JPS6161701A - Method of manufacturing rotary polygonal mirror - Google Patents

Method of manufacturing rotary polygonal mirror

Info

Publication number
JPS6161701A
JPS6161701A JP18049584A JP18049584A JPS6161701A JP S6161701 A JPS6161701 A JP S6161701A JP 18049584 A JP18049584 A JP 18049584A JP 18049584 A JP18049584 A JP 18049584A JP S6161701 A JPS6161701 A JP S6161701A
Authority
JP
Japan
Prior art keywords
cutting
base material
cut
diamond
tool holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18049584A
Other languages
Japanese (ja)
Inventor
Norihisa Saito
斎藤 憲久
Kimio Takahashi
公夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18049584A priority Critical patent/JPS6161701A/en
Publication of JPS6161701A publication Critical patent/JPS6161701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To fabricate a polygonal mirror with a high degree of accuracy and to enhance the efficiency of fabrication, by cutting the surface of a base material with the use of a linear diamond cutter with no streak-like cut trace being left thereon. CONSTITUTION:A shank 2 to which a linear diamond cutter 15 is secured, is fixed to a tool holder 7 which is rotated in the direction of the arrow 8 about a rotary shaft 14. Further, a base material 3 to be formed thereon several reflecting surfaces 4 is attached to a spline 5 to which a several surface indexing mechanism 6 is set. One of side surfaces 4 is positioned to a cutting position, and then the tool holder 7 is rotated at a predetermined speed while it is moved in the direction of the arrow 13 at a predetermined speed to cut the surface by a removing margine. The above-mentioned procsess is repeated several time to cut the side surfaces 4 of the base material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザー走査系光学装置等に用いられる回転
多面鏡の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a rotating polygon mirror used in a laser scanning optical device or the like.

〔従来の技術〕[Conventional technology]

レーザー走査系光学装置などに装着され、例えばレーザ
ービームの進路を変換させて、レーザービームを受光面
上を走査させるのに用いる回転多面鏡としては1代表的
には断面が正六角形状などの正多角形からなる角柱部材
の側面を反射鏡面として設けたものが知られている。
A rotating polygon mirror that is attached to a laser scanning optical device and used, for example, to change the course of a laser beam and scan the laser beam on a light-receiving surface, is typically a polygon mirror with a regular hexagonal cross section. It is known that the side surfaces of a polygonal prism member are provided as reflective mirror surfaces.

従来、このような回転多面鏡の製造は、アルミニウム合
金等の金属材料からなる部材を断面が正多角形状である
角柱状に成形した基材3の所定部分4を、第2図(a)
に示すようなダイヤモンドRバイト1、すなわちダイヤ
モンド刃が曲線状に形成されたバイトを用いて、第2図
(b)または第2図(C)に示すようないわゆるフライ
カー/ ト方式による切削工程により、超精密切削して
反射鏡面を形成する方法等によって製造されてきた。
Conventionally, in the manufacture of such a rotating polygon mirror, a predetermined portion 4 of a base material 3 made of a member made of a metal material such as an aluminum alloy and formed into a prismatic shape with a regular polygonal cross section is prepared as shown in FIG. 2(a).
Using a diamond R cutting tool 1 as shown in FIG. , ultra-precision cutting to form a reflective mirror surface, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このダイヤモンドRバイトを用いた超精密切
削工程に於いては、第2図(d)の第2図(b)の工程
によって切削された面10の、及び第2図(e)の第2
図(C)の工程によって切削された面11の平面図とし
てそれぞれ示したように、切削面にバイトの送り方向へ
の切削条痕12が残り易く、この切削条912に起因し
て生じた回折光が、反射鏡面の反射効率を低下させるな
どの問題があった。
However, in the ultra-precision cutting process using this diamond R cutting tool, the surface 10 cut by the process of FIG. 2(d), FIG. 2(b), and the surface 10 of FIG. 2
As shown in the plan view of the surface 11 cut by the process in FIG. There were problems such as the light reducing the reflection efficiency of the reflecting mirror surface.

また、反射鏡面に所定の表面粗さを与えるためには、バ
イトの加工面内での送り速度をある程度低くする必要が
あり、切削加工時間が長く、加工能率が低いと言う問題
もあった。
In addition, in order to give the reflective mirror surface a predetermined surface roughness, it is necessary to lower the feed rate of the cutting tool within the processing surface to a certain extent, resulting in a problem of long cutting time and low processing efficiency.

本発明の目的は、基材面を超精密切削する工程に於いて
、切削加工された面に切削条痕を残さずに基材面を切削
し、かつ加工能率を向上することのできる回転多面鏡の
製造方法を提供することにある。
An object of the present invention is to provide a rotary multi-face that can cut the base material surface without leaving cutting marks on the cut surface and improve machining efficiency in the process of ultra-precision cutting of the base material surface. The purpose of this invention is to provide a method for manufacturing a mirror.

〔問題点を解決する手段〕[Means to solve problems]

上記の目的は以下の本発明によって達成することができ
る。
The above objects can be achieved by the following invention.

すなわち、本発明の回転多面鏡の製造方法は、基材面を
超精密切削することによって、反射鏡面を形成する工程
を含む回転多面鏡の製造方法に於いて、前記基材面のa
精密切削をダイヤモンド直線刃を用いて実施することを
特徴とする。
That is, the method for manufacturing a rotating polygon mirror of the present invention includes the step of forming a reflecting mirror surface by ultra-precision cutting the substrate surface.
It is characterized by precision cutting using a diamond straight blade.

以下1図面を用いて本発明の方法を更に詳細に説明する
The method of the present invention will be explained in more detail below using one drawing.

第1図(a)及び第1図(b)は、それぞれ本発明の方
法に用いるダイヤモンド直線刃の正面図及び側面図であ
り、15は直線状に伸びた刃の部分を有する直線状にダ
イヤモンド直線刃であり、シャンク2によって固定され
ている。なお、本発明の方法に用いられるダイヤモンド
直線刃は、切削工程後に形成された切削面に所定の平面
度を与えることのできる程度の直線性を有するものを使
用する。
1(a) and 1(b) are a front view and a side view, respectively, of a straight diamond blade used in the method of the present invention, and 15 is a straight diamond blade having a straight edge portion. It is a straight blade and is fixed by a shank 2. Note that the diamond straight blade used in the method of the present invention is one that has a degree of straightness that can give a predetermined flatness to the cut surface formed after the cutting process.

本発明の方法に於いては、このようなダイヤモンド直線
刃を用いて、基材面の超精密切削が実施される。
In the method of the present invention, ultra-precision cutting of the substrate surface is performed using such a diamond straight blade.

すなわち、第1図(C)に示すように、ダイヤモンド直
線刃15が固定されたシャンク2を、回転軸14を中心
に、8で示された方向に回転駆動可能な)<イトホルダ
ー7に固定し、更に多数の反射鏡面を形成する面を有す
る基材3を、多数面割出し機構6がセットされた雇5に
取り付ける。ここで、基材3の有する側面4のうちの1
つを、切削位置に移動させ、そこに停止させる。次に、
バイトホルダー7を所定の速度で回転させながら、13
の方向に所定の速度で移動させ、加工すべき基材面4に
ダイヤモンド直線刃を当て、引続き13の方向に所定の
速度でバイトホルダー7を移動させ切削を実施する。
That is, as shown in FIG. 1(C), the shank 2 to which the diamond straight blade 15 is fixed is fixed to the tool holder 7, which can be rotated in the direction indicated by 8 around the rotating shaft 14. Then, a base material 3 having a surface forming a large number of reflecting mirror surfaces is attached to a support 5 in which a multi-face indexing mechanism 6 is set. Here, one of the side surfaces 4 of the base material 3
one is moved to the cutting position and stopped there. next,
13 while rotating the tool holder 7 at a predetermined speed.
The cutting tool holder 7 is moved at a predetermined speed in the direction of 13 to apply the diamond straight blade to the surface 4 of the base material to be processed, and then the tool holder 7 is moved at a predetermined speed in the direction of 13 to perform cutting.

所定の取代分切削が行なわれたら、バイトホルダーの移
動を停止し、バイトホルダー7を13の逆方向に後退さ
せたところで、割出し機構6により、基材を回転させ、
切削加工終了面を切削位置から移動させ、切削加工すべ
き新たな基材面を切削位置に移動させ、そこの停止させ
、前記した工程を再び繰り返して、切削を行なう。
Once the predetermined machining allowance has been cut, the movement of the cutting tool holder is stopped, and the cutting tool holder 7 is moved back in the opposite direction of 13, and the indexing mechanism 6 rotates the base material.
The cutting finished surface is moved from the cutting position, the new base material surface to be cut is moved to the cutting position, stopped there, and the above steps are repeated again to perform cutting.

更に、以上の工程を反射鏡面の数に応じて繰返し、切削
工程を終了する。
Further, the above steps are repeated according to the number of reflecting mirror surfaces, and the cutting step is completed.

〔発明の効果〕〔Effect of the invention〕

このような本発明の方法に於けるようなダイヤモンド直
線刃を用いた超精密切削により反射鏡面の形成を実施す
れば、従来のダイヤモンl” Rバイトを用いて超精密
切削を実施した場合のよう1・よ切削条痕を切削面に生
じさせることなく反射鏡面の形成が可能であり、すjI
′;ワ条朕に起因して生じる入;」折尤による反射鏡1
力反射効率の低下を起すことのない反射鏡面を形成する
ことが可能となり、また、従来のダイヤモンドバイトを
用いた場合のように、加工面内でのバイトの送り操作を
必要としないために、切削加工に要する時間を大幅に短
縮することが可能となり、加工能率を向上させることが
できた。
If a reflective mirror surface is formed by ultra-precision cutting using a diamond straight blade as in the method of the present invention, it will be similar to the case when ultra-precision cutting is performed using a conventional diamond l''R cutting tool. 1. It is possible to form a reflective mirror surface without creating cutting marks on the cut surface.
′;Input caused by the warp point;”Reflector 1 due to folding
It is possible to form a reflective mirror surface that does not cause a decrease in force reflection efficiency, and there is no need to feed the tool within the processing surface, unlike when using a conventional diamond tool. It became possible to significantly shorten the time required for cutting and improve machining efficiency.

以下、実施例を用いて本発明の方法を更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail using Examples.

実施例 正六角柱形状のアルミニウムからなる基材の反射鏡面を
形成すべき面を刃巾10mm、直線仕入/20のダイヤ
モンドバイトにて切削することにより表面粗さRmax
o、01p、平面度入75以下の鏡面が得られた。また
、この鏡面は切削条痕がない為、フレアーを生じなかっ
た。又、巾5mmの回転多面鏡を切削により形成する際
、従来の送り方式の加工の場合の3000rpm 、 
0.01mm/revの送りの場合に比べて、本発明の
方法により直線刃を用い1−/reマ(二て50岬の取
り代を取った場合は、正味加工時間は一面当り約1/1
0になり加工能率が向上した。
Example A surface roughness Rmax was obtained by cutting the surface on which a reflective mirror surface of a regular hexagonal prism-shaped aluminum base material was to be formed with a diamond tool with a blade width of 10 mm and a straight line cut/20.
A mirror surface with a flatness of 75 or less was obtained. Furthermore, since this mirror surface had no cutting marks, no flare occurred. In addition, when forming a rotating polygon mirror with a width of 5 mm by cutting, the speed of 3000 rpm in the case of conventional feeding method processing,
Compared to the case of a feed of 0.01 mm/rev, when using the method of the present invention with a straight blade and taking a machining allowance of 1-/re machining (2.5 mm/rev), the net machining time is approximately 1/rev per surface. 1
0, improving machining efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

i 1 [ffl (a)はバイトシャンクに固定され
た本発明の方法に用いるダイヤモンド直線刃の正面図、
第1図(b)はバイトシャンクに固定された*、発明の
方法に用いるダイヤモンド直線刃の側面図、第1図(c
)は、本発明の方法に於ける超精密切削工程を説明する
だめの装置の概略図、第2図(a)はダイヤモンド直線
刃トの正面図及び側面図、第2図(b)及び第2図(C
)は従来の方法に於ける超精密切削工程を説明するため
の装置の概略図、第2図(d)及び第2図(e)は従来
の方法によって切削された切削面の模式図である。 1、ダイヤモンドRノへイト 2:/へイトシャンク 3:基材 4、切削面 5・雇 6:多数面割出し機構 7:バイトホルダー 8:回転方向 9.13:移動方向 10.11:切削面 12:条痕 14:回転軸 15:ダイヤモンド直線刃 (a)     (b) 第  1  図 (a) (b)          (c) ム (d)        (e) 第  2  図
i 1 [ffl (a) is a front view of the diamond straight blade used in the method of the present invention fixed to the bite shank;
Figure 1(b) is a side view of the diamond straight blade used in the method of the invention fixed to the bit shank, and Figure 1(c)
) is a schematic diagram of a device for explaining the ultra-precision cutting process in the method of the present invention, FIG. 2(a) is a front view and side view of a diamond straight blade, FIG. 2(b) and Figure 2 (C
) is a schematic diagram of an apparatus for explaining the ultra-precision cutting process in the conventional method, and FIGS. 2(d) and 2(e) are schematic diagrams of the cut surface cut by the conventional method. . 1. Diamond R Nohite 2: / Hate Shank 3: Base material 4, Cutting surface 5/Holder 6: Multi-face indexing mechanism 7: Tool holder 8: Rotation direction 9.13: Movement direction 10.11: Cutting surface 12: Screw 14: Rotating shaft 15: Diamond straight blade (a) (b) Fig. 1 (a) (b) (c) Mu (d) (e) Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)基材面を超精密切削することによって、反射鏡面を
形成する工程を含む回転多面鏡の製造方法に於いて、前
記基材面の超精密切削をダイヤモンド直線刃を用いて実
施することを特徴とする回転多面鏡の製造方法。
1) In a method for manufacturing a rotating polygon mirror including a step of forming a reflecting mirror surface by ultra-precision cutting the base material surface, the ultra-precision cutting of the base material surface is performed using a diamond straight blade. A manufacturing method for a rotating polygon mirror.
JP18049584A 1984-08-31 1984-08-31 Method of manufacturing rotary polygonal mirror Pending JPS6161701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18049584A JPS6161701A (en) 1984-08-31 1984-08-31 Method of manufacturing rotary polygonal mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18049584A JPS6161701A (en) 1984-08-31 1984-08-31 Method of manufacturing rotary polygonal mirror

Publications (1)

Publication Number Publication Date
JPS6161701A true JPS6161701A (en) 1986-03-29

Family

ID=16084237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18049584A Pending JPS6161701A (en) 1984-08-31 1984-08-31 Method of manufacturing rotary polygonal mirror

Country Status (1)

Country Link
JP (1) JPS6161701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330141A (en) * 2005-05-24 2006-12-07 Olympus Corp Optical element, and optical system and electronic apparatus using same
JP2008216512A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Optical scan apparatus, image formation apparatus and optical deflector manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330141A (en) * 2005-05-24 2006-12-07 Olympus Corp Optical element, and optical system and electronic apparatus using same
JP2008216512A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Optical scan apparatus, image formation apparatus and optical deflector manufacturing method

Similar Documents

Publication Publication Date Title
JP6032869B2 (en) Blaze diffraction grating
JP2003183040A (en) Point cutter, method of use and apparatus
CN111375900A (en) Complex-profile cutter laser processing method based on three-dimensional shaping focal spot
JP5478296B2 (en) Fresnel lens, Fresnel lens mold, Fresnel lens manufacturing method, and Fresnel lens mold manufacturing method
JP4878517B2 (en) Diamond tools
CN113967852A (en) Metal multi-surface reflecting prism processing device and method
JPS6161701A (en) Method of manufacturing rotary polygonal mirror
JPH1043903A (en) Super precision cutting method for crystal material
JP3496157B2 (en) Polygon mirror manufacturing method
JPH06170629A (en) Chamfering tool
JPH09239603A (en) Groove cutting method
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JPH07124813A (en) Forming method of fresnel shape
JP2004017216A (en) Diamond blade and mirror surface machining method
JPS59232702A (en) Diamond cutting tool
JPH06269B2 (en) How to cut board
JP2004188511A (en) Method of fine groove working, workpiece with fine grooves, and molding
EP0557057A1 (en) Tool for use in the manufacture of binary optical elements
JP2686814B2 (en) Tool core height adjustment method
JP2005144657A (en) Monocrystal diamond end mill and cutting method of hard fragile material
JP2006043805A (en) Cutting tool, a method of forming two or more cylindrical projection using the cutting tool and support having the cylindrical projections
JP2000198001A (en) Cutting tool and cutting work method
JPS62102901A (en) Manufacture of optical parts
JP2006088313A (en) Gear formation cutter
JPH0288103A (en) Machining method of fine groove