JPS62155486A - Method of separating air - Google Patents

Method of separating air

Info

Publication number
JPS62155486A
JPS62155486A JP60292717A JP29271785A JPS62155486A JP S62155486 A JPS62155486 A JP S62155486A JP 60292717 A JP60292717 A JP 60292717A JP 29271785 A JP29271785 A JP 29271785A JP S62155486 A JPS62155486 A JP S62155486A
Authority
JP
Japan
Prior art keywords
conduit
amount
nitrogen
air
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60292717A
Other languages
Japanese (ja)
Other versions
JPH0792324B2 (en
Inventor
津島 寛
正博 山崎
岡部 道昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP60292717A priority Critical patent/JPH0792324B2/en
Publication of JPS62155486A publication Critical patent/JPS62155486A/en
Publication of JPH0792324B2 publication Critical patent/JPH0792324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気から製品ガスを分離し、採取する空気分
離装置番こ関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air separation apparatus for separating and collecting a product gas from air.

〔発明の背景〕[Background of the invention]

空気を卯料ガスとし、この原料空気から窒素。 Air is used as a raw material gas, and nitrogen is produced from this raw material air.

酸素、アルゴン等の製品ガスを分離し、採取するものは
、種々のものが知られている。この中で、産業用等のよ
うに大量に製品ガスを採取するものとしては、精留塔を
用いた精留分離によるものが最も一般的である。
Various types of devices are known for separating and collecting product gases such as oxygen and argon. Among these, the most common method for extracting a large amount of product gas, such as for industrial use, is by rectification separation using a rectification column.

ところで、精留塔を用いて空気分離するに際し、製品ガ
スを液体(すなわち、液体窒素、液体酸素等)として採
取する必要がある場合がある。このような場合、液体と
して採取する製品ガスを多くするため、液化回路が設置
さnている。液化回路が設置8された空気分離装置の例
を第2図に示す。
By the way, when separating air using a rectification column, there are cases where it is necessary to collect the product gas as a liquid (ie, liquid nitrogen, liquid oxygen, etc.). In such cases, a liquefaction circuit is installed to increase the amount of product gas collected as a liquid. An example of an air separation device equipped with a liquefaction circuit 8 is shown in FIG.

第2図■こおいて、原料空気は4管10を経て熱交換器
IIこ供給され、ここで廃ガス等との熱交換によって深
冷分離に必要十分な温度まで冷却される。
In FIG. 2, raw air is supplied to heat exchanger II through four pipes 10, where it is cooled to a temperature necessary and sufficient for cryogenic separation by heat exchange with waste gas and the like.

冷却された原料空気は複式精留塔2の下塔2aに吹込ま
n、下塔2a内部で酸素と窒素の液化渇IW差を利用し
た精留分離がなさ几る。この結果、下塔2aの上部には
純度の高い窒素(・気体′g素および液体窒素)が分離
さn、下塔2aの;圧部には酸素富化された液体空気が
分離される。この液体空気は、導管臣な経て精留塔2の
上塔2bに供給さn、同様の精留分離作用番こよって、
上塔2bの上部には窒素量の多い廃ガスが分離さ几、上
塔2bの下部には純度の高い酸素(気体酸素および液体
酸素)が分離される。この例にMいて、採取する製品ガ
スは、液体窒素および液体酸素である。液体酸素は、精
留塔2の上塔2b底部から導管乙によって抜出される。
The cooled raw material air is blown into the lower column 2a of the double rectification column 2, and no rectification separation takes place inside the lower column 2a using the difference in liquefaction IW between oxygen and nitrogen. As a result, highly pure nitrogen (gaseous nitrogen and liquid nitrogen) is separated in the upper part of the lower column 2a, and oxygen-enriched liquid air is separated in the pressure section of the lower column 2a. This liquid air is supplied to the upper column 2b of the rectification column 2 through a conduit, and a similar rectification separation process is performed.
In the upper part of the upper column 2b, waste gas containing a large amount of nitrogen is separated, and in the lower part of the upper column 2b, highly pure oxygen (gaseous oxygen and liquid oxygen) is separated. In this example, the product gases sampled are liquid nitrogen and liquid oxygen. Liquid oxygen is extracted from the bottom of the upper column 2b of the rectification column 2 through a conduit O.

液体窒素は、精留塔2の下塔2a上部から直接抜出して
も良いが、この例では昇圧し液化した後採取するよう番
こなっている。すなわち、下塔2a上部の高純度窒素は
、導管15から抜出さ几、熱交換器1で原料空気と熱交
換後導管16を経て昇圧機3に供給さ几、昇圧される。
Liquid nitrogen may be directly extracted from the upper part of the lower column 2a of the rectification column 2, but in this example, it is collected after being pressurized and liquefied. That is, high-purity nitrogen in the upper part of the lower column 2a is extracted from the conduit 15, exchanged heat with the raw material air in the heat exchanger 1, and then supplied to the booster 3 via the conduit 16, where it is pressurized.

また、下塔2a上部の高純度窒素は、導管nから抜出さ
几、熱交換器5で温度回復さn、導管冴を通って昇圧a
3によって昇圧される。昇圧後の高純度窒素は、導管1
7をスφって予冷器8に導かn、ここで昇圧によって上
昇した温度が下げらt’Lる。予冷器8を通過した高純
度窒素は、導管18を通って液化器7に導かれ、冷媒と
の熱交換によって液化される。液化された窒素、すなわ
ち液体窒素は、導管19.20に−よって、製品ガスと
して抜出される。
In addition, high-purity nitrogen at the upper part of the lower column 2a is extracted from a conduit n, its temperature is recovered in a heat exchanger 5, and the pressure is increased through a conduit a.
The voltage is boosted by 3. High purity nitrogen after pressurization is transferred to conduit 1
7 is led to a precooler 8 through φ, where the temperature increased due to pressure increase is lowered. The high-purity nitrogen that has passed through the precooler 8 is led to the liquefier 7 through the conduit 18 and is liquefied by heat exchange with the refrigerant. The liquefied nitrogen, i.e. liquid nitrogen, is removed as product gas via conduit 19.20.

また、この液体窒素の一部は、導管21を通って、精留
塔2の下塔2aに供給される。なお、第2図において1
3.14は導管である。また、4は冷媒(例えば窒素を
用いる)を圧縮(昇圧)する昇圧機、5は熱交換器、6
は寒冷発生用の膨張タービン、5〜29は冷媒の循環経
路を構成する導管であり、こnらによって循固寒冷発生
手段が構成される。
Further, a part of this liquid nitrogen is supplied to the lower column 2a of the rectification column 2 through the conduit 21. In addition, in Figure 2, 1
3.14 is a conduit. Also, 4 is a booster that compresses (boosts the pressure) a refrigerant (for example, using nitrogen), 5 is a heat exchanger, and 6
1 is an expansion turbine for cold generation, and 5 to 29 are conduits constituting a refrigerant circulation path, and these constitute a circulation solidification cold generation means.

このような設備で、製品量の比率、すなわち酸素と窒素
の採取比率を変化させる場合、次のような操作が必要と
なる。
In such equipment, when changing the ratio of product amounts, that is, the sampling ratio of oxygen and nitrogen, the following operations are required.

(1)液体窒素を増量する場合 導管加から抜出される液体窒素を増量することによって
目的が達成されるが、反面導管4を通って精留塔下塔へ
供給する液体窒素の量が減少する。
(1) In case of increasing the amount of liquid nitrogen, the objective is achieved by increasing the amount of liquid nitrogen withdrawn from the conduit, but on the other hand, the amount of liquid nitrogen supplied to the lower rectification column through the conduit 4 decreases.

この結果、精留塔2で処理されるガス量が減少するため
、この不足分は原料空気量を増加することで対処する。
As a result, the amount of gas processed in the rectification column 2 decreases, and this shortage is dealt with by increasing the amount of raw air.

(2)液体窒素を減量する場合 導管加から抜出される液体窒素を減量することで達成で
きるが、精留塔2の下塔に供給される液体窒素量が増加
する。二〇により、塔内を下降する液化ガス量が増加し
、下降液と上昇ガスとの比が悪化して安定な精留が困難
となる。これを防く1には、上昇ガスの量を増加させn
ば良く、原料空気の下塔への供給量を増加することで対
処できる。
(2) Reducing the amount of liquid nitrogen can be achieved by reducing the amount of liquid nitrogen extracted from the conduit, but the amount of liquid nitrogen supplied to the lower column of the rectification column 2 increases. Due to 20, the amount of liquefied gas descending in the column increases, and the ratio of descending liquid to rising gas deteriorates, making stable rectification difficult. To prevent this, increase the amount of rising gas n
If possible, this can be dealt with by increasing the amount of feed air supplied to the lower tower.

さて、原料空気を増加させることは、大量の空気を処理
する必要があるため、装置自体が大型化することになる
。特に、空気を昇圧する昇圧機。
Now, increasing the raw material air requires processing a large amount of air, which means that the device itself becomes larger. In particular, a booster that boosts air pressure.

昇圧された空気中の二酸化炭素、水分等を除去する吸着
塔などの前処理設備の大型化が避けられない。もちろん
、大型の設備を運転すると運転コストがアップすること
は当然である。
It is unavoidable to increase the size of pretreatment equipment such as adsorption towers that remove carbon dioxide, moisture, etc. from pressurized air. Of course, operating large equipment will naturally increase operating costs.

「発明の目的] 本発明の目的は、原料空気量の増加を少なくして液体製
品採取量の増減運転を行うことのできる空気分離方法を
提供することである。
[Object of the Invention] An object of the present invention is to provide an air separation method that can increase or decrease the amount of liquid product collected while minimizing the increase in the amount of feed air.

〔分明の概要〕[Summary of understanding]

本’rl明は、原料空気を精留塔に供給して製品ガスと
それ以外のガスとに分離し、精留塔で分離された窒素を
液化手段によって液化し、該液化された製品ガスを採取
する空気分離方法において、精留塔で分離された廃ガス
を前記液化手段での液化のための冷媒として活用すると
共に、該冷媒の一部を必要に応じ精留塔に供給する如く
構成したことを特徴とする。
In this invention, raw air is supplied to a rectification column and separated into product gas and other gases, the nitrogen separated in the rectification column is liquefied by a liquefaction means, and the liquefied product gas is In the collecting air separation method, the waste gas separated in the rectification column is utilized as a refrigerant for liquefaction in the liquefaction means, and a part of the refrigerant is supplied to the rectification column as necessary. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的な実施例に基づき詳細に説明する
Hereinafter, the present invention will be explained in detail based on specific examples.

第1図は、本発明の一実施例を示すンステムフローシー
トである。第1図において、伯は空気を昇圧(圧縮)す
る昇圧機、6は昇圧された空気中の水分、二酸化炭素、
炭化水素等の不純物を除去する不純物除去設備である。
FIG. 1 is a system flow sheet showing one embodiment of the present invention. In Fig. 1, numeral 6 indicates a booster that boosts (compresses) the air, 6 indicates moisture in the pressurized air, carbon dioxide,
This is an impurity removal equipment that removes impurities such as hydrocarbons.

(9)〜羽は導管である。(9) ~ Feathers are conduits.

その他の機器は、第2図の場合と同様であるので、その
説明は省略する。
Since the other equipment is the same as in the case of FIG. 2, the explanation thereof will be omitted.

第1図において、二酸化炭素、水分等を除去された原料
空気は、導管10から熱交換器1に導かn、熱交換によ
って約−170℃まで冷却される。この冷却原料空気は
、導管11によって精留塔2の下塔2ajこ供給さn、
精留がなされる。すなわち、下塔2aにおいて、その上
部に高純度の窒素が分離さn、その底部には酸素窒化さ
れた液体空気が分離される。この液体空気は、導管臆に
導か几、低圧の上塔2bに供給され、上i2bの底部(
下部に高純度酸素(液体酸素および気体酸素)が分離さ
れる。この例では、液体酸素も採取しているので、導管
nから製品ガスの一つである液体酸素が採取される。下
塔2aの上部lこ分離された窒素は導管15.23から
抜出さn、夫々熱交換器1.5によって常温まで温度回
復さn、夫々導管16.24によって昇圧機3に導かn
る。昇圧機3で昇圧したマ素は、8管17.予冷器8.
導管18を経て、液化器に導かれ、液化される。液化器
7で液化された高純度の液体窒素は、導管19.20か
ら製品ガスとして採取される。また、一部の液体窒素は
、導管21ニ導かnて下塔2aの上部に供給される。コ
レらの系で必要な寒冷は、昇圧機4.熱交換器5゜D張
タービン6および導管3〜29で構成される循環式の寒
冷発生手段から供給される。精留塔2の上塔2bで分離
された廃ガス(窒素富化の廃ガス)の一部は導管13.
熱交換器1,4管14を介して常温まで回復さn、系外
へ排気される。また、廃ガスの一部は、導管32を介し
て導管Z内の冷媒と合)  流し、冷媒の一部となる。
In FIG. 1, raw air from which carbon dioxide, moisture, etc. have been removed is led from a conduit 10 to a heat exchanger 1, where it is cooled to about -170° C. by heat exchange. This cooling feed air is supplied to the lower column 2aj of the rectification column 2 through a conduit 11,
Rectification is done. That is, in the lower column 2a, high-purity nitrogen is separated at the top, and oxygen-nitrided liquid air is separated at the bottom. This liquid air is guided through a conduit and supplied to the low-pressure upper tower 2b, and is then fed to the bottom of the upper tower 2b (
High purity oxygen (liquid oxygen and gaseous oxygen) is separated in the lower part. In this example, since liquid oxygen is also collected, liquid oxygen, which is one of the product gases, is collected from conduit n. The nitrogen separated from the upper part of the lower column 2a is extracted from conduits 15 and 23, the temperature is recovered to room temperature by heat exchangers 1.5, and the nitrogen is led to the booster 3 through conduits 16 and 24, respectively.
Ru. The manganese whose pressure has been increased by the booster 3 is transferred to 8 tubes 17. Precooler8.
Via conduit 18, it is led to a liquefier and liquefied. The high-purity liquid nitrogen liquefied in the liquefier 7 is collected as a product gas through the conduit 19.20. Further, a part of the liquid nitrogen is introduced into the conduit 21 and supplied to the upper part of the lower column 2a. The cooling required in these systems is the booster 4. The refrigeration is supplied from a circulating refrigeration generating means consisting of a heat exchanger 5°D tension turbine 6 and conduits 3-29. A part of the waste gas (nitrogen-enriched waste gas) separated in the upper column 2b of the rectification column 2 is transferred to the conduit 13.
The heat exchangers 1 and 4 are returned to room temperature through the pipes 14, and then exhausted to the outside of the system. Further, a part of the waste gas is combined with the refrigerant in the conduit Z via the conduit 32 and becomes part of the refrigerant.

このようζこすることにより、図示しない液体窒素タン
ク等から供給する冷媒(例えば窒素)の全を減らすこと
ができる。
By ζ-rubbing in this manner, the total amount of refrigerant (for example, nitrogen) supplied from a liquid nitrogen tank (not shown) or the like can be reduced.

また、この冷媒の一部は、必要に応じ導管nから、 分
岐した導管力により抜出され、液化器7で液化さn、導
管31を通って精留塔下塔2aに供給される。
Further, a part of this refrigerant is extracted from the conduit n as necessary by a branched conduit force, liquefied in the liquefier 7, and supplied to the lower rectification column 2a through the conduit 31.

第1図に示す実施例において、液体窒素の増減運転(液
体窒素と液体酸素の採取比率変更運転)は、次のように
行なわれる。
In the embodiment shown in FIG. 1, the liquid nitrogen increasing/decreasing operation (liquid nitrogen and liquid oxygen sampling ratio changing operation) is performed as follows.

(1)液体窒素を増量する場合 導管□□□から抜出す液体窒素の量を増加させnば良い
。この場合、導管21を通って下塔2aに戻る液体窒素
の量が減少するため、この減少分に見合って、冷媒の一
部を導管力から抜出し、そnを液化器7で液化後導管3
11こよって下t?82aに供給する。この冷媒の一部
抜出しによる冷媒の不足分は、導管nからの窒素富化廃
ガスの増量でまかなう。
(1) When increasing the amount of liquid nitrogen, it is sufficient to increase the amount of liquid nitrogen extracted from the conduit □□□. In this case, the amount of liquid nitrogen that returns to the lower tower 2a through the conduit 21 decreases, so in proportion to this decrease, a part of the refrigerant is extracted from the conduit force, and after being liquefied in the liquefier 7, it is transferred to the conduit 2a.
11 is the bottom t? 82a. The shortage of refrigerant due to this partial withdrawal of refrigerant is covered by an increase in the amount of nitrogen-enriched waste gas from conduit n.

したがって、液体窒素を増量したことによって、直ちに
原料空気を増加することを必要としない。
Therefore, by increasing the amount of liquid nitrogen, it is not necessary to immediately increase the amount of raw material air.

もっとも、原料空気を増加しない場合の液体窒素の増量
には限界があり、液体窒素の採取量を更に増量させる場
合には、原料空気の増加が必要となる。しかし、この場
合であっても、原料空気の増加量は、従来方法よりも格
段に低くおさえることができる。
However, there is a limit to the amount of liquid nitrogen that can be increased without increasing the raw material air, and if the amount of liquid nitrogen to be collected is further increased, it is necessary to increase the raw material air. However, even in this case, the increase in raw material air can be kept much lower than in the conventional method.

(2)液体窒素を減量する場合 導管力から抜出す量を減少させnば良い。この場合、導
管21を通って下塔2alこ戻る液体窒素の量が増加す
るため、不安定な運転番こなる。これを防々゛ために、
下塔2aに戻る他の液化ガス、すなわち導管(資)から
抜出さ几る冷媒の量を減らすことで対処できる。冷媒の
抜出し世の減少に見合って、導管13を通って系外へ排
出される廃ガスの量を増量する。このよう番こすること
によって、原料空気の増加なせずとも、液体窒素の減量
ができる。
(2) When reducing the amount of liquid nitrogen, it is sufficient to reduce the amount extracted from the conduit force. In this case, the amount of liquid nitrogen returning to the lower tower 2al through the conduit 21 increases, resulting in unstable operation. In order to prevent this,
This can be solved by reducing the amount of other liquefied gas that returns to the lower column 2a, that is, the amount of refrigerant extracted from the conduit. The amount of waste gas discharged to the outside of the system through the conduit 13 is increased in proportion to the reduction in the amount of refrigerant extracted. By rubbing in this way, the amount of liquid nitrogen can be reduced without increasing the raw material air.

なお、液体酸素の増減運転も同様の考えで実現できる。Incidentally, the operation of increasing and decreasing liquid oxygen can also be realized using the same idea.

例えば、液体酸素の増量の場合、導管nから抜出す量を
増加すれば良いが、そのためには上塔2bで処理さ几る
ガスの量を増加することが必要となる。このため、液体
窒素を増倍させる場合と同様に、導管力から冷媒の一部
を抜出し、液化器7で液化して下塔2aに供給する。こ
の供給されたガスは、下塔2aで精留に使用された後液
体空気の一部となって導管βを通り上塔2bへ供給され
る。これにより、上塔2bでの処理債が増加し、液体酸
素の増量を達成できる。もちろん、この場合も、原料空
気の増加なしでは限度があることは当然である。しかし
、原料空気の増加量を低くおさえることができる。
For example, in the case of increasing the amount of liquid oxygen, it is sufficient to increase the amount extracted from the conduit n, but this requires increasing the amount of gas treated in the upper column 2b. Therefore, as in the case of multiplying liquid nitrogen, a part of the refrigerant is extracted from the conduit, liquefied in the liquefier 7, and supplied to the lower column 2a. This supplied gas is used for rectification in the lower column 2a, and then becomes a part of liquid air and is supplied to the upper column 2b through the conduit β. As a result, the processing cost in the upper tower 2b increases, and an increase in the amount of liquid oxygen can be achieved. Of course, in this case as well, there is a limit unless the raw material air is increased. However, the increase in raw material air can be kept low.

上述した実施例にょnば、1ff1体窒素、液体酸素の
採取ユ並びに採取比率を変更することができる。
In accordance with the above-described embodiments, it is possible to change the sampling rate of nitrogen and liquid oxygen as well as the sampling ratio.

しかも、この場合、原料空気の増せは非常に低(オdさ
えることができる。また、このような種々の採取量の変
更を行なう運転を行なって6、安定した運転を継続する
ことができる。
Moreover, in this case, the increase in raw material air can be kept very low.Furthermore, stable operation can be continued by carrying out operations that change the sampling amount in various ways.

〔発明の効果) 以上説明したように未発明によnば、原料空気量の増加
を少なくして液体製品ガスの採取量の増減運転を行うこ
とができる。このため、検器の大型化を極力おさえるこ
とができ、経済的である。
[Effects of the Invention] As explained above, according to the invention, it is possible to perform an operation to increase or decrease the amount of liquid product gas sampled while minimizing the increase in the amount of raw material air. Therefore, the size of the test instrument can be suppressed as much as possible, which is economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は未発明の一実施例を示す図、第2図は従来の例
を示す図である。 1・・・・・・地文換器、2・・・・・・精留塔、2a
・・・・・・下塔、2b・・・・・・上塔、3・・・・
・・昇圧機、4・・・・・・昇圧機、5・・・・・・熱
交換器、6・・・・・・膨張タービン、7・・・・・・
液化販! 木木
FIG. 1 is a diagram showing an embodiment of the invention, and FIG. 2 is a diagram showing a conventional example. 1・・・・・・Gift converter, 2・・・Rectification tower, 2a
...Lower tower, 2b...Upper tower, 3...
...Booster, 4...Booster, 5...Heat exchanger, 6...Expansion turbine, 7...
Liquefied sales! Trees

Claims (1)

【特許請求の範囲】[Claims] 1 原料空気を精留塔に供給して製品ガスとそれ以外の
廃ガスとに分離し、該精留塔で分離された窒素を昇圧機
で昇圧し、該昇圧窒素を液化器に供給し、寒冷発生手段
から供給される冷媒との熱交換によって液化し、該液化
された製品ガスを採取する空気分離方法において、前記
精留塔で分離された廃ガスを前記循環寒冷発生手段に供
給して前記冷媒として活用すると共に、前記冷媒の一部
を必要に応じ前記精留塔に供給することを特徴とする空
気分離方法。
1 Supplying raw air to a rectification column to separate it into product gas and other waste gas, pressurizing the nitrogen separated in the rectification column with a booster, and supplying the pressurized nitrogen to a liquefier, In an air separation method in which the waste gas is liquefied by heat exchange with a refrigerant supplied from a refrigeration generating means and the liquefied product gas is collected, the waste gas separated in the rectification column is supplied to the circulating refrigeration generating means. An air separation method characterized by utilizing the refrigerant as the refrigerant and supplying a part of the refrigerant to the rectification column as required.
JP60292717A 1985-12-27 1985-12-27 Air separation method Expired - Fee Related JPH0792324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292717A JPH0792324B2 (en) 1985-12-27 1985-12-27 Air separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292717A JPH0792324B2 (en) 1985-12-27 1985-12-27 Air separation method

Publications (2)

Publication Number Publication Date
JPS62155486A true JPS62155486A (en) 1987-07-10
JPH0792324B2 JPH0792324B2 (en) 1995-10-09

Family

ID=17785400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292717A Expired - Fee Related JPH0792324B2 (en) 1985-12-27 1985-12-27 Air separation method

Country Status (1)

Country Link
JP (1) JPH0792324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240579A (en) * 1992-02-28 1993-09-17 Teisan Kk Nitrogen producing device
JP2008025986A (en) * 2006-06-30 2008-02-07 Air Products & Chemicals Inc System to increase capacity of lng-based liquefier in air separation process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838887A (en) * 1971-09-21 1973-06-07
JPS4941481U (en) * 1972-07-11 1974-04-11
JPS4939754A (en) * 1972-08-26 1974-04-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838887A (en) * 1971-09-21 1973-06-07
JPS4941481U (en) * 1972-07-11 1974-04-11
JPS4939754A (en) * 1972-08-26 1974-04-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240579A (en) * 1992-02-28 1993-09-17 Teisan Kk Nitrogen producing device
JP2008025986A (en) * 2006-06-30 2008-02-07 Air Products & Chemicals Inc System to increase capacity of lng-based liquefier in air separation process

Also Published As

Publication number Publication date
JPH0792324B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP2696705B2 (en) Method and apparatus for air separation by rectification
US5146756A (en) Air separation
US4488890A (en) Low temperature separation of gaseous mixture for methanol synthesis
CA2106350C (en) Distillation strategies for the production of carbon monoxide-free nitrogen
EP0593703B1 (en) Ultra-high purity nitrogen and oxygen generator and process
EP0962732B1 (en) Multiple column nitrogen generators with oxygen coproduction
JPS6124968A (en) Production unit for high-purity nitrogen gas
US5778698A (en) Ultra high purity nitrogen and oxygen generator unit
EP0569310B1 (en) Installation for air liquefaction separation and process therefor
JP2983393B2 (en) Method for removing hydrogen by cryogenic distillation in the production of high purity nitrogen
JPS62155486A (en) Method of separating air
JP3364724B2 (en) Method and apparatus for separating high purity argon
KR940009650A (en) Method and apparatus for producing ultra high purity nitrogen under pressure
JP2917031B2 (en) Oxygen production method
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JPH07127971A (en) Argon separator
JPS61276680A (en) Method of liquefying and separating air
JP2685523B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JPH06109361A (en) Device and method for separating high purity argon
JPS61262584A (en) Method of separating air
JPS61243273A (en) Air liquefying separating method
JPS62141485A (en) Manufacture of nitrogen having high purity
JPH04139004A (en) Method and apparatus for purification of oxygen
JPS6115070A (en) Production unit for high-purity nitrogen gas
JPS6111585A (en) Method of liquefying and separating air

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees