルボメトキシ)―ベンゼン
スルホン酸ソーダを3.5モル%共重合したポリエ
チレンテレフタレートを複合紡糸し、第4図の如
き斜線の部分が共重合成分である潜在含溝繊維を
得た。ここで、複合比率は1:1とし、その他の
条件は実施例1とほぼ同じにして105dr/24の
延伸糸を得た。この繊維を仮撚加工を行つたのち
32ゲージのスムースニツトを作り精練処理を行つ
た後、40g/のアルカリ浴中で30%減量処理を
行つたところ、多少変形はしているがほぼ第2図
に示す如き溝の幅1.3μ、その深さ6.7μ、溝の占
有率A=28%の含溝繊維となつた。 この編物はウイツキング性は良好で3秒であ
り、吸水率はG=400で103%、G=1200で53%と
良好であつた。 実施例 4 実施例2の筒編地に、ポリエチレングリコール
を共重合した低分子量のポリエステルを主成分と
する吸汗性仕上げ剤を0.5%付着させた。この編
地のウイツキング性を測定したところ瞬時(0
秒)に水滴を吸収した。このものを10回洗濯(1
回の洗濯時間は10分)行つた後のウイツキング性
は3秒であつた。50回洗濯後のウイツキング性は
5秒であつた。 比較例 3 〔η〕=0.68dl/gのポリエチレンテレフタレ
ートを〓型の紡糸孔から紡糸することによつて直
接的に本発明の含溝繊維を得んと試みたが、部分
的に溝の融着が生じて目的とする含溝繊維は得ら
れなかつた。 比較例 4 〔η〕=0.68dl/gのポリエチレンテレフタレ
ートを〓型の紡糸孔から紡糸し延伸して4本の溝
を2本ずつ対向して有する75dr/24の含溝繊維
を得た。この溝は幅0.2μ、深さ2μであつた。
ついで、この繊維を200℃のプレートで通常の仮
撚りを行なつたところ、溝にはさまれた間の凸部
がヒビ割れ(フイブリル化)たり、溝のかなりの
部分がつぶれてしまつた。この変形含溝繊維を筒
編地として吸水率(G=1200)を測定したところ
5.2%となり、ほとんど効果がなかつた。
[Table] As can be seen from Table 1, the fibers of the present invention have little improvement in hygroscopicity. However, although its wicking properties are inferior to cotton, it is improved compared to regular fibers with a round cross section. Wicking properties are better when the groove width is smaller. Moreover, the water absorption rate when the dewatering force (G) is changed is shown in FIG. 5, and the water absorbed by the filter paper at each water absorption rate is shown in FIG. The characteristics of the present invention are shown in the water absorption rate and water absorbed by the filter paper as shown in FIGS. 5 and 6. That is, at G=1200, where most of the water adhering to the knitted fabric is dehydrated, Comparative Example 1 retains only 3% of water, whereas Example 2 retains 40% of the water. In addition, when the width of the groove is wide as in Comparative Example 2, the water absorption rate is good when G is small, but when G = 1200,
It will be less than 10%. Furthermore, as shown in Figure 6,
When the water absorption rate exceeds 50%, the water absorbed by the filter paper increases rapidly. On the other hand, Examples 1 and 2 exhibit behavior similar to cotton. Example 3 A polyethylene terephthalate obtained by copolymerizing polyethylene terephthalate with [η] = 0.68 dl/g and 3.5 mol% sodium 3,5-di(carbomethoxy)-benzenesulfonate was composite-spun, and the diagonal lines as shown in Fig. 4 were obtained. A latent groove-containing fiber whose portion was a copolymerized component was obtained. Here, the composite ratio was set to 1:1, and other conditions were kept almost the same as in Example 1 to obtain a drawn yarn of 105 dr/24. After false twisting this fiber,
After making 32 gauge smooth knit and scouring it, we reduced it by 30% in a 40g alkaline bath, and found that the width of the groove was approximately 1.3μ, as shown in Figure 2, although it was slightly deformed. The fiber had a depth of 6.7μ and a groove occupancy rate A of 28%. This knitted fabric had a good wicking property of 3 seconds, and a water absorption rate of 103% at G=400 and 53% at G=1200. Example 4 0.5% of a sweat-absorbing finishing agent mainly composed of low molecular weight polyester copolymerized with polyethylene glycol was applied to the tubular knitted fabric of Example 2. When we measured the wicking property of this knitted fabric, it was instantaneous (0
(seconds) absorbed water droplets. Wash this item 10 times (1
The wicking property after each wash was 10 minutes) was 3 seconds. The wicking property after washing 50 times was 5 seconds. Comparative Example 3 An attempt was made to directly obtain the groove-containing fiber of the present invention by spinning polyethylene terephthalate with [η] = 0.68 dl/g through a square-shaped spinning hole, but the groove-containing fiber of the present invention was partially fused. The desired groove-containing fibers could not be obtained due to the occurrence of adhesion. Comparative Example 4 Polyethylene terephthalate with [η]=0.68 dl/g was spun from a square-shaped spinning hole and drawn to obtain a 75 dr/24 grooved fiber having four grooves, two facing each other. This groove had a width of 0.2μ and a depth of 2μ.
When this fiber was then subjected to normal false twisting on a plate at 200°C, the protrusions between the grooves cracked (fibrillated) and a considerable portion of the grooves collapsed. The water absorption rate (G = 1200) was measured using this deformed grooved fiber as a tubular knitted fabric.
It was 5.2%, showing almost no effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の含溝繊維の横断
面の一例であり、第3図および第4図はそれぞれ
第1図、第2図の繊維を得る前の潜在含溝繊維で
ある。第5〜6図は本発明の特徴を説明するため
の実験結果を図示したものである。第5図・第6
図において、1は実施例1、2は実施例2、3は
比較例1、4は比較例2、5は木綿の結果を示
す。
Figures 1 and 2 are examples of cross sections of the groove-containing fibers of the present invention, and Figures 3 and 4 are latent groove-containing fibers before obtaining the fibers shown in Figures 1 and 2, respectively. . 5 and 6 illustrate experimental results for explaining the features of the present invention. Figures 5 and 6
In the figure, 1 shows the results of Example 1, 2 shows the results of Example 2, 3 shows the results of Comparative Example 1, 4 shows the results of Comparative Example 2, and 5 shows the results of cotton.

Claims (1)

【特許請求の範囲】 1 溶解性を異にする2種以上の熱可塑性ポリマ
ーからなる潜在含溝繊維を製編織前または後に少
くとも1種のポリマーを除去して得られる含溝繊
維を30重量%以上含む織編物であつて、該含溝繊
維は繊維軸方向に実質的に連続した幅0.1〜4
μ、深さ2〜10μの溝を単繊維当り少くとも6本
有し、かつ該溝の占有率が繊維断面当り10%以上
であることを特徴とする吸水性の優れた織編物。 2 含溝繊維における溝の数が単繊維当り8本以
上である特許請求の範囲第1項記載の吸水性の優
れた織編物。 3 含溝繊維における溝の占有率が20%以上であ
る特許請求の範囲第1項あるいは第2項記載の吸
水性の優れた織編物。 4 含溝繊維における溝の幅が0.5〜2μである
特許請求の範囲第1項ないし第3項のいずれか記
載の吸水性の優れた織編物。 5 含溝繊維における溝の深さが6〜8.5μであ
る特許請求の範囲第1項ないし第4項のいずれか
記載の吸水性の優れた織編物。 6 溝の数が偶数であり、半分ずつの溝がそれぞ
れ対向した形で存在する含溝繊維を用いた特許請
求の範囲第1項ないし第5項のいずれか記載の吸
水性の優れた織編物。 7 対向する溝の底間の距離が1.5〜4μ、隣接
する溝のもつとも近い側壁間距離が2〜3.5μで
ある含溝繊維を用いた特許請求の範囲第1項ない
し第6項のいずれか記載の吸水性の優れた織編
物。
[Claims] 1. Grooved fibers obtained by removing at least one polymer before or after weaving or weaving latent grooved fibers made of two or more types of thermoplastic polymers having different solubility. % or more, the groove-containing fibers have a width of 0.1 to 4 substantially continuous in the fiber axis direction.
1. A woven or knitted fabric with excellent water absorption, characterized in that it has at least 6 grooves of 2 to 10 μ in depth per single fiber, and that the occupation rate of the grooves is 10% or more per fiber cross section. 2. The woven or knitted fabric with excellent water absorbency according to claim 1, wherein the number of grooves in the groove-containing fibers is 8 or more per single fiber. 3. The woven or knitted fabric with excellent water absorbency according to claim 1 or 2, wherein the groove occupancy of the groove-containing fibers is 20% or more. 4. The woven or knitted fabric with excellent water absorbency according to any one of claims 1 to 3, wherein the width of the grooves in the grooved fibers is 0.5 to 2μ. 5. The woven or knitted fabric with excellent water absorbency according to any one of claims 1 to 4, wherein the depth of the grooves in the grooved fibers is 6 to 8.5 μm. 6. A woven or knitted fabric with excellent water absorption according to any one of claims 1 to 5, which uses a grooved fiber having an even number of grooves and half of the grooves facing each other. . 7. Any one of claims 1 to 6 using groove-containing fibers in which the distance between the bottoms of opposing grooves is 1.5 to 4μ, and the distance between the closest side walls of adjacent grooves is 2 to 3.5μ. Woven or knitted fabric with excellent water absorbency.
JP1283880A 1980-02-04 1980-02-04 Knitted fabric with excellent water absorbability Granted JPS56112535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283880A JPS56112535A (en) 1980-02-04 1980-02-04 Knitted fabric with excellent water absorbability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283880A JPS56112535A (en) 1980-02-04 1980-02-04 Knitted fabric with excellent water absorbability

Publications (2)

Publication Number Publication Date
JPS56112535A JPS56112535A (en) 1981-09-04
JPS6215655B2 true JPS6215655B2 (en) 1987-04-08

Family

ID=11816514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283880A Granted JPS56112535A (en) 1980-02-04 1980-02-04 Knitted fabric with excellent water absorbability

Country Status (1)

Country Link
JP (1) JPS56112535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524814Y2 (en) * 1988-01-27 1993-06-23

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165015A (en) * 1980-05-23 1981-12-18 Toray Ind Inc Conjugated filaments of two component
JPS5782525A (en) * 1980-11-06 1982-05-24 Kanebo Synthetic Fibers Ltd Production of water-absorbing fiber
JPS57128218A (en) * 1981-01-28 1982-08-09 Toray Ind Inc Conjugated filament with flat-shaped cross section
JPS5898423A (en) * 1981-12-01 1983-06-11 Toray Ind Inc Fiber with grooves on its surface and its production
JPS5898425A (en) * 1981-12-01 1983-06-11 Toray Ind Inc Two-component polyester fiber
JPS5921744A (en) * 1982-07-23 1984-02-03 旭化成株式会社 Double knitted fabric
JPS6253409A (en) * 1985-08-28 1987-03-09 Toray Ind Inc Conjugated modified cross-section fiber and production thereof
JPS6297909A (en) * 1985-10-24 1987-05-07 Kuraray Co Ltd Modified cross-section fiber and production thereof
JPS62104909A (en) * 1985-10-29 1987-05-15 Toray Ind Inc Yarn having lamellar void and production thereof
JPS62299565A (en) * 1986-06-13 1987-12-26 帝人株式会社 Water absorbable polyamide fiber
US8129019B2 (en) 2006-11-03 2012-03-06 Behnam Pourdeyhimi High surface area fiber and textiles made from the same
JP5661400B2 (en) * 2010-09-29 2015-01-28 株式会社クラレ Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
US9284663B2 (en) 2013-01-22 2016-03-15 Allasso Industries, Inc. Articles containing woven or non-woven ultra-high surface area macro polymeric fibers
JP7051278B2 (en) * 2016-03-11 2022-04-11 株式会社アートネイチャー Method for manufacturing polyester-based artificial hair, wigs, and polyester-based artificial hair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4723762U (en) * 1971-03-22 1972-11-16
JPS5094215A (en) * 1973-12-27 1975-07-26
JPS546965A (en) * 1977-06-09 1979-01-19 Kuraray Co Production of separated fiber containing cloth
JPS54138617A (en) * 1978-04-20 1979-10-27 Teijin Ltd Synthetic fibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4723762U (en) * 1971-03-22 1972-11-16
JPS5094215A (en) * 1973-12-27 1975-07-26
JPS546965A (en) * 1977-06-09 1979-01-19 Kuraray Co Production of separated fiber containing cloth
JPS54138617A (en) * 1978-04-20 1979-10-27 Teijin Ltd Synthetic fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524814Y2 (en) * 1988-01-27 1993-06-23

Also Published As

Publication number Publication date
JPS56112535A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
JPS6215655B2 (en)
KR101119051B1 (en) Nanofiber aggregate, hybrid fiber, fibrous structures, and processes for production of them
US4163078A (en) Hydrophilic bi-component threads
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
IE44622B1 (en) Hydrophilic fibres and filaments of synthetic acrylonitrile polymers
JPS59137552A (en) Nonwoven fabric
KR930000255B1 (en) Moisture-absorbent composite fiber
JPS6367577B2 (en)
JP4211125B2 (en) High water absorption, quick drying polyester X-type cross-section fiber
JPS6253438A (en) Offset water absorbalbe cloth
JP3770254B2 (en) Nanoporous fiber
JP2000160432A (en) Fiber from which superfine fibers can be generated, superfine fibers generated therefrom and fiber sheet using the superfine fibers
JP3157644B2 (en) Humidity-controlling fiber and method for producing the same
JPS589166B2 (en) Mizuboujiyunsei Senjiyoutai
CN114657654A (en) Core-sheath composite fiber, application thereof and profiled fiber
JP3033220B2 (en) Wiping cloth
JPH06330461A (en) Fibrous structure excellent in water absorbing and quick-drying property
JPS6040539B2 (en) Method for manufacturing water absorbent fiber structure
JPH0231127B2 (en)
JP4325616B2 (en) Nanoporous fiber
JP2833784B2 (en) Bulk paper having dispersibility in water and production method thereof
JPS6364529B2 (en)
JP3108347B2 (en) Cellulose acetate conjugate fiber and method for producing the same
JPS62276050A (en) Double surface functional cloth
JPS60119220A (en) Hydrophilic conjugate synthetic fiber