JPH06330461A - Fibrous structure excellent in water absorbing and quick-drying property - Google Patents

Fibrous structure excellent in water absorbing and quick-drying property

Info

Publication number
JPH06330461A
JPH06330461A JP5142904A JP14290493A JPH06330461A JP H06330461 A JPH06330461 A JP H06330461A JP 5142904 A JP5142904 A JP 5142904A JP 14290493 A JP14290493 A JP 14290493A JP H06330461 A JPH06330461 A JP H06330461A
Authority
JP
Japan
Prior art keywords
fiber
water
silk
hollow
quick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5142904A
Other languages
Japanese (ja)
Inventor
Hideo Ueda
秀夫 上田
Soichi Murakami
荘一 村上
Toshio Yamauchi
敏夫 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5142904A priority Critical patent/JPH06330461A/en
Publication of JPH06330461A publication Critical patent/JPH06330461A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fibrous structure, excellent in water absorption, quick- drying, lightweight and durability. CONSTITUTION:The fibrous structure is characterized by using hollow fiber, composed of a fiber-forming polymer (A) and having a through groove passing from the fiber surface to a hollow part (B) and the surface (D) of the hollow part to which silk protein sticks in at least a part thereof. Modified silk powder having <=2mum particle diameter is preferred as the silk protein and hollow fiber prepared by dissolving or decomposing the core part from core-sheath type conjugate yarn is preferred as the hollow fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐久性に富んだ吸水・速
乾性を有し且つ軽量である繊維構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber structure which is highly durable, absorbs water, dries quickly, and is lightweight.

【0002】[0002]

【従来の技術】ポリエステル、ポリアミド系などの合成
繊維は親水性、吸水・速乾性に乏しくその改良が望まれ
ている。親水性と吸水性の改善には多くの加工剤或はそ
れらの加工方法が提案されている。その効果に耐久性の
あるものもあるが、十分とは言えず洗濯等によって低下
し易い。
2. Description of the Related Art Synthetic fibers such as polyester and polyamide are poor in hydrophilicity, water absorption and quick-drying property, and their improvement is desired. Many processing agents or their processing methods have been proposed to improve hydrophilicity and water absorption. Some of these effects are durable, but they are not sufficient and tend to deteriorate due to washing or the like.

【0003】吸水性を改善するためには、繊維形成性ポ
リマーからなる、繊維表面から中空部まで貫通する貫通
溝を有する中空繊維が特開昭56−169817号公
報、特公昭60−37203号公報に提案されている。
これらの中空繊維は、吸水性能を有し且つ軽量であるの
で衣料用布帛に用いるのに好適であるが、この繊維であ
っても当然の事ながら速乾性という点では全く改善され
ておらず、且つ吸水性能も十分なものとは言えなかっ
た。
In order to improve water absorption, a hollow fiber made of a fiber-forming polymer and having a through groove penetrating from the fiber surface to the hollow portion is disclosed in JP-A-56-169817 and JP-B-60-37203. Has been proposed to.
These hollow fibers are suitable for use in clothing fabrics because they have water-absorbing properties and are lightweight, but even with these fibers, of course, they have not been improved at all in terms of quick drying, Moreover, the water absorption performance was not sufficient.

【0004】[0004]

【発明が解決しようとする課題】耐久性のある吸水・速
乾性を単に加工剤や或はそれらの加工方法によって改善
することは非常に困難である。本発明者等は、上記の問
題を解決すべく鋭意研究を重ねた結果、繊維表面から中
空部まで貫通する貫通溝を有する中空繊維にシルク蛋白
質を固着することにより、驚くことに飛躍的に吸水・速
乾性とその耐久性が向上することを見いだし本発明を完
成した。本発明の目的は耐久性のある吸水・速乾性且つ
軽量性に優れた繊維構造物を提供するにある。
SUMMARY OF THE INVENTION It is very difficult to improve durable water absorption and quick-drying properties by simply using a processing agent or a processing method thereof. The present inventors have conducted extensive studies to solve the above problems, and as a result of fixing silk protein to a hollow fiber having a through groove that penetrates from the fiber surface to the hollow part, it surprisingly dramatically absorbs water. -The present invention was completed by finding that the quick-drying property and its durability are improved. An object of the present invention is to provide a durable fibrous structure that absorbs water, dries quickly, and is lightweight.

【0005】[0005]

【課題を解決するための手段】即ち本発明は、繊維形成
性ポリマーからなり、繊維表面から中空部まで貫通する
貫通溝を有しかつ中空部表面にシルク蛋白質が付着して
いる中空繊維を少なくともその一部に用いることを特徴
とする繊維構造物である。
That is, the present invention provides at least a hollow fiber comprising a fiber-forming polymer, having a through groove penetrating from the fiber surface to the hollow portion, and having silk protein attached to the hollow surface. A fiber structure characterized by being used for a part thereof.

【0006】本発明に用いる貫通溝を有する中空繊維の
製造法の代表例は次のようなものである。先ず図1のよ
うな芯・鞘型複合糸を作り、次いで繊維構造物にした後
芯成分を溶解又は分解除去して図2のような中空繊維と
する。得られる中空繊維の中空率、貫通溝の幅は芯鞘型
複合紡糸の際に調節することができる。
A representative example of a method for producing a hollow fiber having a through groove used in the present invention is as follows. First, a core-sheath type composite yarn as shown in FIG. 1 is produced, and then a fiber structure is formed, and then the core component is dissolved or decomposed and removed to obtain a hollow fiber as shown in FIG. The hollowness of the obtained hollow fiber and the width of the through groove can be adjusted during the core-sheath composite spinning.

【0007】複合紡糸に於て芯部に用いる紡糸材は、複
合紡糸可能で、且つ後の芯ポリマー除去工程に便利なも
のであればよく、特に限定されない。除去工程に便利な
ものとしては、水で溶解可能なポリマー、アルカリ水溶
液で分解・溶解可能なポリマー、酸に溶解可能なポリマ
ー、非水系溶媒で溶解可能なポリマーなどがあげられ、
特に水、アルカリ水溶液で溶解又は分解可能なものは有
利である。
The spinning material used for the core portion in the composite spinning is not particularly limited as long as it is capable of composite spinning and convenient for the subsequent core polymer removing step. Convenient for the removal step, there are polymers that can be dissolved in water, polymers that can be decomposed / dissolved in an alkaline aqueous solution, polymers that can be dissolved in an acid, polymers that can be dissolved in a non-aqueous solvent, and the like.
Those which can be dissolved or decomposed with water or an aqueous alkali solution are particularly advantageous.

【0008】水で溶解可能なポリマーは多数あるが、例
えばポリエチレンオキシド、ポリエチレンオキシド/ポ
リプロピレンオキシド共重合体、それらの誘導体、他の
重合体セグメント(例えばポリエステル又はポリアミ
ド)のセグメント共重合体などのポリアルキレンオキシ
ド系ポリマー、ポリビニルアルコール、ポリビニルピロ
リドン、ポリアクリル酸塩などのポリビニル系ポリマ
ー、ポリビスプロポキシエタンアジバミド、ポリビスプ
ロポキシピペラジンアジバミドなどの水溶性ポリアミド
などがあげられる。
[0008] There are many water-soluble polymers, but for example, polyethylene oxide, polyethylene oxide / polypropylene oxide copolymers, their derivatives, segment copolymers of other polymer segments (eg polyester or polyamide), and the like. Examples thereof include alkylene oxide polymers, polyvinyl alcohols, polyvinylpyrrolidones, polyvinyl polymers such as polyacrylic acid salts, and water-soluble polyamides such as polybispropoxyethane adipamide and polybispropoxypiperazine adipamide.

【0009】アルカリ水溶液で分解・溶解可能なポリマ
ーとしては、ポリエチレンテレフタレート、ポリブチレ
ンテレフタレート、ポリエチレンオキシベンゾエート等
の繊維形成性ポリエステル及びそれらの共重合体、変性
体などがあげられる。特に、上記ポリエステルに1〜6
0%(重量)程度、好ましくは2〜30%、最も好まし
くは5〜20%ポリアルキレンオキシド類を共重合した
もの又は混合したもの、或いは5−スルホイソフタル酸
ナトリウム塩を3〜10%共重合したものはアルカリ水
溶液により容易に分解される。同様に、芳香族ポリエス
テルに対して低融点(200℃以下)の脂肪族ポリエス
テルを5〜50%程度混合したものも芯成分として極め
て好適である。
Examples of the polymer which can be decomposed / dissolved in an alkaline aqueous solution include fiber-forming polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene oxybenzoate, and their copolymers and modified products. In particular, 1 to 6 for the above polyester
About 0% (weight), preferably 2 to 30%, most preferably 5 to 20% copolymerized or mixed polyalkylene oxides, or 3 to 10% 5-sulfoisophthalic acid sodium salt. The obtained product is easily decomposed by an alkaline aqueous solution. Similarly, a mixture of an aromatic polyester with a low melting point (200 ° C. or less) aliphatic polyester in an amount of about 5 to 50% is also very suitable as a core component.

【0010】酸に溶解可能なポリマーの例としては6ナ
イロン、66ナイロン、610ナイロン、612ナイロ
ン、12ナイロン及びそれらの共重合物などのポリアミ
ドがあげられる。
Examples of the acid-soluble polymer include polyamides such as 6 nylon, 66 nylon, 610 nylon, 612 nylon, 12 nylon and copolymers thereof.

【0011】非水系溶媒の例としてはトリクレン、パー
クレンなどの塩化物、トルエン、キシレンなどの芳香族
化合物、ジメチルフォルムアミド、アセトン、などがあ
げられ、これらに溶解可能なポリマーの例としてはポリ
エチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビ
ニル、ポリアクリロニトリル系ポリマーなどがあげられ
る。
Examples of the non-aqueous solvent include chlorides such as trichlene and perkylene, aromatic compounds such as toluene and xylene, dimethylformamide and acetone, and examples of the polymer soluble in these include polyethylene, Examples thereof include polypropylene, polystyrene, polyvinyl chloride and polyacrylonitrile-based polymers.

【0012】鞘部分に用いるポリマーは、公知の繊維形
成性のポリマーであり、ポリエステル系、ポリアミド
系、ポリアクリロニトリル系、ポリウレタン系等であ
る。
The polymer used for the sheath portion is a known fiber-forming polymer, such as polyester type, polyamide type, polyacrylonitrile type and polyurethane type.

【0013】本発明に用いる繊維の中空率は使用目的に
応じて任意に選ぶことができる。例えば、通常の吸水力
を得るには中空率は10〜60%、特別に大きい吸水率
を得るには40〜80%とすることができる。
The hollowness of the fiber used in the present invention can be arbitrarily selected according to the purpose of use. For example, the hollowness can be 10 to 60% to obtain normal water absorption, and 40 to 80% to obtain a particularly large water absorption.

【0014】本発明に用いる繊維の吸水性は中空部及び
貫通溝によって得られる。すなわち水は繊維表面から貫
通溝を通じて繊維の中空部に入り、そこに保持される。
また中空部に保持された水は貫通溝を通じて外部に拡散
し蒸発させることができる。又、本発明に用いる繊維の
吸水・速乾性はシルク蛋白質を付着することにより、著
しく向上しかつ耐久性に富んだものになる。
The water absorbency of the fiber used in the present invention is obtained by the hollow portion and the through groove. That is, water enters the hollow portion of the fiber from the surface of the fiber through the through groove and is retained therein.
Further, the water retained in the hollow portion can be diffused and evaporated to the outside through the through groove. Further, the water absorption and quick-drying properties of the fiber used in the present invention are remarkably improved and the durability is enhanced by the attachment of the silk protein.

【0015】貫通溝の幅は大きいほど水の通過は容易と
なるが、過度に貫通溝の幅が大きくなると中空部と外界
との区別が消失し、水の保持力が失われる。従って貫通
溝の幅は、中空部の直径(非円形断面の場合は同面積の
円の直径とする)よりも小さいことが好ましい。貫通溝
の幅は平均的なものであり、通常0.5μm以上、好ま
しくは1μm以上であり、上限は通常繊維径1/3程度
である。貫通溝の幅があまり小さいとシルク蛋白質加工
液の通過速度が低くなり好ましくない場合がある。
The larger the width of the through groove, the easier the passage of water. However, if the width of the through groove is too large, the distinction between the hollow portion and the outside is lost and the water retaining force is lost. Therefore, the width of the through groove is preferably smaller than the diameter of the hollow portion (in the case of a non-circular cross section, the diameter of a circle having the same area). The width of the through groove is average and is usually 0.5 μm or more, preferably 1 μm or more, and the upper limit is usually about 1/3 of the fiber diameter. If the width of the through groove is too small, the passing speed of the silk protein processing liquid may be low, which is not preferable in some cases.

【0016】本発明に用いることのできる芯・鞘型複合
繊維の横断面は種々の形がある。複合は同心的でも偏心
的でもよい。芯は円形でも非円形でもよく、鞘も同様に
円形でも非円形でもよい。また芯は1個でも複数でもよ
い。
The cross section of the core-sheath type composite fiber that can be used in the present invention has various shapes. The compound may be concentric or eccentric. The core may be circular or non-circular, and the sheath may be circular or non-circular as well. Moreover, the number of cores may be one or more.

【0017】本発明の繊維構造物は、上記のような中空
繊維を少なくとも一部に用いたものであって、他の合成
繊維、半合成繊維、天然繊維等と混紡、交織されたもの
でもよい。中空繊維の特徴を発揮させるためには、中空
繊維を通常繊維構造物に少なくとも20%、好ましくは
30%以上用いた方がよい。繊維構造物としては、織
物、編物、不織布、植毛布等が挙げられる。
The fiber structure of the present invention uses at least a part of the hollow fibers as described above, and may be a mixture of other synthetic fibers, semi-synthetic fibers, natural fibers and the like, and may be woven. . In order to bring out the characteristics of the hollow fiber, it is preferable to use at least 20%, preferably 30% or more of the hollow fiber in the normal fiber structure. Examples of the fiber structure include woven fabric, knitted fabric, non-woven fabric, and flocked fabric.

【0018】シルク蛋白質の固着には、結晶化度を天然
絹糸の1/2以下に改質した、体積平均粒子径が2μm
以下である微粉状改質シルクパウダーの水または有機溶
媒分散液或は該分散液に合成樹脂エマルジョンまたは水
溶性高分子重合体を添加した加工液を上記不織布に付与
し、乾熱又は湿熱処理する方法が好ましいが(特開平5
−78979号公報を参照)、この他に絹フィブロイン
水溶液による処理、シルク蛋白質を化学的に固着させる
方法など公知の方法が適用できる。シルク蛋白質の固着
量は、不織布の目付にもよるが、通常不織布に対し0.
1〜5.0重量%である。0.1重量%未満では、目的
とする吸水・速乾性が充分でなく、一方7重量%を超え
ると織編布の柔軟性と風合が低下する。
For the fixation of silk proteins, the crystallinity is modified to 1/2 or less of that of natural silk, and the volume average particle diameter is 2 μm.
A water or organic solvent dispersion liquid of the following fine powder modified silk powder or a processing liquid obtained by adding a synthetic resin emulsion or a water-soluble polymer to the dispersion liquid is applied to the above-mentioned non-woven fabric and subjected to dry heat or wet heat treatment. The method is preferred (Japanese Patent Laid-Open No.
In addition, known methods such as treatment with an aqueous silk fibroin solution and a method of chemically fixing silk protein can be applied. The amount of silk protein adhered is usually 0.
It is 1 to 5.0% by weight. If it is less than 0.1% by weight, the desired water absorption and quick drying properties are not sufficient, while if it exceeds 7% by weight, the flexibility and feel of the woven or knitted fabric are deteriorated.

【0019】合成樹脂エマルジョンとしては、アクリル
系樹脂エマルジョン、ウレタン系樹脂エマルジョン等が
あげられる。水溶性高分子重合体としては、ポリアルキ
レンオキサイド単位を有する重合体、ポリオールとジイ
ソシアネートとを反応させて得られるウレタンポリマ
ー、エピクロルヒドリンとポリオールとを縮合させて得
られるエポキシ化合物が好ましく、布帛に付与した後熱
処理により硬化状態に移行する。
Examples of synthetic resin emulsions include acrylic resin emulsions and urethane resin emulsions. As the water-soluble polymer, a polymer having a polyalkylene oxide unit, a urethane polymer obtained by reacting a polyol with a diisocyanate, an epoxy compound obtained by condensing epichlorohydrin and a polyol are preferable, and applied to a cloth. The post-heat treatment shifts to a cured state.

【0020】本発明方法において、使用するシルク蛋白
質としては、まゆ,生糸,まゆ屑,生糸屑,ビス,揚り
綿,絹布屑,ブーレット等を常法に従い必要に応じ活性
剤の存在下、温水中で又は酵素の存在下温水中でセリシ
ンを除去し乾燥した精練絹、絹フィブロイン水溶液から
常法に従い製造した再生シルク粗粉体、更に再生シルク
粗粉体を熱処理又は塩析処理して絹フィブロインの結晶
構造の変換及び結晶化促進を行ったもの、絹繊維を酸ま
たはアルカリで処理することで製造した脆化シルク粗粉
体などが挙げられる。また、体積平均粒子径が2μm以
下である微粉状改質シルクパウダーは、前記再生シルク
粗粉体又は脆化シルク粗粉体を水又は有機溶媒を分散媒
として高速剪断機で製造する。
In the method of the present invention, the silk proteins used include eyebrows, raw silk, eyebrows scraps, raw silk scraps, screws, fried cotton, silk cloth scraps, burettes, etc., in the presence of an active agent, if necessary, in the presence of warm water. Sintered silk which has been dried by removing sericin in warm water in the presence of an enzyme, regenerated silk coarse powder produced by a conventional method from silk fibroin aqueous solution, and silk fibroin obtained by heat treatment or salting-out of regenerated silk coarse powder And the fragile silk coarse powder produced by treating silk fiber with acid or alkali. The fine powder modified silk powder having a volume average particle diameter of 2 μm or less is produced by a high-speed shearing machine using the recycled silk coarse powder or the embrittled silk coarse powder with water or an organic solvent as a dispersion medium.

【0021】本発明において、微粉体状改質シルクパウ
ダーなどシルク蛋白質の水または有機溶媒分散液或は合
成樹脂エマルジョンを添加した液の布帛に対する付与方
法は、特に限定されないが、パット法、スプレー法、及
びローラ法等を適用することができる。シルク蛋白質を
付与した布帛は乾燥し、更に乾熱又は湿熱処理を行うこ
とにより強固な皮膜を形成することができる。そして乾
熱処理は120℃以上好ましくは150〜200℃で、
湿熱処理は90℃以上好ましくは110℃以上で実施す
る。その後、必要に応じて温水で洗浄してもよい。洗浄
によって適度の揉み作用が加わり、繊維間の接着性の緩
和が行われ、ソフトに仕上り風合が向上する。
In the present invention, the method of applying the water containing the silk protein such as the fine powder modified silk powder to the water or the organic solvent dispersion liquid or the synthetic resin emulsion is not particularly limited, but the pad method and the spray method are used. , And the roller method can be applied. The cloth to which the silk protein is applied is dried, and further subjected to dry heat or wet heat treatment to form a strong film. And the dry heat treatment is 120 ° C. or higher, preferably 150 to 200 ° C.,
The moist heat treatment is performed at 90 ° C. or higher, preferably 110 ° C. or higher. Then, you may wash with warm water as needed. By washing, a proper rubbing action is added, the adhesion between the fibers is relaxed, and the soft finish is improved.

【0022】本発明の繊維構造物においては、これを構
成する繊維表面から中空部まで貫通する貫通溝を有する
中空繊維の中空部表面にシルク蛋白質が付着しているこ
とが必要である。本発明者らは、耐久性の改善について
鋭意研究の結果、上記中空繊維の中空部表面に付着した
シルク蛋白質は洗濯等に対して驚くべき耐久性を有する
ことを見いだし本発明に至ったのである。加工後のシル
ク蛋白質は、繊維外部表面及び繊維中空部表面に付着し
ているが、洗濯によって繊維外部表面の制電剤は脱落し
易い。本発明に言う、中空部表面とは図2に示すD部で
あり、繊維外部表面とは同じくE部である。シルク蛋白
質の付着の状態は、加工剤或は加工方法によって異なる
が、例えば薄膜状、粒子状或は水滴状等である。
In the fiber structure of the present invention, it is necessary that the silk protein is attached to the surface of the hollow portion of the hollow fiber having a through groove penetrating from the surface of the fiber constituting the fiber structure to the hollow portion. As a result of earnest research on improvement of durability, the present inventors have found that the silk protein attached to the surface of the hollow portion of the hollow fiber has surprising durability against washing and the like, and arrived at the present invention. . The processed silk protein adheres to the fiber outer surface and the fiber hollow surface, but the antistatic agent on the fiber outer surface is easily removed by washing. In the present invention, the surface of the hollow portion is the portion D shown in FIG. 2, and the outer surface of the fiber is the portion E. The state of attachment of the silk protein varies depending on the processing agent or processing method, but is, for example, in the form of a thin film, particles or water drops.

【0023】本発明における吸水・速乾性と耐久性は以
下の方法によって測定、評価される。 保水率 精練風乾した繊維布を室温の水に60分間浸漬し、家庭
用洗濯機の脱水機にて3分間脱水した後の重量増加を百
分率で表わしたものである。 吸水性 水の拡散性を示す、「水の吸い上高」をバイレックス法
に準じて測定した(但し、5分後の測定値を示す)。 速乾性 保水率の測定に用いた脱水後の布を22℃65%RHの
雰囲気中に10分間吊した後、布重量を測定する。重量
の減少率が大きいほど速乾性が良好であることを示す。 耐久性 JIS L−0217 103法に準じて洗濯を10回
実施し、上記吸水・速乾性を測定した。本発明において
は、糸の構成、布の目付や組織にもよるが、65%以上
の保水率、110mm以上の吸水性、85%以上の速乾
性を有することが好ましい。
The water absorption / quick drying property and durability in the present invention are measured and evaluated by the following methods. Water retention rate This is the percentage increase in weight after the scouring and air-dried fiber cloth was immersed in water at room temperature for 60 minutes and dehydrated for 3 minutes in a dehydrator of a domestic washing machine. Water absorption The "high water absorption", which indicates the diffusibility of water, was measured according to the Bayrex method (however, the measured value after 5 minutes is shown). Quick-drying The dehydrated cloth used for measuring the water retention rate was hung in an atmosphere of 22 ° C. and 65% RH for 10 minutes, and then the weight of the cloth was measured. The larger the weight reduction rate is, the better the quick drying property is. Durability Washing was carried out 10 times according to JIS L-0217 103 method, and the water absorption and quick drying properties were measured. In the present invention, it is preferable to have a water retention rate of 65% or more, a water absorption rate of 110 mm or more, and a quick-drying rate of 85% or more, although it depends on the yarn structure, the fabric weight and the design.

【0024】[0024]

【発明の効果】本発明の繊維構造物は、耐久性に優れた
吸水・速乾性を有し、しかも軽量性、保温性に富むとい
う数多くの特長を持っており、インナー、シャツ、ブラ
ウス、スポーツウエア、タイツ、ストッキング、パジャ
マ等に応用するのに好適である。
INDUSTRIAL APPLICABILITY The fiber structure of the present invention has many features that it has excellent durability, absorbs water and dries quickly, and is lightweight and heat-retaining. It is suitable for innerwear, shirts, blouses and sports. Suitable for wear, tights, stockings, pajamas, etc.

【0025】[0025]

【実施例】【Example】

実施例1 平均分子量3000のポリエチレングリコールを共重合
して得た、17%のポリエーテルセグメントを含む共重
合ポリエチレンテレフタレート(以下共重合PETと記
す)を芯とし、ポリエチレンテレフタレート(以下PE
Tと記す)を鞘として、接合比率(重量)PET:共重
合PET=2:1で溶融複合紡糸を行い、3.6倍に延
伸して75デニール/24フィラメントの複合糸F1を
得た。次いで、該複合糸F1を経糸及び緯糸に用いて平
織物を製織し、織物1とした。得られた織物1を水酸化
ナトリウム4%、80℃のアルカリ水溶液で60分間処
理し、複合糸F1の芯部の共重合PETを除去した。処
理後の糸の横断面は図2に示すようなものであった。
Example 1 A copolymerized polyethylene terephthalate (hereinafter referred to as copolymerized PET) containing 17% of a polyether segment obtained by copolymerizing polyethylene glycol having an average molecular weight of 3000 was used as a core, and polyethylene terephthalate (hereinafter referred to as PE) was used.
(Hereinafter referred to as T) as a sheath, melt composite spinning was performed at a joining ratio (weight) of PET: copolymerized PET = 2: 1, and stretched 3.6 times to obtain a composite yarn F1 of 75 denier / 24 filaments. Then, a plain woven fabric was woven using the composite yarn F1 as a warp yarn and a weft yarn to obtain a woven fabric 1. The obtained woven fabric 1 was treated with an alkaline aqueous solution of sodium hydroxide 4% and 80 ° C. for 60 minutes to remove the copolymerized PET at the core of the composite yarn F1. The cross section of the treated yarn was as shown in FIG.

【0026】また、比較例1としてPET単独の75デ
ニール/24フィラメントの糸を紡糸・延伸し、これを
経糸及び緯糸に用いて同様に平織物を製織し、織物2を
得、精練処理を行った。織物1及び2の処理後の密度
は、いずれも経105本/インチ、緯87本/インチで
あった。
Further, as Comparative Example 1, 75 denier / 24 filament yarn of PET alone was spun and drawn, and the same was used as a warp and a weft to weave a plain woven fabric to obtain a woven fabric 2 and subjected to a scouring treatment. It was The densities of the woven fabrics 1 and 2 after the treatment were both 105 warps / inch and weft 87 threads / inch.

【0027】絹フィブロイン原料として絹紡績屑を用い
て、これの100gr.をマルセル石けん30gr.、
水3000gr.の溶液で95〜98℃において3時間
攪拌精練し、残膠を0.1%以下にまで減少させ、水洗
後80℃で熱風乾燥した。塩化カルシウム(CaCl2
・2H2 O)100gr.に水100gr.を混合して
38重量%塩化カルシウム水溶液200gr.を調製し
て110℃に加熱した。これに精練ずみの絹紡屑40g
r.をニーダを用いて5分間で攪拌しながら投入後、さ
らに30分間攪拌し完全に溶解させた。次に、内径20
0μ,膜厚20μ,長さ500mmの再生セルロース系
中空糸を2000本束ね、これの両端を中空穴を閉塞す
ることなく収束固定(シール)したホローファイバー型
の透析装置を用いて、前記溶解液を0.1 l/時間の割
合で流入させて脱イオン水を用いて透析し、フィブロイ
ン水溶液を得た。該フィブロイン水溶液のフィブロイン
濃度は6.5%で、残留塩化カルシウムは0.001%
であった。得られたフィブロイン水溶液500gr.を
100/sec以上のずり変形速度を与えるように攪拌
羽根で高速で攪拌した。攪拌を2〜3時間続けると、次
に絹フィブロイン粒子が析出し、ついには全体が小さな
ゲル粒子(結晶化度15%、β構造率58%)の集合体
として固まり水と分離し絹フィブロインはほぼ100%
の収率で再生する。さらに高速攪拌を続け、次いで30
%の濃厚硫安水溶液を約40gr.混合し、さらに1時
間攪拌し絹フィブロイン結晶のα→β化処理を行った結
果、ゲル体は小さな粒子状に解砕された。次いで、ゲル
体を濾別し、水洗後105℃で2時間乾燥した結果32
gr.の再生シルク粗砕体が得られた(結晶化度49
%、β構造率100%)。該粗粉体30gr.を水また
は有機溶媒270gr.に混合し、高速剪断機で(ロー
タ約5000rpm、剪断力約45〜60万/秒)で湿
式粉砕した。粉砕で得られた微粉体状改質シルクパウダ
ーの水分散液は白色のエマルジョン状で非常になめらか
な感触であった。これを遠心沈降式粒度分布測定装置
(島津製作所SA−CP3形)で測定した結果粒度分布
は0.3〜2.7μmであり、平均粒子径は1.1μm
であった。このものは、この10%分散液をメスシリン
ダーに取り1週間静置したが、水層とパウダー層の分離
が全く認められず分散状態は非常に安定であった。
Using silk spinning waste as a raw material for silk fibroin, 100 gr. Marcel soap 30 gr. ,
Water 3000 gr. The solution was stirred and scoured at 95 to 98 ° C. for 3 hours to reduce the residual glue to 0.1% or less, washed with water and dried at 80 ° C. with hot air. Calcium chloride (CaCl 2
.2H 2 O) 100 gr. To 100 gr. And a 38 wt% calcium chloride aqueous solution 200 gr. Was prepared and heated to 110 ° C. 40g of refined silk spinning waste
r. Was added with stirring using a kneader for 5 minutes, and further stirred for 30 minutes to completely dissolve it. Next, inside diameter 20
Using a hollow fiber type dialysis device in which 2000 pieces of regenerated cellulose-based hollow fibers having a thickness of 0 μ, a thickness of 20 μ and a length of 500 mm are bundled and fixed (sealed) at both ends without blocking the hollow holes, At a rate of 0.1 l / hour and dialyzed against deionized water to obtain an aqueous fibroin solution. The fibroin concentration of the aqueous fibroin solution was 6.5%, and the residual calcium chloride content was 0.001%.
Met. The obtained fibroin aqueous solution 500 gr. Was stirred at a high speed with a stirring blade so as to give a shear deformation rate of 100 / sec or more. When stirring is continued for 2 to 3 hours, silk fibroin particles are precipitated next, and finally the whole is aggregated as an aggregate of small gel particles (15% crystallinity, 58% β structure) and separated from water to separate silk fibroin. Almost 100%
Regenerate at a yield of. Continue high speed stirring, then 30
% Concentrated ammonium sulfate aqueous solution at about 40 gr. As a result of mixing and further stirring for 1 hour to subject the silk fibroin crystals to α → β conversion, the gel body was crushed into small particles. Then, the gel was filtered off, washed with water and dried at 105 ° C. for 2 hours.
gr. A recycled silk crushed product was obtained (crystallinity 49
%, Β structure ratio 100%). The coarse powder 30 gr. Of water or organic solvent 270 gr. And wet pulverized with a high-speed shearing machine (rotor about 5000 rpm, shearing force about 45 to 600,000 / sec). The aqueous dispersion of finely powdered modified silk powder obtained by pulverization was a white emulsion and had a very smooth feel. As a result of measurement with a centrifugal sedimentation type particle size distribution measuring device (Shimadzu SA-CP3 type), the particle size distribution was 0.3 to 2.7 μm, and the average particle size was 1.1 μm.
Met. As for this product, this 10% dispersion was placed in a graduated cylinder and allowed to stand for 1 week, but no separation of the water layer and powder layer was observed and the dispersion state was very stable.

【0028】上記改質シルクパウダーの10%水分散液
10部、ウレタン系樹脂エマルジョンとして大日本イン
キ(株)製ボンディック1610(固形分40%含有)
2部を水に分散させ全量が100部になるよう調製した
処理液に織物1および2を浸漬しピックアップ率80%
に絞り、120℃で予備乾燥しHTスチマーで温度11
0℃,蒸気量0.5kg/cm2 で10分間処理を行っ
た。尚、上記アルカリ処理した織物1でシルク蛋白固着
しないものを比較例2とする。
10 parts of a 10% aqueous dispersion of the modified silk powder described above, as a urethane resin emulsion, BONDIC 1610 (containing 40% solid content) manufactured by Dainippon Ink and Chemicals, Inc.
Fabrics 1 and 2 were immersed in a treatment liquid prepared by dispersing 2 parts in water so that the total amount was 100 parts, and picking up rate was 80%.
Squeeze to 120 ° C, pre-dry at 120 ° C, and heat at 11 ° C with HT steamer
A treatment was performed at 0 ° C. and a steam amount of 0.5 kg / cm 2 for 10 minutes. In addition, the above-mentioned alkali-treated woven fabric 1 which does not adhere to silk protein is referred to as Comparative Example 2.

【0029】実施例2 平均分子量4000のポリエチレングリコールを8%
と、5−スルホイソフタル酸ナトリウムを4.3モル%
とを共重合して得られた共重合PETを芯とし、実施例
1のPETを鞘として接合比率共重合PET:PET=
1:1で溶融紡糸を行い、3.8倍に延伸して75デニ
ール/24フィラメントの複合糸を得た。得られた複合
糸の横断面は図1のようなものであり、これを複合糸F
2とした。以下実施例1と同様に、該複合糸F2を経糸
及び緯糸に用いて平織物を製織し(織物3)、複合糸F
2の芯部の共重合PETを除去し(処理後の織物3の密
度は経107本/インチ、緯86本/インチであっ
た)、次いで改質シルクパウダーを固着した。
Example 2 8% polyethylene glycol having an average molecular weight of 4000
And sodium 5-sulfoisophthalate 4.3 mol%
Copolymerized PET obtained by copolymerizing and is used as a core, and the PET of Example 1 is used as a sheath. Coupling ratio copolymerized PET: PET =
Melt spinning was performed at 1: 1 and stretched 3.8 times to obtain a composite yarn of 75 denier / 24 filament. The cross section of the obtained composite yarn is as shown in FIG. 1.
It was set to 2. Thereafter, in the same manner as in Example 1, a plain woven fabric was woven using the composite yarn F2 as the warp and the weft (woven fabric 3), and the composite yarn F was obtained.
The core 2 of the copolymer PET was removed (the density of the woven fabric 3 after the treatment was 107 filaments / inch and weft 86 filaments / inch), and then the modified silk powder was fixed.

【0030】実施例3 鞘をナイロン6に変更する以外実施例1と同様にして、
複合糸F4を得、2本合糸しながら仮撚加工した後丸編
物(編物1)とし、芯部の共重合PETを除去し、次い
で改質シルクパウダーを固着した。
Example 3 In the same manner as in Example 1 except that the sheath was changed to nylon 6,
A composite yarn F4 was obtained, and then false twisting was performed while two yarns were combined to form a circular knit (knit 1), the copolymer PET of the core part was removed, and then the modified silk powder was fixed.

【0031】また、比較例3としてナイロン6単独の5
0デニール/24フィラメントの糸を用いて丸編物を製
編し(編物2)、次いで改質シルクパウダーを固着し
た。
Further, as Comparative Example 3, nylon 6 alone 5
A circular knit was knitted using 0 denier / 24 filament yarn (knit 2), and then the modified silk powder was fixed.

【0032】[0032]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いることができる芯鞘型複合繊維の
横断面の例であり、C部が溶解除去成分である。
FIG. 1 is an example of a cross section of a core-sheath type composite fiber that can be used in the present invention, in which part C is a dissolution removal component.

【図2】本発明に用いる貫通溝を有する中空繊維の例で
あり、Aは繊維形成性ポリマー部を、Bは中空部を、D
は中空部表面を、Eは繊維外部表面を示す。
FIG. 2 is an example of a hollow fiber having a through groove used in the present invention, where A is a fiber-forming polymer part, B is a hollow part, and D is a hollow part.
Indicates the surface of the hollow portion, and E indicates the outer surface of the fiber.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性ポリマーからなり、繊維表面
から中空部まで貫通する貫通溝を有しかつ中空部表面に
シルク蛋白質が付着している中空繊維を少なくとも一部
に用いたことを特徴とする繊維構造物。
1. A hollow fiber comprising a fiber-forming polymer, having a through groove penetrating from the fiber surface to the hollow portion, and having silk protein attached to the surface of the hollow portion is used at least in part. Fiber structure to do.
【請求項2】 シルク蛋白質が2μm以下の改質シルク
蛋白質のパウダーである請求項1記載の繊維構造物。
2. The fiber structure according to claim 1, wherein the silk protein is a modified silk protein powder having a size of 2 μm or less.
JP5142904A 1993-05-20 1993-05-20 Fibrous structure excellent in water absorbing and quick-drying property Pending JPH06330461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142904A JPH06330461A (en) 1993-05-20 1993-05-20 Fibrous structure excellent in water absorbing and quick-drying property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142904A JPH06330461A (en) 1993-05-20 1993-05-20 Fibrous structure excellent in water absorbing and quick-drying property

Publications (1)

Publication Number Publication Date
JPH06330461A true JPH06330461A (en) 1994-11-29

Family

ID=15326318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142904A Pending JPH06330461A (en) 1993-05-20 1993-05-20 Fibrous structure excellent in water absorbing and quick-drying property

Country Status (1)

Country Link
JP (1) JPH06330461A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172243A (en) * 1988-09-13 1992-12-15 Sharp Kabushiki Kaisha Data transmitter-receiver apparatus for transmitting and receiving image data
CN101768791A (en) * 2010-02-10 2010-07-07 北京化工大学 Polyacrylonitrile-based hollow carbon fiber precursor and preparation method thereof
WO2020250904A1 (en) * 2019-06-11 2020-12-17 Spiber株式会社 Water-absorbing and quick-drying property-imparting agent, and method for imparting water-absorbing and quick-drying properties
WO2021065769A1 (en) * 2019-09-30 2021-04-08 Spiber株式会社 Agent for imparting cool touch sensation and water-absorbing and quick-drying properties, and method for imparting article with cool touch sensation and water-absorbing and quick-drying properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172243A (en) * 1988-09-13 1992-12-15 Sharp Kabushiki Kaisha Data transmitter-receiver apparatus for transmitting and receiving image data
CN101768791A (en) * 2010-02-10 2010-07-07 北京化工大学 Polyacrylonitrile-based hollow carbon fiber precursor and preparation method thereof
WO2020250904A1 (en) * 2019-06-11 2020-12-17 Spiber株式会社 Water-absorbing and quick-drying property-imparting agent, and method for imparting water-absorbing and quick-drying properties
CN113994034A (en) * 2019-06-11 2022-01-28 丝芭博株式会社 Water-absorbing quick-drying agent and method for imparting water-absorbing quick-drying property
WO2021065769A1 (en) * 2019-09-30 2021-04-08 Spiber株式会社 Agent for imparting cool touch sensation and water-absorbing and quick-drying properties, and method for imparting article with cool touch sensation and water-absorbing and quick-drying properties
CN114502782A (en) * 2019-09-30 2022-05-13 丝芭博株式会社 Agent and method for imparting cool feeling and water-absorbing quick-drying property to article

Similar Documents

Publication Publication Date Title
KR101061028B1 (en) Polymer Hybrid Fibers, Fiber Structures, Polymer Hybrid Pellets and Their Manufacturing Methods
JP2004162244A (en) Nano-fiber
JP2004169261A (en) Polymer alloy fiber
WO1995019461A1 (en) Cloth of hollow fibers and method of manufacturing same
JPS6215655B2 (en)
JPS604284B2 (en) Method for producing hydrophilic filaments or fibers
JPH06330461A (en) Fibrous structure excellent in water absorbing and quick-drying property
JPS6037203B2 (en) Manufacturing method of water-absorbing artificial fiber
JPH0578979A (en) Modified silk powder-fixed cloth and its production
JP3823494B2 (en) Wiping fabric and manufacturing method thereof
JPH0544160A (en) Processed cloth to prevent transmission of ultraviolet ray
JP2008063716A (en) Polymer alloy fiber, method for producing the same and fiber product using the same
JP3157644B2 (en) Humidity-controlling fiber and method for producing the same
JP4270202B2 (en) Nanofiber assembly
JP2004332186A (en) Nanoporous fiber
JP2007119948A (en) Split type conjugate fiber
JP2553271B2 (en) Nonwoven manufacturing method
JP2590662B2 (en) Manufacturing method of ultra-fine fibers
JP3727419B2 (en) Hygroscopic polyester fiber and its production method
JPH0633317A (en) Yarn having excellent durable water repellency and its production
JPH05171571A (en) Fiber structure having durable antistaticity
JPS62243848A (en) Highly water absorbable knitted fabric
JPH03294571A (en) Production of fibrillated fabric
JPH0241470A (en) Treatment of cloth consisting of conjugated yarn
JPH07189119A (en) Water-absorbing polyamide fiber and its production