JPS62155560A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS62155560A
JPS62155560A JP60296014A JP29601485A JPS62155560A JP S62155560 A JPS62155560 A JP S62155560A JP 60296014 A JP60296014 A JP 60296014A JP 29601485 A JP29601485 A JP 29601485A JP S62155560 A JPS62155560 A JP S62155560A
Authority
JP
Japan
Prior art keywords
transfer means
photoelectric conversion
charge
vertical transfer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60296014A
Other languages
Japanese (ja)
Inventor
Takehiko Kaneko
武彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60296014A priority Critical patent/JPS62155560A/en
Publication of JPS62155560A publication Critical patent/JPS62155560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To easily improve the resolution in a specific direction without increasing the number of the charge transfer means by placing photoelectric conversion portions for passing the signal charge on both sides of the first charge transfer means. CONSTITUTION:On both sides of a vertical transfer means Va, Vb,...Vn as a first charge transfer means, photoelectric conversion portions for passing the signal charge to said vertical transfer means. That is, photoelectric conversion portions 1a, 3a,... for passing the signal charge to the vertical transfer means Va are provided on one side of the vertical transfer means Va, and photoelectric conversion portions 2a,... are provided on the other side, with the vertical transfer means Vb,...Vn being similar. The signal charge to be transferred from the vertical transfer means Va, Vb,...Vn is passed to a horizontal transfer means H as a second charge transfer means, and the passed signal charge is transferred by the horizontal transfer means H in the direction intersecting the transfer direction of said vertical transfer means Va, Vb,...Vn, e.g., in the horizontal direction. The output of the horizontal transfer means H is outputted via an output amplifier A, and thereafter it is outputted via a delay circuit DL by means of a switch SW which is switched in synchronism with the field each time the field switches.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電荷結合素子型(CCD型)固体撮像装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a charge-coupled device type (CCD type) solid-state imaging device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第4図には従来の固体撮像装置の一例が示され、図中、
光電変換部1a’ 、lb’ 、−”In’ 。
FIG. 4 shows an example of a conventional solid-state imaging device, and in the figure,
Photoelectric conversion units 1a', lb', -"In'.

s) a+ 、2 bl 、・・・2n′、・・・は半
導体基板上に配列して形成されたフォトダイオードであ
り、受光量に応じた信号電荷を発生し、受光部あるいは
画素などとも呼ばれる。これら光電変換部18′。
s) a+, 2 bl, ...2n', ... are photodiodes arranged and formed on a semiconductor substrate, which generate signal charges according to the amount of light received, and are also called light receiving parts or pixels. . These photoelectric conversion sections 18'.

1 b’ 、−1n’ 、2a’  2b’ 、−2n
’ −・・において発生した信号電荷は各配列ごとにト
ランスファーゲート(図示せず)を介して垂直転送手段
(垂直CODレジスタ)Va’ 、Vb’ 、 ・Vn
′に受1ノ渡され、受【プ渡された信号電荷は前記垂直
転送手段Va’ 、Vb’ 、−Vn’ にJ:り垂直
方向に転送されて水平転送手段(水平CODレジスタ)
ト1に受け渡され、この水平転送手段1」により水平方
向に転送された後、出力増幅器Aを通じて出力される。
1 b' , -1n' , 2a'2b' , -2n
The signal charges generated at -... are transferred to vertical transfer means (vertical COD registers) Va', Vb', ・Vn via transfer gates (not shown) for each array.
The received signal charge is transferred to the vertical transfer means Va', Vb', -Vn' in the vertical direction and then transferred to the horizontal transfer means (horizontal COD register).
After being transferred in the horizontal direction by this horizontal transfer means 1, it is outputted through an output amplifier A.

この際、水平転送手段Hからは水平方向−持分の光電変
換部1a’、1b’、・・・1n’で生じた信り電荷が
直列に出力され、続いて一行とばした次の一持分の光電
変換部38′。
At this time, the horizontal transfer means H serially outputs the false charges generated in the photoelectric conversion sections 1a', 1b', . Photoelectric conversion section 38'.

3b′、・・・3n’ で生じた信号電荷が出力され、
以下同様に一行とばしながら水平方向の一行毎に信号電
荷が出力される。これはインターレス方式のTV信号で
の第1フィールド期間中の信号電荷の転送方法である。
The signal charges generated at 3b',...3n' are output,
Thereafter, signal charges are output for each row in the horizontal direction while skipping one row in the same manner. This is a method of transferring signal charges during the first field period in an interlaced TV signal.

したがって、第2フィールド期間では、残りの光電変換
部2a’ 、2b’ 、・・・2n’で発生した信号電
荷がまず出力され、次いで一行とばした次の一持分の光
電変換部4a′。
Therefore, in the second field period, the signal charges generated in the remaining photoelectric conversion units 2a', 2b', .

4b′、・・・4 n Lでの信号電荷が出力され、以
下同様に一行とばしながら残りの全ての光電変換部での
信号電荷が出力されて、こうして1フレ一ム分の光情報
が信号電荷として出力されるのである。
The signal charges at 4b', . . . 4 n L are output, and the signal charges at all the remaining photoelectric conversion units are output in the same manner, skipping one line. In this way, the optical information for one frame is converted into a signal. It is output as an electric charge.

ところで、搬像装置では二次元の光情報を光電変換部ψ
位で採取して出力するのであるから、二次元画像を光電
変換部によってサンプリングしている訳である。その際
のサンプリング中心は光電変換部の中心と考えられるの
で、各光電変換部に対応するり゛ンブリング中心を図示
すると第5図にようになる。図中、各リンプリング中心
には対応する光電変換部の符号が付され、また、第1フ
イールド朋間中のリーンプリング中心は0印で、第2フ
ィールド期間中のリーンプリング中心はX印で示されて
るいる。
By the way, in the image carrier, two-dimensional optical information is transferred to the photoelectric converter ψ
This means that the two-dimensional image is sampled by the photoelectric conversion unit. Since the sampling center at this time is considered to be the center of the photoelectric conversion section, the revolving center corresponding to each photoelectric conversion section is shown in FIG. 5. In the figure, each limp ring center is marked with the code of the corresponding photoelectric conversion unit, and the lean pull center during the first field is marked 0, and the lean pull center during the second field period is marked X. It's shown.

ここで固体陽像装置の解像度について考察すると、サン
プリング中心の数が解像度を決定する。
Considering the resolution of a solid-state positive imager, the number of sampling centers determines the resolution.

各サンプリング中心は各光電変換部の中心に対応してい
るので、光電変換部の数が解像度を決定することになる
。したがって、固体陽像装置の水平方向の解像度は水平
方向の光電変換部の数で決まる。
Since each sampling center corresponds to the center of each photoelectric conversion section, the number of photoelectric conversion sections determines the resolution. Therefore, the horizontal resolution of the solid-state positive image device is determined by the number of horizontal photoelectric conversion sections.

ところが、従来の固体陽像装置では、各垂直転送手段V
a’ 、Vb’ 、・・・Vn’ の片側に当該垂直転
送手段va’ 、vb’ 、・・・Vn’ に信号電荷
を受り渡す光電変換部1a’ 、2a’ 、3a’ ・
・・。
However, in the conventional solid-state positive image device, each vertical transfer means V
On one side of a', Vb', . . . Vn', there are photoelectric conversion units 1a', 2a', 3a', which deliver signal charges to the vertical transfer means va', vb', .
....

1b’ 、2b’ 、3b’−、−,1n’ 、2n’
 。
1b', 2b', 3b'-, -, 1n', 2n'
.

30′、・・・が配置される構成であったので、水平方
向の解像度を上げる為に光電変換部の配列数を増加させ
るにはそれと同数分の垂直転送手段を増加させなければ
ならなかった。垂直転送手段を増加させるには、装置全
体の集積度を向上さIなければならず、また、水平転送
部の段数も増加させなければならなくなり、設JI上、
製造上、および動作上の困難を招くことになる。しかも
、垂直転送部の増加した分だ番ノ光電変換部が占める面
積が減少して感度の著しい低下をも招くことになる。
30', etc., so in order to increase the number of photoelectric conversion units arranged in order to increase the horizontal resolution, it was necessary to increase the number of vertical transfer means by the same number. . In order to increase the number of vertical transfer means, the degree of integration of the entire device must be improved, and the number of horizontal transfer sections must also be increased.
This results in manufacturing and operational difficulties. Moreover, as the number of vertical transfer sections increases, the area occupied by the corresponding photoelectric conversion section decreases, resulting in a significant decrease in sensitivity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、設Sl上、製造上、あるいは動作上の
困難性を特に増大さけ′ることなく特定方向の解像度を
上げることのできる固体搬像装置を提供することである
SUMMARY OF THE INVENTION An object of the present invention is to provide a solid-state image carrier capable of increasing the resolution in a specific direction without particularly increasing the difficulties in terms of installation, manufacturing, or operation.

〔発明の概要〕[Summary of the invention]

そのため本発明は、受光mに応じた信号電荷を発生する
光電変換部ど、この光電変換部により得られた信号電荷
を受け取り所定方向く例えば垂直方向)に転送する複数
の第1の電荷転送手段(例えば垂直転送手段)と、前記
第1の電荷転送手段から信号電荷を受け取り前記所定方
向と交差する方向(例えば水平方向)に転送する第2の
電荷転送手段(例えば水平転送手段)とを右する固体昭
像装置において、前記各第1の電荷転送手段の両側に当
該第1の電荷転送手段に信号電荷を受け渡す前記光電変
換部を配置することにより、前記第1の電荷転送手段の
数を増加さヒることなく、例えば水平方向等の特定の方
向の光電変換部の数を増加させることを可能にし、切言
ずればサンプリング中心の数を増加させることを可能に
して前記目的を達成しJ:うとするものである。
Therefore, the present invention provides a plurality of first charge transfer means, such as a photoelectric conversion section that generates a signal charge according to the received light m, that receives the signal charge obtained by the photoelectric conversion section and transfers it in a predetermined direction (for example, vertical direction). (for example, vertical transfer means) and a second charge transfer means (for example, horizontal transfer means) that receives signal charges from the first charge transfer means and transfers them in a direction (for example, horizontal direction) intersecting the predetermined direction. In the solid-state imaging device, the number of the first charge transfer means can be reduced by arranging the photoelectric conversion sections on both sides of each of the first charge transfer means for delivering signal charges to the first charge transfer means. The above objective is achieved by making it possible to increase the number of photoelectric conversion units in a specific direction, such as the horizontal direction, without increasing the Shi J: I am trying to sleep.

〔発明の実施例) 以下、本発明の実施例を図面に基づいて説明する。[Embodiments of the invention] Embodiments of the present invention will be described below based on the drawings.

第1図には本発明の一実施例が示され、図中、第1の電
荷転送手段としての垂直転送手段■a。
An embodiment of the present invention is shown in FIG. 1, in which vertical transfer means ①a serves as a first charge transfer means.

■b、・・・Vnの両側には当該垂直転送手段に信号電
荷を受け渡す光電変換部が配置されている。即ち、垂直
転送手段Vaについてみれば、この垂直転送手段vaに
13号電荷を受け渡り光電変換部1a、3a、・・・が
垂直転送手段Vaの一方側に、光電変換部2a、・・・
が他方側に配置され、また、垂直転送手段Vb、・・・
Vnについても同様である。
(2) On both sides of b, . . . Vn, photoelectric conversion units are arranged to deliver signal charges to the vertical transfer means. That is, regarding the vertical transfer means Va, photoelectric conversion units 1a, 3a, .
are arranged on the other side, and the vertical transfer means Vb,...
The same applies to Vn.

前記一方側の光電変換部1a、3a、・・・は第1フィ
ールド期間に出力されるべき信号電荷を発生し、前記他
方側の光電気変換部2a、・・・は第2フィールド期間
に出力されるべき信号電荷を発生するちのである。第1
図中では第1フイールド用の電荷移動を鎖線矢印で示し
、第2フイールド用の゛’5N荷移動全移動矢印で示し
である。
The photoelectric conversion units 1a, 3a, . . . on one side generate signal charges to be output during the first field period, and the photoelectric conversion units 2a, . It generates the signal charge to be transmitted. 1st
In the figure, the charge movement for the first field is shown by a chain arrow, and the charge movement for the second field is shown by a '5N total movement arrow.

前記一方側の光電変換部1a、3a、・・・と他方側の
光電変換部2a、・・・とは垂直転送手段Vaの方向に
沿って位置ずれして配置され、例えば光電変換部2aは
光電変換部1aおよび3aの垂直転送手段■aの方向に
沿った丁度中間の位置に配置され、その他の光電変換部
についても同様の配置関係どなっている。なお、垂直転
送手段と光電変換部との配置関係を主として垂直転送手
段Vaにつき説明したが、他の垂直転送手段vb、・・
・Vnについても全く同様である。
The photoelectric conversion units 1a, 3a, . . . on one side and the photoelectric conversion units 2a, . It is arranged at a position exactly in the middle of the photoelectric conversion units 1a and 3a along the direction of the vertical transfer means 1a, and the other photoelectric conversion units have a similar arrangement relationship. Note that although the arrangement relationship between the vertical transfer means and the photoelectric conversion unit has been mainly explained for the vertical transfer means Va, other vertical transfer means vb, . . .
- The same applies to Vn.

垂直転送手段Va、Vb、・・・Vnから転送される信
号電荷は第2の電荷転送手段どしての水平転送手段ト1
へ受け渡され、受け渡された信号電荷は水平転送手段ト
1により前記垂直転送手段Va。
The signal charges transferred from the vertical transfer means Va, Vb, . . . Vn are transferred to the horizontal transfer means T1 as a second charge transfer means.
The transferred signal charges are transferred to the vertical transfer means Va by the horizontal transfer means To1.

vb、・・・Vnの転送方向と交差する方向、例えば水
平方向に転送される。
The data is transferred in a direction intersecting the transfer direction of vb, . . . Vn, for example, in the horizontal direction.

水平転送手段)」の出力信号は出力増幅器Aを介して出
力された後、フィールドが切換る毎にそれと同期して切
換えられるスイッチSWによって遅延回路1) Lを介
して出力されるJ:うになっている。
The output signal of the "horizontal transfer means" is outputted via the output amplifier A, and then outputted via the delay circuit 1) L by the switch SW, which is switched in synchronization with each field change. ing.

第2図(A)〜(C)には水平転送手段Hの出力信号の
様子が示され、前記各光電変換部で発生した信号電荷に
基づく出力信号が方形波として示され且つ各方形波には
対応する光電変換部の符号が付されている。これらの図
のうち、第2図(A)は第1フィールド期間の最初の一
段の出力信号(1a、 1 b、−1n)であり、第2
図(B)は遅延回路DLに入力づ”る前の第2フィール
ド期間の最初の一段の出力信号(2a、・・・2n)で
あり、第3図(C)は遅延回路DLを介して出力される
第2フィールド期間の最初の一段の出力信号(2a、・
・・2n)であり、これらは遅延回路DL入力前に比べ
て時間tdだけ遅延されている。このように第2フイー
ルドの出力信号を遅延させるのは、両フィールドとも同
じ垂直転送手段Va。
2(A) to (C) show the state of the output signal of the horizontal transfer means H, and the output signal based on the signal charge generated in each photoelectric conversion section is shown as a square wave, and each square wave is are marked with the corresponding photoelectric conversion unit numerals. Among these figures, FIG. 2(A) shows the first stage output signals (1a, 1b, -1n) in the first field period, and the second
Figure (B) shows the output signals (2a,...2n) of the first stage in the second field period before being input to the delay circuit DL, and Figure 3 (C) shows the output signals (2a, . . . 2n) of the first stage before being input to the delay circuit DL. The first stage output signal (2a, . . .
. . 2n), and these are delayed by a time td compared to before the input to the delay circuit DL. The output signal of the second field is thus delayed by the same vertical transfer means Va for both fields.

Vb、・・・Vnにより転送されるので、H延回路DL
を設けないと、第2図(A)と(B)とに示されるよう
に、両フィールドの出力信号が片間的に一致してしまう
が、第1図に示されるJ:うに、両フィールドの光電変
換部の配置は異なっているので、空間的な配置の相違に
合わせた分だけ第2フイールドの信号出力を遅延さける
必要があるからである。
Since it is transferred by Vb,...Vn, the H extension circuit DL
If the output signals of both fields are not provided, as shown in FIGS. 2(A) and (B), the output signals of both fields will partially match, but This is because, since the arrangement of the photoelectric conversion units is different, it is necessary to avoid delaying the signal output of the second field by an amount corresponding to the difference in the spatial arrangement.

第3図には本実施例におけるサンプリング中心の配置状
態が示され、図中、各サンプリング中心には対応する光
電変換部の符gが付され、また、第1フイールド用のサ
ンプリング中心はO印で、第2フイールド用の1ナンプ
リング中心はX印で示されている。この第3図と前記従
来+14造のサンプリング中心を示す前出の第5図とを
比較すると、水平方向のサンプリング点の数が218と
なっていることがわかる。したがって、水平方向の解像
度が本実施例では2倍になっている。しがも、第1図と
従来構造を示す前出の第4図とを比較1°れば分かるよ
うに、垂直転送手段Va、Vb、・・・Vnの数は同じ
である。そのため、垂直転送手段を増加させることによ
る設計上、製造上、および動作上の困難性を1/7<こ
とがない。即ち、例えば、水平転送手段1」の段数が増
加するためその駆動周波数を大きくする必要がない。ま
た、受光面全体に対する光電変換部の占有面積の割合が
大きく変わることがないために感度が著しく低下すると
いうことがない。
FIG. 3 shows the arrangement of sampling centers in this embodiment. In the figure, each sampling center is marked with a symbol g for the corresponding photoelectric conversion unit, and the sampling center for the first field is marked with an O. In this case, the 1 number ring center for the second field is indicated by an X mark. Comparing this FIG. 3 with the above-mentioned FIG. 5 showing the sampling center of the conventional +14 structure, it is found that the number of sampling points in the horizontal direction is 218. Therefore, the resolution in the horizontal direction is doubled in this embodiment. However, as can be seen by comparing FIG. 1 with the above-mentioned FIG. 4 showing the conventional structure, the number of vertical transfer means Va, Vb, . . . Vn is the same. Therefore, the design, manufacturing, and operational difficulties caused by increasing the number of vertical transfer means are reduced to <1/7. That is, for example, since the number of stages of the horizontal transfer means 1 increases, there is no need to increase the driving frequency. Further, since the ratio of the area occupied by the photoelectric conversion section to the entire light-receiving surface does not change significantly, sensitivity does not decrease significantly.

なお、前記実茄例では第1フイールドの光電変換部1a
、3a、・・・の丁度中間位置に第2フイールドの光電
変換部3a、・・・が配置されていたが、必ずしもこの
ような配置関係である必要はない。
In addition, in the fruit example, the photoelectric conversion part 1a of the first field
, 3a, . . . , the photoelectric conversion units 3a, .

ただし、このように配置されていれば、偽信号の障害が
最小となり、特性上最適となる。また、このように配置
されない場合でも、第1フィールドの光電変換部の丁度
中間位置になるべく近い位置に第2フイールドの光電変
換部が配置されていることが動作を容易にσ゛る上で望
ましい。
However, if arranged in this way, interference from false signals will be minimized and the characteristics will be optimal. Furthermore, even if it is not arranged in this way, it is desirable to arrange the photoelectric conversion section of the second field at a position as close as possible to the exact middle position of the photoelectric conversion section of the first field in order to easily operate the photoelectric conversion section. .

(発明の効果) 上述のように本発明によれば、設計上、製造上、あるい
は動作上の困難性をJ?l <ことなく、例えば水平方
向の解像度を向上さUることができる。
(Effects of the Invention) As described above, according to the present invention, difficulties in design, manufacturing, or operation can be reduced. For example, the resolution in the horizontal direction can be improved without l <.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による固体記像装置を示す平
面図、第2図(A>、(B)、(C)は同固体撮像装首
の出力信号を示す波形図、第3図は同固体撮像装買にお
けるサンプリング中心を示ず平面図、第4図および第5
図は夫々従来の固体Ill像装置およびそのサンプリン
グ中心を示す平面図である。 1 a、1 b’、−1n、2a、2b、−2n。 3 a、 3 b、 ・3 n、−・・光電変換部、y
a、yb。 ・・・■n・・・第1の電荷転送手段としての垂直転送
手段、1−1・・・第2の電荷転送手段としての水平転
送手段、A・・・出力増幅器、DL・・・遅延回路、S
W・・・スイッチ。 出願人代理人  佐  藤  −雄 L も 1 図 た2 図
FIG. 1 is a plan view showing a solid-state imaging device according to an embodiment of the present invention, FIGS. The figure does not show the sampling center in the same solid-state imaging device, but the top view, Figures 4 and 5.
Each figure is a plan view showing a conventional solid-state Ill image device and its sampling center. 1 a, 1 b', -1n, 2a, 2b, -2n. 3 a, 3 b, ・3 n, --- photoelectric conversion section, y
a, yb. ...■n...Vertical transfer means as first charge transfer means, 1-1...Horizontal transfer means as second charge transfer means, A...Output amplifier, DL...Delay circuit, S
W...Switch. Applicant's agent Mr. Sato L also 1 Figure 2 Figure

Claims (1)

【特許請求の範囲】 1、受光量に応じた信号電荷を発生する光電変換部と、
この光電変換部による信号電荷を受け取り所定方向に転
送する複数の第1の電荷転送手段と、前記第1の電荷転
送手段から信号電荷を受け取り前記所定方向と交差する
方向に転送する第2の電荷転送手段とを備えた固体撮像
装置において、前記各第1の電荷転送手段の両側に、当
該第1の電荷転送手段に信号電荷を受け渡す前記光電変
換部が配置されていることを特徴とする固体撮像装置。 2、特許請求の範囲第1項において、前記第1の電荷転
送手段の両側の光電変換部のうち一方側の光電変換部は
他方側の光電変換部に対して前記所定方向に沿って位置
ずれして配置されていることを特徴とする固体撮像装置
[Claims] 1. A photoelectric conversion unit that generates a signal charge according to the amount of received light;
a plurality of first charge transfer means that receive signal charges from the photoelectric conversion section and transfer them in a predetermined direction; and a second charge transfer means that receives signal charges from the first charge transfer means and transfers them in a direction intersecting the predetermined direction. A solid-state imaging device comprising a transfer means is characterized in that the photoelectric conversion sections that deliver signal charges to the first charge transfer means are arranged on both sides of each of the first charge transfer means. Solid-state imaging device. 2. In claim 1, the photoelectric conversion section on one side of the photoelectric conversion sections on both sides of the first charge transfer means is misaligned along the predetermined direction with respect to the photoelectric conversion section on the other side. A solid-state imaging device characterized in that the solid-state imaging device is arranged as follows.
JP60296014A 1985-12-27 1985-12-27 Solid-state image pickup device Pending JPS62155560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296014A JPS62155560A (en) 1985-12-27 1985-12-27 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296014A JPS62155560A (en) 1985-12-27 1985-12-27 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS62155560A true JPS62155560A (en) 1987-07-10

Family

ID=17828000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296014A Pending JPS62155560A (en) 1985-12-27 1985-12-27 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62155560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2383899A (en) * 2000-10-31 2003-07-09 Hewlett Packard Co Photosensor assembly with staggered line arrays of sensors
GB2372881B (en) * 2000-10-31 2004-06-16 Hewlett Packard Co Photosensor assembly
DE10165011B4 (en) * 2000-10-31 2007-12-13 Hewlett-Packard Development Co., L.P., Houston Photosensor array
US8094224B2 (en) 2007-06-28 2012-01-10 Sharp Kabushiki Kaisha Solid-state image capturing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2383899A (en) * 2000-10-31 2003-07-09 Hewlett Packard Co Photosensor assembly with staggered line arrays of sensors
GB2383899B (en) * 2000-10-31 2004-01-07 Hewlett Packard Co Photosensor assembly
GB2372881B (en) * 2000-10-31 2004-06-16 Hewlett Packard Co Photosensor assembly
GB2400978A (en) * 2000-10-31 2004-10-27 Hewlett Packard Co Photosensor array for optical image scanner
US6961158B2 (en) 2000-10-31 2005-11-01 Hewlett-Packard Development Company, L.P. Photosensor assembly with shared structures
DE10153378B4 (en) * 2000-10-31 2007-10-04 Hewlett-Packard Development Co., L.P., Houston Photosensor array
DE10165011B4 (en) * 2000-10-31 2007-12-13 Hewlett-Packard Development Co., L.P., Houston Photosensor array
US8094224B2 (en) 2007-06-28 2012-01-10 Sharp Kabushiki Kaisha Solid-state image capturing apparatus

Similar Documents

Publication Publication Date Title
US7479994B2 (en) Image sensor having resolution adjustment employing an analog column averaging/row averaging for high intensity light or row binning for low intensity light
EP0403248B1 (en) Photoelectric converting apparatus
EP1098512A2 (en) Pixel design for interlaced reading for high sensitivity CMOS image sensors
JPH05167777A (en) Multiplexing arrangement of color sensor array
KR101293385B1 (en) Output routing structure for cmos image sensors
JPH10275906A (en) Flat panel sensor
JP3271112B2 (en) Charge transfer device and solid-state imaging device using the same
JPS62155560A (en) Solid-state image pickup device
US5243180A (en) Solid-state image sensor with paired photodiode connected to respective vertical ccd channels
JP2011146924A (en) Image sensor and imaging apparatus employing the same
JP2850902B2 (en) Image input device
JPH06319080A (en) Push bloom scanning type image pickup device
JPH06133209A (en) Turning image pickup device
JPH0269081A (en) Method for reading out solid-state image pickup device
JPH01165270A (en) Mos type solid-state image pickup device
JPH11164205A (en) Solid-state image pickup device and its drive method
JP4741173B2 (en) Multiple bucket brigade circuit
JP2666398B2 (en) Solid-state imaging device and driving method thereof
JPS58111580A (en) Solid-state image pickup device
JPS63250264A (en) One-dimensional solid-state pickup element having plural analog shift registers
JPH10224697A (en) Solid-state image pickup device and drive method for the solid-state image pickup device
JPH10257269A (en) Image sensor
JPH11341358A (en) Solid-state image-pickup device and camera using the same
JPS6028190B2 (en) solid state imaging device
JPS59128876A (en) Solid-state image pickup device