JPS61262584A - Method of separating air - Google Patents

Method of separating air

Info

Publication number
JPS61262584A
JPS61262584A JP10379585A JP10379585A JPS61262584A JP S61262584 A JPS61262584 A JP S61262584A JP 10379585 A JP10379585 A JP 10379585A JP 10379585 A JP10379585 A JP 10379585A JP S61262584 A JPS61262584 A JP S61262584A
Authority
JP
Japan
Prior art keywords
oxygen
column
rectification
air
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10379585A
Other languages
Japanese (ja)
Other versions
JPH0219398B2 (en
Inventor
津嶋 寛
正博 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP10379585A priority Critical patent/JPS61262584A/en
Publication of JPS61262584A publication Critical patent/JPS61262584A/en
Publication of JPH0219398B2 publication Critical patent/JPH0219398B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、精留塔の精留分離を利用して原料空気中の酸
素を採取する空気分離方法に係り、特に採取された製品
酸素中に高沸点不純物を含まないように改良された空気
分離方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air separation method for collecting oxygen from raw air by utilizing rectification separation in a rectification column, and particularly relates to an air separation method for collecting oxygen from raw air by using rectification separation in a rectification column, and in particular, The present invention relates to an improved air separation method free of high-boiling impurities.

〔発明の背景〕[Background of the invention]

一般に、精留塔を用いて原料空気から酸素を分離して製
品酸素を得る空気分離方法は、次のようなものである。
Generally, an air separation method for obtaining product oxygen by separating oxygen from feed air using a rectification column is as follows.

すなわち、空気を昇圧し、昇圧後の空気中の水分および
二酸化炭素を吸着塔で除去し、水分および二酸化炭素除
去後の原料空気を熱交換器で深冷温度に冷却し、二の冷
却後の原料空気を複式精留塔の下塔に吹込み、下塔内で
の精留分離により下塔底部に酸素リッチの液体空気を得
て、この液体空気を複式精留塔の上塔に吹込み、上塔内
での精留分離により上塔底部に酸素を得るものである。
That is, air is pressurized, moisture and carbon dioxide in the air after pressurization are removed by an adsorption tower, and the raw air after moisture and carbon dioxide removal is cooled to deep cooling temperature by a heat exchanger. Feed air is blown into the lower column of the double rectifier, and oxygen-rich liquid air is obtained at the bottom of the lower column through rectification separation in the lower column, and this liquid air is blown into the upper column of the double rectifier. , oxygen is obtained at the bottom of the upper column by rectification separation in the upper column.

このよう°な、酸素を採取する空気分離方法は、特開昭
56−97772号公報、特開昭56−80581号公
報、特開昭55−152374号公報等−二開示されて
いる。
Such an air separation method for collecting oxygen is disclosed in Japanese Patent Application Laid-open No. 56-97772, Japanese Patent Application Publication No. 56-80581, Japanese Patent Application Laid-Open No. 55-152374, etc.

ところで、この種の空気分離方法で製造された酸素ガス
中には、酸素よりも高沸点の不純物(高沸点不純物)が
含まれている。すなわち、沸点差を利用しての精留分離
であるので、上塔内では窒素、水素等の酸素よりも低沸
点の不純物と酸素および高沸点不純物との精留分離はで
きるけれども、酸素と高沸点不純物との分離はできず、
それらは共に上塔底部に蓄積される。したがって、上塔
底部から抜出される製品酸素中には、酸素の他に高沸点
不純物が混入することとなる。この場合の高沸点不純物
としては、メタン、エタン等の炭化水素が挙げられる。
By the way, the oxygen gas produced by this type of air separation method contains impurities having a higher boiling point than oxygen (high boiling point impurities). In other words, since rectification separation takes advantage of the difference in boiling points, impurities with a lower boiling point than oxygen such as nitrogen and hydrogen can be separated by rectification from oxygen and high-boiling point impurities in the upper column. It cannot be separated from boiling point impurities,
They both accumulate at the bottom of the upper column. Therefore, the product oxygen extracted from the bottom of the upper column contains high-boiling point impurities in addition to oxygen. In this case, high boiling point impurities include hydrocarbons such as methane and ethane.

半導体プロセス等で使用される酸素は、酸素中に含まれ
る不純物濃度が厳しく制限されており、高沸点不純物が
混入するのは好ましくない。
The concentration of impurities contained in oxygen used in semiconductor processes and the like is strictly limited, and it is undesirable for high boiling point impurities to be mixed into the oxygen.

特に高純度の酸素が必要とされる場合には、空°  黒
分離装置で精留した高沸点不純物を含む酸素を原料酸素
として酸素精製設備に供給し、酸素精製設備によって高
沸点不純物を除去し、これによって高純度酸素を得てい
る。酸素精製設備は1例えば!2図に示す如きものとな
る。すなわち、原料酸素ガスを加熱するとヒータ阻と、
ヒータにょって加熱された原料酸素ガス中の高沸点不純
物を酸素と反応させ水と二酸化炭素に変える触媒槽冨と
、冷却器おと、触媒槽で生成された水と二酸化炭素を吸
着除去して高純度の精製酸素ガスを出力する吸着塔誦と
を有する。このような構成によって、原料酸素ガス中の
高沸点不純物(特に、炭化水素)を除去して、純度お高
い製品酸素を得ることができる。しかし、この種酸素精
製設備を用いた場合。
When particularly high-purity oxygen is required, oxygen containing high-boiling point impurities that has been rectified in an air-black separator is supplied as raw oxygen to the oxygen purification equipment, and the high-boiling impurities are removed by the oxygen purification equipment. , thereby obtaining high-purity oxygen. Oxygen purification equipment is an example! The result will be as shown in Figure 2. In other words, when the raw material oxygen gas is heated, the heater is blocked.
There is a catalyst tank that reacts high-boiling point impurities in the raw material oxygen gas heated by a heater with oxygen to turn it into water and carbon dioxide, and a cooler that adsorbs and removes the water and carbon dioxide generated in the catalyst tank. It has an adsorption tower that outputs highly purified oxygen gas. With such a configuration, high-boiling point impurities (especially hydrocarbons) in the raw material oxygen gas can be removed to obtain product oxygen with high purity. However, when using this type of oxygen purification equipment.

設備構成が複雑となるのみならず、ヒーターの使用によ
る電力消費、冷却器での冷却水の使用、吸着塔での再生
ガスの使用によって運転費が多曵かかることとなり、好
まし曵ない。
This is not desirable because not only does the equipment configuration become complicated, but also the operating costs are high due to the power consumption due to the use of the heater, the use of cooling water in the cooler, and the use of regenerated gas in the adsorption tower.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高沸点不純物を含まない高純度酸素を
採取することのできる空気分離方法を提供することであ
る。
An object of the present invention is to provide an air separation method capable of collecting high-purity oxygen free of high-boiling impurities.

〔発明の概要〕[Summary of the invention]

本発明は、酸素を分離する空気分離方法において、#1
式精留塔の上塔底部に貯えられた酸素を抜出して頂部に
凝縮部を有する精製酸素塔に供給し、精製酸素塔内で酸
素と高沸点不純物との精留分離を行なわせ、精製酸素塔
上部より高沸点不純物の除去された高純度酸素を採取す
ることを特徴としている。
The present invention is #1 in the air separation method for separating oxygen.
Oxygen stored at the bottom of the upper column of the type rectification column is extracted and supplied to a purified oxygen column having a condensation section at the top, where oxygen and high-boiling point impurities are separated by rectification. It is characterized by collecting high-purity oxygen from which high-boiling point impurities have been removed from the upper part of the column.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的な実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail using specific examples.

第1図は、本発明の一実施例を示すフローシートである
。第1図において、1は複式精留塔であり、下塔2と上
塔3と主凝縮器4を有する。5は精製酸素塔であり、頂
部に凝縮部6を有する構成となっている。7と8は圧力
調節用の弁である。
FIG. 1 is a flow sheet showing one embodiment of the present invention. In FIG. 1, 1 is a double rectification column, which has a lower column 2, an upper column 3, and a main condenser 4. 5 is a purified oxygen tower, which has a condensation section 6 at the top. 7 and 8 are pressure regulating valves.

1l−(9)は導管を示す。1l-(9) indicates a conduit.

まず、原料空気は、圧縮され、冷却された後、水分およ
び二酸化炭素を除去する前処理*!(吸着塔など)で水
分および二酸化炭素が除去され、熱交換器で製品ガスお
よび排ガス等の寒冷戻りガスと熱交換され、深冷温度に
冷却される。深冷温度に冷却され、一部液化した原料空
気は、導管11を通って、下塔2の中間段に吹込まれる
。下塔2内では、精留が行なわれ、下塔2の上部には窒
素が分離され、下塔2の底部には酸素を多畷含んだ液体
空気が貯まる。窒素は、導管14.弁8を介して上塔3
の上部に吹込まれる。また、酸素リッチの液体空気は、
導管12により抜出され、弁7を経て、精製酸素塔5の
凝縮部6に供給され、塔内な上昇するガスを凝縮させ、
自身は気化して導管13から上塔3の中間段に吹込まれ
る。上段3内では、精留分離により、上塔3の頂部に窒
素を、そして上塔3の底部薯こ酸素が分離される。窒素
は、導管巧から図示しない熱交換器で温度回復され、窒
素′IM要先に送られる。排ガスは、導管16から図示
しない熱交換器で温間回復され、大気中に放出される。
First, the raw air is compressed, cooled, and then pretreated to remove moisture and carbon dioxide*! Moisture and carbon dioxide are removed in a heat exchanger (such as an adsorption tower), and heat is exchanged with cold return gas such as product gas and exhaust gas to cool it to a cryogenic temperature. The feed air, which has been cooled to deep cooling temperature and partially liquefied, is blown into the intermediate stage of the lower column 2 through the conduit 11. In the lower column 2, rectification is performed, nitrogen is separated in the upper part of the lower column 2, and liquid air containing a lot of oxygen is stored in the bottom of the lower column 2. Nitrogen is supplied through conduit 14. Upper tower 3 via valve 8
is blown into the top of the In addition, oxygen-rich liquid air
It is extracted through a conduit 12 and supplied to the condensing section 6 of the purified oxygen tower 5 through the valve 7, condensing the rising gas in the tower.
It is vaporized and blown into the intermediate stage of the upper tower 3 through the conduit 13. In the upper stage 3, nitrogen is separated at the top of the upper column 3 and the oxygen at the bottom of the upper column 3 is separated by rectification. The temperature of the nitrogen is recovered from the conduit by a heat exchanger (not shown), and the nitrogen is sent to the desired destination. The exhaust gas is warm-recovered from the conduit 16 in a heat exchanger (not shown), and is discharged into the atmosphere.

上塔3の底部に得られた酸素は、導管17によりガスま
たは液体として取出され、需要先に送られる。この場合
の酸素は、上述したように高沸点不純物を含んでおり、
その純綻は高(ない。そこで、高純度の酸素を得るため
に、上塔3底部に貯えられた酸素ガスを導管18によっ
て抜出し、これを精製酸素塔5の下部に供給する。精製
酸素塔2に供給された酸素ガスは、塔内を上昇し、凝縮
部6で凝縮され、高沸点不純物を多く含む液体酸素とな
って塔内を下降し、導管19から上塔3の底部に戻され
る。この精留操作によって、精製酸素室5の上部には、
高沸点不純物の取除かれた高純度の酸素ガスが得られ、
これは導管加によって高純度酸素の需要先、または貯蔵
容器に送られる。つまり、複式精留塔lの上塔底部に分
離された高沸点不純物を含む酸素を、精製酸素塔5に供
給し、ここで精留分離によって酸素と高沸点不純物を分
離し、高沸点不純物を含まない高純度酸素ガスが分離さ
れている精製酸素塔5の上部から製品ガスを抜出すこと
によって、高純度の製品酸素が得られる。
The oxygen obtained at the bottom of the upper column 3 is removed as a gas or liquid via a conduit 17 and sent to the consumer. The oxygen in this case contains high boiling point impurities as mentioned above,
Its purity is high (no. Therefore, in order to obtain high-purity oxygen, the oxygen gas stored at the bottom of the upper tower 3 is extracted through the conduit 18 and supplied to the lower part of the purified oxygen tower 5. Purified oxygen tower The oxygen gas supplied to the upper column 2 rises in the column, is condensed in the condensing section 6, becomes liquid oxygen containing many high-boiling point impurities, descends in the column, and is returned to the bottom of the upper column 3 through the conduit 19. Through this rectification operation, the upper part of the purified oxygen chamber 5 contains:
High purity oxygen gas with high boiling point impurities removed is obtained,
This is sent by conduit addition to a high purity oxygen demand or to a storage vessel. That is, the oxygen containing high-boiling point impurities separated at the upper column bottom of the double rectification column 1 is supplied to the purified oxygen column 5, where the oxygen and high-boiling point impurities are separated by rectification separation, and the high-boiling point impurities are removed. High purity product oxygen is obtained by extracting the product gas from the upper part of the purified oxygen tower 5 from which the high purity oxygen gas that does not contain oxygen is separated.

この実施例によれば、高沸点不純物を含む酸素を精製酸
素塔に供給して、高沸点不純物のない部分から製品酸素
を抜出すので、高純度の酸素を得ることができる。また
、高純度の酸素を得るために追加される機器は、精製酸
素塔とわずかの導管のみで良鳴、大がかりな精製設備を
必要としない。
According to this embodiment, oxygen containing high-boiling point impurities is supplied to the purified oxygen tower, and product oxygen is extracted from a portion free of high-boiling point impurities, so that highly pure oxygen can be obtained. In addition, the equipment required to obtain high-purity oxygen is only a purified oxygen tower and a few conduits; no large-scale purification equipment is required.

また、高純度の酸素を得るための運転費もほとんどかか
らない。
In addition, there is almost no operating cost to obtain high-purity oxygen.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、高沸点不純物を含
まない高純度酸素を簡単に採取することができる。
As explained above, according to the present invention, high purity oxygen that does not contain high boiling point impurities can be easily collected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は酸素精製
設備の一例を示す図である。 1・・・・・・複式精留塔、2・・・・・・下塔、3・
・曲上塔、4・・・・・・主凝縮器、5・・・・・・精
製酸素塔、6・・曲凝縮才1図 A
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an example of oxygen purification equipment. 1...Double rectification column, 2...Lower column, 3.
・Curved tower, 4...Main condenser, 5...Purified oxygen tower, 6...Curved condensation tower 1A

Claims (1)

【特許請求の範囲】 1、複式精留塔の下塔に原料空気を吹込み、該下塔内で
の精留分離により該下塔底部に酸素リッチの液体空気を
得て、該液体空気を該複式精留塔の上塔に吹込み、該上
塔内での精留分離により該上塔底部に低沸点不純物の除
去された酸素を得るようにした空気分離方法において、 該上塔底部に貯えられた酸素を抜出して頂部に凝縮部を
有する精製酸素塔に供給し、該精製酸素塔内で酸素と高
沸点不純物との精留分離を行なわせ、該精製酸素塔上部
より高沸点不純物の除去された高純度酸素を採取するこ
とを特徴とする空気分離方法。
[Claims] 1. Feed air is blown into the lower column of the double rectification column, and oxygen-rich liquid air is obtained at the bottom of the lower column by rectification separation in the lower column, and the liquid air is In an air separation method in which oxygen is blown into the upper column of the double rectification column and oxygen from which low-boiling impurities have been removed is obtained at the bottom of the upper column by rectification separation in the upper column, The stored oxygen is extracted and supplied to a purified oxygen tower having a condensation section at the top, where oxygen and high-boiling point impurities are separated by rectification. An air separation method characterized by collecting removed high-purity oxygen.
JP10379585A 1985-05-17 1985-05-17 Method of separating air Granted JPS61262584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10379585A JPS61262584A (en) 1985-05-17 1985-05-17 Method of separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10379585A JPS61262584A (en) 1985-05-17 1985-05-17 Method of separating air

Publications (2)

Publication Number Publication Date
JPS61262584A true JPS61262584A (en) 1986-11-20
JPH0219398B2 JPH0219398B2 (en) 1990-05-01

Family

ID=14363330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10379585A Granted JPS61262584A (en) 1985-05-17 1985-05-17 Method of separating air

Country Status (1)

Country Link
JP (1) JPS61262584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441784A (en) * 1987-07-28 1989-02-14 Union Carbide Corp Method and device for manufacturing ultra-high purity oxygen from gaseous feed
JPS6446563A (en) * 1987-07-28 1989-02-21 Union Carbide Corp Method and device for manufacturing ultra-high purity oxygen from supply liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324920A (en) * 1976-08-18 1978-03-08 Aisin Seiki Co Ltd Mechanical fuel injector
JPS5348999A (en) * 1976-10-16 1978-05-02 Nippon Oxygen Co Ltd Separation of argon
JPS53115690A (en) * 1977-03-19 1978-10-09 Tokyo Ekika Sanso Kk Liquefied separation of air components by mixing impure nitrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324920A (en) * 1976-08-18 1978-03-08 Aisin Seiki Co Ltd Mechanical fuel injector
JPS5348999A (en) * 1976-10-16 1978-05-02 Nippon Oxygen Co Ltd Separation of argon
JPS53115690A (en) * 1977-03-19 1978-10-09 Tokyo Ekika Sanso Kk Liquefied separation of air components by mixing impure nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441784A (en) * 1987-07-28 1989-02-14 Union Carbide Corp Method and device for manufacturing ultra-high purity oxygen from gaseous feed
JPS6446563A (en) * 1987-07-28 1989-02-21 Union Carbide Corp Method and device for manufacturing ultra-high purity oxygen from supply liquid

Also Published As

Publication number Publication date
JPH0219398B2 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
EP1050509B1 (en) Carbon dioxide cleaning system with improved recovery
US6477859B2 (en) Integrated heat exchanger system for producing carbon dioxide
KR930001207B1 (en) Production of high purity argon
WO1999011437A1 (en) Method and apparatus for purification of argon
WO1981002291A1 (en) Method for purifying a gas mixture
US5783162A (en) Argon purification process
EP0593703B1 (en) Ultra-high purity nitrogen and oxygen generator and process
JP3306517B2 (en) Air liquefaction separation apparatus and method
US5478547A (en) Ultra-high purity nitrogen generating method
JPS61262584A (en) Method of separating air
CN212842469U (en) Single-tower cryogenic rectification argon recovery system with argon circulation and hydrogen circulation
JP3364724B2 (en) Method and apparatus for separating high purity argon
CN211290725U (en) Recovery unit of integrated high-purity nitrogen and argon gas
JP3325805B2 (en) Air separation method and air separation device
JP2680082B2 (en) Ultra high purity oxygen production method
US5787730A (en) Thermal swing helium purifier and process
CN111637684A (en) Single-tower cryogenic rectification argon recovery system with circulation and method
JP2002115965A (en) Method of recovering rare gas
JP3082092B2 (en) Oxygen purification method and apparatus
JP2693220B2 (en) Ultra high purity oxygen production method
KR0137915B1 (en) Process and apparatus for producing a high purity nitrogen
JPH07127971A (en) Argon separator
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
CN211198612U (en) Argon recovery device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JP2955864B2 (en) Method for producing high-purity oxygen