JPS62152621A - Method of machining air groove in air bearing - Google Patents

Method of machining air groove in air bearing

Info

Publication number
JPS62152621A
JPS62152621A JP29035385A JP29035385A JPS62152621A JP S62152621 A JPS62152621 A JP S62152621A JP 29035385 A JP29035385 A JP 29035385A JP 29035385 A JP29035385 A JP 29035385A JP S62152621 A JPS62152621 A JP S62152621A
Authority
JP
Japan
Prior art keywords
machining
electrode
air
machined
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29035385A
Other languages
Japanese (ja)
Inventor
Teruo Kondo
近藤 照男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP29035385A priority Critical patent/JPS62152621A/en
Publication of JPS62152621A publication Critical patent/JPS62152621A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2200/00Specific machining processes or workpieces
    • B23H2200/10Specific machining processes or workpieces for making bearings

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make it possible to enhance the accuracy of machining and to establish the technology of machining for mass production, by aligning the projecting end face of an electrode with the surface of a bearing to be machined so that the position of electric discharge machining is rotated along the surface of the bearing to be machined to form a groove, and thereafter by separating the electrode. CONSTITUTION:A positioning and lowering means positions an electrode holder 4 to which an electrode is set, to a shaft 6 to be machined, and is lowered down to a predetermined level. Further, the electrical discharge gap is set to a predetermined value depending upon the depth of an air groove. With a predetermined gap being held between a shaft holder jig 5 and the inner peripheral surface of the electrode, the jig 5 is eccentrically rotated, and the value of current for electrical discharge is set in accordance with the surface rough ness of the air groove, and electric discharge machining is carried out. The electrode holder 4 having completed a swing-machining step is raised from the machined shaft, then is positioned to a predetermined position for the next shaft to be machined and lowered to it so that electrical discharge is carried out for the next shaft. Due to such electric discharge machining, an air groove may be machined at the final machining step, and therefore, the machining of an air groove in an air bearing having a high degree of accuracy may be made in a highly effective mass production base with no machining sagging.

Description

【発明の詳細な説明】 [発明の稜イIRi分野」 本発明は回転体を動圧効果によりI11]支する空気+
hl+受におけるエアー1(ηの加り方法に関するもの
である。
[Detailed Description of the Invention] [IRi Field of the Invention] The present invention provides air +
This relates to the method of adding air 1 (η) in hl+receiving.

L従来稜?+Fi及びその問題(ス」 近11テ、′l′:導体レーザを応用したレーザヒーム
プリンタか開発されている。このレーザヒームプリンタ
においては、原稿等の情報をt江気イご号に変換するた
めに多面体鏡を用いた光偏向器か用いられている。この
多面体鏡は一般的に正多角形状をしており、その111
1面にそれぞれ鏡面前玉を施された反射面を有している
。多血体鏡は回転可能なスピンドルに同軸に設けられて
おり、このスピンドルにより回転し入射する光を異方向
に反射する。この1”f、L記の′心気信号の変換にお
いて、高い分解能を得るためには、スピンドルの回転数
を高速(104rpm以上)にし、光の偏向速度を高め
る必要かある。さらに、変換手段として光字系を用いる
ので、多りm体鏡の位置精度を非常に高精度に保つ必要
があり、このためにはスピンドルの回転精度を高Mi度
にしなければならない。
L conventional ridge? +Fi and its problems (S) Kin 11 Te, 'l': A laser beam printer that applies a conductor laser has been developed.In this laser beam printer, information such as manuscripts can be transferred to the tEki Igo issue. An optical deflector using a polygonal mirror is used for the conversion.This polygonal mirror generally has a regular polygonal shape, and its 111
Each has a reflective surface with a mirrored front lens. The multibody mirror is coaxially mounted on a rotatable spindle, and is rotated by the spindle to reflect incident light in different directions. In order to obtain high resolution in the conversion of the hypochondriacal signal of 1"f, L, it is necessary to increase the rotational speed of the spindle (104 rpm or more) and increase the deflection speed of the light. Furthermore, the conversion means Since an optical system is used as the optical system, it is necessary to maintain the positional accuracy of the multi-m body mirror with extremely high accuracy, and for this purpose, the rotational accuracy of the spindle must be made high Mi degrees.

即ち、この多面体鏡が設けられたスピンドルのような回
転体は高速回転するとともに高精度な回転精度が要求さ
れる。このため、従来ではスピンドルの軸受にはへリン
グポーン型又はテイルテインクバッド型の動圧効果によ
り軸支する空気軸受装置が半径方向に対する支持のため
に、また、永久磁石を用いた磁気軸受装置が軸方向に対
する支持のために用いられている。
That is, a rotating body such as a spindle provided with this polyhedral mirror is required to rotate at high speed and to have high rotation accuracy. For this reason, in the past, spindle bearings have been equipped with air bearing devices that support the spindle using a dynamic pressure effect, such as a herring-pond or tail-bearing type, for radial support, and magnetic bearing devices that use permanent magnets. is used for axial support.

この2つの軸受を併用することによって上記の条件か満
足される他、トルク損失か小ざい、711匍か不安など
の利点か得られる。
By using these two bearings together, in addition to satisfying the above conditions, there are other advantages such as small torque loss and 711 torque loss.

一般的にこの空気軸受のエアー溝の形状は第3図(A)
〜(C)に示すような形状をしている。
Generally, the shape of the air groove of this air bearing is shown in Figure 3 (A).
It has a shape as shown in ~(C).

このエアー溝の加工は、この溝口体の形状、1M深ざ等
か1a接に軸支特性を決定する黄因となり、非常な高精
度か實求される0例えば、第3図(A)においては溝1
11Q2mm弱、ピッチ2mm弱であり、形状精度は±
201gmJ以内、深さI千0.015m m テあり
、精度は±31gmJ  (tUX未れば±2[壓mJ
)以内である。
Machining of this air groove is a factor that determines the shaft support characteristics depending on the shape of the groove mouth body, 1M depth, etc., and extremely high precision is required.For example, in Fig. 3 (A) groove 1
11Q is a little less than 2mm, pitch is a little less than 2mm, and the shape accuracy is ±
Within 201gmJ, depth 1,000,015m m, accuracy is ±31gmJ (within tUX, ±2 [μmJ
) or less.

また、そのいずれもか、公差以内にあるだけでなく、(
+1っている19か望ましい。さらに、高速回転するの
で、その形状の縁はパリかあったり。
Moreover, not only are any of them within the tolerance, but also (
19 with +1 is desirable. Furthermore, since it rotates at high speed, the edges of its shape may be crisp.

タレかあるとその性能に1αi5 彩7iを及ぼす。The presence of sauce will affect its performance by 1αi5 and 7i.

使未の加圧方法は lンフオトエッチング法 2)転造法 3)研削カロエ法 等があるが、その[要と欠点は次のようなものである。How to pressurize unused Photo etching method 2) Rolling method 3) Grinding Kaloe method etc., but their main points and drawbacks are as follows.

l)フォトエツチング法 加工物が円筒であるので、マスキングが円周にそって行
われる時、第6図に示すようなズレを発生し易い。この
ズレを±20LgmJ以内に管理する1バは難かしく非
常に生産性が悪い。
l) Photoetching method Since the workpiece is cylindrical, when masking is performed along the circumference, misalignment as shown in FIG. 6 is likely to occur. Managing this deviation within ±20 LgmJ is difficult and extremely unproductive.

また、第3図(AJに示すようなヘリングホーン形状で
あると、そのくひれ部分の合わせは−り、η雉かしくな
る。
Moreover, if the shape is a Herringhorn as shown in FIG. 3 (AJ), the alignment of the fins will be difficult.

2)転造法 生産性は高いか、転造タイス等を押し込んで加圧するた
め、塑性変形により第7図のような盛りあがり(61)
か発生し、I’)度それをセンターレス研削等で落とぎ
なければならす、カエリか発生したり、また、センター
レスによる粘度か得にくくなる。また、タレrt(62
)もその素材のロフト、熱処理条件によって一定でなく
、均一な形状精度を得にくい。
2) Is the productivity of the rolling method high? Because the rolling ties are pushed in and pressurized, plastic deformation creates a bulge as shown in Figure 7 (61)
If this occurs, it must be removed by centerless grinding, etc., and burrs may occur, and it becomes difficult to obtain viscosity due to centerless. Also, Tare rt (62
) also varies depending on the loft of the material and heat treatment conditions, making it difficult to obtain uniform shape accuracy.

3)研削加工法 里−形状精度は得やすいが、研削盤の割り出しL’j 
IJlt、角度精度は段取りを一度外すと再現性が低く
専用化してしまう。
3) Grinding method - It is easy to obtain shape accuracy, but the index of the grinding machine L'j
IJlt, angular accuracy has low reproducibility and becomes specialized once the setup is removed.

また、第3図(A)のようなヘリングボーン形状はカロ
エかでさす、第3図(El)のような形状に限定されて
しまい、設計に目出度がない。
Moreover, the herringbone shape as shown in FIG. 3(A) is limited to the shape shown in FIG.

また、どうしても切りとげ部かりしてしまい、;a唄な
立ち王りが得難い。
Also, it inevitably ends up with sharp edges, making it difficult to get an a-uta-like performance.

[発明の目的J 本発明は上述の従来技術の問題点に鑑み成されたもので
、加↑−精度の1′;6いエアーIMを製作でき。
[Objective of the Invention J] The present invention has been made in view of the problems of the prior art described above, and it is possible to manufacture an air IM with an adjustment accuracy of 1':6.

かつ、エアー溝加工のFj)産加工技術を確立すること
を目的とするものである。
In addition, the purpose is to establish Fj) production technology for air groove machining.

「発明の41!を要」 上述の1」的を達成するため、本発明の−・実施例は、
回転体を空気圧力により軸支する空気軸受の溝加工形状
に対応した突起形状をイ、fする電極の突起形状面と、
空気軸受の刀口丁面とが、所定位置となるよう位置合わ
せする位4合わせ工程と、該工程に統5、空気軸受の加
工面加工位置と電極の突起形状面とを所定の放電ギャッ
プに保ち、放電加工をすると共に、該放tt!、/Jl
+玉位置を空S軸受の710工面に沿って回転させて溝
加工する溝加工1程と、該工程による溝加工終了後、電
極を空気軸受より分離する分離工程より成る。
"41! of the invention" In order to achieve the above-mentioned objective 1, the embodiments of the present invention are as follows:
a protrusion-shaped surface of an electrode having a protrusion shape corresponding to the grooved shape of an air bearing that pivotally supports a rotating body by air pressure;
Step 4: Aligning the blade surface of the air bearing so that it is in a predetermined position; Step 5: In step 5, the machining position of the air bearing's machined surface and the protrusion-shaped surface of the electrode are maintained at a predetermined discharge gap. , along with electrical discharge machining, the release tt! ,/Jl
This process consists of a grooving step 1 in which the + ball position is rotated along the 710 plane of the air bearing to form the groove, and a separation step in which the electrode is separated from the air bearing after the grooving in this step is completed.

し発明の実施例」 以下、図面を参照して本発明に係る一実施例を詳細に説
明する。
Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る一実施例の動圧効果による空気軸
受におけるエアー溝を形成するための電極の構成例を示
し、図中、1は電極A、2はスペーサ、3は電8iB、
4は電極ホルタである。
FIG. 1 shows an example of the configuration of electrodes for forming air grooves in an air bearing using a dynamic pressure effect according to an embodiment of the present invention. In the figure, 1 is an electrode A, 2 is a spacer, 3 is an electrode 8iB,
4 is an electrode holder.

7JI11図は第3図(C)に示すエアー溝を形成する
時の電極の構成例を示し、電極A1は第3図(C)の3
1に示すエアー溝に対応する突起形状、電極B3は同じ
く第3図(C)の32に示す突起形状を有している。こ
れらの電極は、加工すべきエアー溝形状により任意の電
極を組合わせて゛電極ホルタ4に挿入固定することかで
5る。例えば753図(A)、(13)、(C)の各エ
アー溝のリード角と幅、ピッチか一定であれば組合わせ
にて、1つの電極を各種形状のエアー11が加工に用い
ることができる。
Figure 7JI11 shows an example of the structure of the electrode when forming the air groove shown in Figure 3 (C), and the electrode A1 is 3 in Figure 3 (C).
The electrode B3 has a protrusion shape corresponding to the air groove shown in FIG. 1, and the protrusion shape shown in 32 in FIG. These electrodes can be made by combining arbitrary electrodes depending on the shape of the air groove to be processed and inserting and fixing them into the electrode holter 4. For example, if the lead angle, width, and pitch of each air groove in Figures 753 (A), (13), and (C) are constant, one electrode can be used for machining various shapes of air 11 in combination. can.

このため、第3図(C)に便用する電極のスペーサ(2
)の仲人の有無な変更するのみで、容易に第3図(A)
に示すエアー溝が加工できる。
For this reason, a convenient electrode spacer (2
Figure 3 (A) can be easily achieved by simply changing the presence or absence of a matchmaker in ).
Air grooves shown in can be machined.

本実施例においては電極材料としてはCu W 。In this example, the electrode material is CuW.

Cu、AgW等を用い、NC旋盤により空気軸受のエア
ー溝形状に柑類する力01面を有する突出部を、所定数
、所定位置に作成する。このため、′屯8i組合せ、主
権素材等の制御情fMをテープ等に記録し、該記録情報
に従って、旋盤動作を1ljlσ口できる。
Using Cu, AgW, etc., a predetermined number of protrusions having a force 01 surface shaped like an air groove of an air bearing are created at a predetermined position using an NC lathe. For this reason, the control information fM such as the 8i combination and the sovereign material is recorded on a tape or the like, and the lathe operation can be performed 1ljlσ in accordance with the recorded information.

なお、7718IA lと゛電極B3、スペーサ2は電
極ホルタ4内に止めネジ4aと各すJり落し部1a。
In addition, the 7718IA l, the electrode B3, and the spacer 2 are placed in the electrode holter 4 with a set screw 4a and a drop-off portion 1a.

2a、3aにより保合位心決めされ、固定されている。It is centered and fixed by 2a and 3a.

このような電極を用いて空気軸受のエアー11もを力l
工する手1頭は、例えば以下のようになる。
Using such an electrode, the air 11 of the air bearing can be
For example, one hand is as follows.

ます、エアー溝加工を行う被加圧軸6を所定数第2図に
示す様に軸ホルタ冶具5Lにセットする。この軸ホルタ
冶X5は、不図示のNG制御グレートヒに固定されてお
り、後述する揺動を行う。
First, a predetermined number of pressurized shafts 6 to be air grooved are set in the shaft holter jig 5L as shown in FIG. This shaft holder X5 is fixed to an unillustrated NG control grating, and swings as will be described later.

次に電極をセットした電極ホルタ4を不図示の位置決め
降下手段により加工すへさ被加工軸6位置に位置決めし
、所定位置まで降下させる。この状態の例を第4図(A
)に示す、第3図(C)に示すエアー溝カロエ時には電
極ホルタ4内には第1図に示す各電極Al、B3、及び
スペーサ2が取付られている。そしてエアー溝の深さに
より、第4図(A、lのDに示す放電ギヤツプを所定の
間隙に設定し、該設定間隔に保ち、軸ホルタ冶具5を電
極の内周部に所定の間隙を保ち、第4図CB)に示す矢
印Bの如く偏心回転(揺1ハ・させる。この時、エアー
114の面粗度に従い、放電電流を設定して放電力l工
を1丁う。
Next, the electrode holter 4 with the electrode set thereon is positioned at the position of the shaft 6 to be machined by a positioning/lowering means (not shown), and lowered to a predetermined position. An example of this state is shown in Figure 4 (A
), the electrodes Al, B3, and spacer 2 shown in FIG. 1 are installed in the electrode holder 4 when the air groove shown in FIG. 3(C) is installed. Then, depending on the depth of the air groove, set the discharge gap shown in FIG. Then, rotate eccentrically (shake once) as shown by arrow B in Fig. 4 (CB). At this time, set the discharge current according to the surface roughness of the air 114 to increase the discharge power.

この様に本実施例ではNC放電揺0加工なので、エアー
溝の深さは揺動量と放電電流により任意に設定でさ、し
かも再現性が高い。また1面粗度は放電条件により任意
に設定することができる。例えば、放電#11flを少
なくすることにより面粗度を良好なものとすることかで
きる。また、深ざは、20Eμm」程度であるから、加
工時間をエツチングによる加工方法等と比較して短くす
ることができる。
In this way, in this embodiment, the NC discharge oscillation machining is performed with zero, so the depth of the air groove can be arbitrarily set depending on the amount of oscillation and the discharge current, and the reproducibility is high. Further, the roughness of one surface can be arbitrarily set depending on the discharge conditions. For example, the surface roughness can be improved by reducing the discharge #11fl. Furthermore, since the depth is approximately 20 E .mu.m, the processing time can be shortened compared to a processing method using etching.

また、放電加工なので、エアー溝加工が最終工程で行な
え、またタレが少なく、研削力ロエと違い切り上げ部が
ないので高い動圧特性が得られる。
In addition, since it is electrical discharge machining, air groove machining can be performed in the final process, and there is little sag, and unlike grinding power loe, there is no raised part, so high dynamic pressure characteristics can be obtained.

所定時間の所定の揺動加工を終了した電極ホルタ4は、
加工済の軸より上昇し、次の被加圧軸の所定位置に位置
決め降下して次の放電加工を行う。
The electrode holter 4 that has completed the predetermined swinging process for a predetermined time is
It rises above the machined shaft, positions it at a predetermined position on the next pressurized shaft, and descends to perform the next electrical discharge machining.

以りの説明では′電極ホルタ4は一種のみの例を説明し
たが、オートツールチェンジャを備え、被加工軸のエア
ー溝加工形状に合わせて電極を交換可能とすることによ
り、同じ軸ホルタ冶具5内で多種のエアー溝形状加工が
できる。
In the following explanation, only one type of electrode holter 4 has been explained, but by being equipped with an auto tool changer and making it possible to change the electrode according to the air groove machining shape of the shaft to be machined, it is possible to use the same shaft holter jig 5. Various types of air groove shapes can be processed within the machine.

また、溝深ざが多種に渡る軸の加1も電極ホルタ4毎の
揺動端の設定を変えることにより、任意に行うことかで
5る。
Further, the addition of shafts having various groove depths can be done arbitrarily by changing the setting of the swing end of each electrode holter 4.

また、以上の説明では空気軸受の袖に対するエアー溝加
工について説明したが、本実施例はこれに限るものでは
なく、’、ff、8iを第5図に示す如き凸゛屯極とし
て放′Iti、刀It [を行うことにより、軸側でな
く、軸受側に所望のエアー溝加工を行うことがでさる。
Further, in the above explanation, the air groove machining on the sleeve of the air bearing was explained, but the present embodiment is not limited to this. , It is possible to machine the desired air grooves on the bearing side instead of on the shaft side.

また、この加1方法を施すことにより、静圧軸受の刀I
工が打えることももちろんである。
In addition, by applying this addition method, it is possible to
Of course, it is also possible to do this by a craftsman.

以上説明した様に本実施例によれば、量産効果の旨い、
加工精度の高い空気軸受のエアー溝加工が行える。
As explained above, according to this embodiment, the mass production effect is good.
Can perform air groove machining for air bearings with high machining accuracy.

また、本実施例においては、電極と被加工物とを完全に
位置決めしてから放電を開始するため、放電しながら下
降位置決めする従来の加工方法にある電極の片減りがな
くなり、均一な減りとすることができ、加工精度を均一
高精度に保持でさる。
In addition, in this example, since the discharge is started after the electrode and the workpiece have been completely positioned, uneven wear of the electrode, which occurs in the conventional machining method of lowering and positioning while discharging, is eliminated, resulting in uniform wear. This allows the machining accuracy to be maintained at a uniform and high level of precision.

また放電時に、実施例の如く被加工物を揺動させても、
また、′屯44i側を揺動させても全く同一の効果が得
られる。
Furthermore, even if the workpiece is oscillated as in the example during discharge,
Furthermore, the same effect can be obtained by swinging the turret 44i side.

また、゛電極と波力■工物との放電ギャップも任意に設
定することかで5、任意深さ、任意形状のエアー溝を容
易に加Tすることができる。
Furthermore, by setting the discharge gap between the electrode and the wave power work piece arbitrarily, it is possible to easily form an air groove of any depth and shape.

「発明の効果」 以上説明した様に本発明によれば、高精度で量産効果の
高い空気軸受におけるエアー溝の加工をすることがで5
る。
"Effects of the Invention" As explained above, according to the present invention, it is possible to process air grooves in air bearings with high precision and high mass production efficiency.
Ru.

また、動圧軸受のみならす、静圧軸受にも容易に応用i
f を后な空気軸受におけるエアーII■の力ロエ方法
が提供できる。
In addition, it can be easily applied not only to hydrodynamic bearings but also to static pressure bearings.
A force Loe method for air II in an air bearing after f can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例の加工電極構成図、 刀2図は本実施例の加工冶具の外観図、753図(A)
〜(、C)は空気軸受のエアー溝形状を示す図。 第4図(A)、CB)は本実施例のエアー溝部丁処理を
説明する図、 第5図は本発1jJlに係る他の電極の構成図、男6図
は従来のフォトエツチング法によるブスキング例を示す
図、 第7図は従来の転造性によるエアー11η力I+下状態
を示す図である。 図中、1.3・・・電極、2・・・スペーサ、4・・・
’III極ホルタ、5・・・軸ホルタ冶具、6・・・被
加工軸、31.32・・・エアー溝である。 第3図 (△)            (B)(C) つ15 5 第4囚  (A) 第4図  (B) ス
Fig. 1 is a configuration diagram of a machining electrode according to an embodiment of the present invention, Fig. 2 is an external view of a processing jig of this embodiment, and Fig. 753 (A)
~(,C) is a diagram showing the air groove shape of the air bearing. Figures 4 (A) and CB) are diagrams explaining the air groove processing of this embodiment, Figure 5 is a configuration diagram of other electrodes related to the present invention 1jJl, and Figure 6 is the busking using the conventional photoetching method. A diagram showing an example, FIG. 7 is a diagram showing a state under air 11η force I+ due to conventional rolling properties. In the figure, 1.3...electrode, 2...spacer, 4...
'III pole holter, 5... shaft holter jig, 6... shaft to be machined, 31.32... air groove. Figure 3 (△) (B) (C) 15 5 4th prisoner (A) Figure 4 (B)

Claims (2)

【特許請求の範囲】[Claims] (1)回転体を空気圧力により軸支する空気軸受の溝加
工形状に対応した突起形状を有する電極の突起形状面と
前記空気軸受の加工面とが所定位置となるよう位置合わ
せする位置合わせ工程と、該工程に続き、前記空気軸受
の加工面加工位置と前記電極の突起形状面とを所定の放
電ギヤツプに保ち放電加工すると共に該放電加工位置を
前記空気軸受の加工面に沿つて回転させて溝加工する溝
加工工程と、該工程による溝加工終了後、前記電極を前
記空気軸受より分離する分離工程より成ることを特徴と
する空気軸受におけるエアー溝の加工方法。
(1) Alignment process in which the protrusion-shaped surface of an electrode having a protrusion shape corresponding to the groove-machined shape of an air bearing that pivotally supports a rotating body by air pressure is aligned so that the machined surface of the air bearing is in a predetermined position. Following this step, electric discharge machining is performed while maintaining the machining position of the machined surface of the air bearing and the protrusion-shaped surface of the electrode at a predetermined discharge gap, and the electric discharge machining position is rotated along the machined surface of the air bearing. 1. A method for machining air grooves in an air bearing, the method comprising: a groove machining step for machining grooves using the grooves; and a separation step for separating the electrode from the air bearing after the groove machining is completed.
(2)溝加工形状深さにより放電ギヤツプ及び放電時間
を変更可能とすることを特徴とする特許請求の範囲第1
項記載の空気軸受におけるエアー溝の加工方法。
(2) Claim 1 characterized in that the discharge gap and discharge time can be changed depending on the depth of the groove machining shape.
2. Method of machining air grooves in air bearings as described in .
JP29035385A 1985-12-25 1985-12-25 Method of machining air groove in air bearing Pending JPS62152621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29035385A JPS62152621A (en) 1985-12-25 1985-12-25 Method of machining air groove in air bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29035385A JPS62152621A (en) 1985-12-25 1985-12-25 Method of machining air groove in air bearing

Publications (1)

Publication Number Publication Date
JPS62152621A true JPS62152621A (en) 1987-07-07

Family

ID=17754941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29035385A Pending JPS62152621A (en) 1985-12-25 1985-12-25 Method of machining air groove in air bearing

Country Status (1)

Country Link
JP (1) JPS62152621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023405A1 (en) * 1996-11-28 1998-06-04 Loadpoint Limited Method and apparatus for forming recesses in a bearing surface
CN103831496A (en) * 2012-11-20 2014-06-04 苏州星诺奇传动科技有限公司 Method for machining grooves in shaft
CN104416247A (en) * 2013-09-09 2015-03-18 苏州星诺奇传动科技有限公司 Coaxial groove machining electrode for connector and manufacturing method of machining electrode
CN114425643A (en) * 2021-12-27 2022-05-03 深圳模德宝科技有限公司 Method and device for automatically processing batch parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186530A (en) * 1982-04-20 1983-10-31 Fujitsu Ltd Machining method of herringbone groove in journal shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186530A (en) * 1982-04-20 1983-10-31 Fujitsu Ltd Machining method of herringbone groove in journal shaft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023405A1 (en) * 1996-11-28 1998-06-04 Loadpoint Limited Method and apparatus for forming recesses in a bearing surface
CN103831496A (en) * 2012-11-20 2014-06-04 苏州星诺奇传动科技有限公司 Method for machining grooves in shaft
CN104416247A (en) * 2013-09-09 2015-03-18 苏州星诺奇传动科技有限公司 Coaxial groove machining electrode for connector and manufacturing method of machining electrode
CN114425643A (en) * 2021-12-27 2022-05-03 深圳模德宝科技有限公司 Method and device for automatically processing batch parts

Similar Documents

Publication Publication Date Title
US5692287A (en) Method of manufacturing a metal polygon mirror
JPS62152621A (en) Method of machining air groove in air bearing
JPS629313A (en) Polygon mirror
JPS5824203B2 (en) Manufacturing method for optical fiber connector plugs
JPS60211118A (en) Gaseous bearing device and machining method thereof
JPH10156729A (en) Free curved face machining tool
US7757373B2 (en) Method and tool head for machining optically active surfaces, particularly surfaces of progressive spectacle lenses, which are symmetrical in pairs
JP2723158B2 (en) Processing method of toroidal surface
JP2573001Y2 (en) Crankshaft mirror cutter device
JPH06315784A (en) Method for working cylindrical inner surface
JPH03146284A (en) Production of dynamic fluid bearing
JPH11309628A (en) V-shaped groove forming method and manufacture of tool to be used for that method
JPS61197102A (en) Manufacture of object having fine groove
JP2004202667A (en) Method of generating shape of grindstone for grinding
JPS6332588B2 (en)
JPS624565A (en) Workrest for cutting tool grinding and manufacture thereof
JPH0760391A (en) Projecting type die for rolling and dynamic pressure air bearing
JP4469615B2 (en) Circular member cutting tool and circular member cutting method using this cutting tool
JPS6161701A (en) Method of manufacturing rotary polygonal mirror
JPS5976722A (en) Machining method of thin plate and narrow groove
JPH04134414A (en) Polygonal mirror and its working method
JP2007038333A (en) Manufacturing device and method for rotor, polygon scanner and laser scan unit
JPH02160463A (en) Centering device for lens
JPH11207590A (en) Grooving method
JPH1110428A (en) Grooving method