JPH03146284A - Production of dynamic fluid bearing - Google Patents

Production of dynamic fluid bearing

Info

Publication number
JPH03146284A
JPH03146284A JP1283060A JP28306089A JPH03146284A JP H03146284 A JPH03146284 A JP H03146284A JP 1283060 A JP1283060 A JP 1283060A JP 28306089 A JP28306089 A JP 28306089A JP H03146284 A JPH03146284 A JP H03146284A
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure generating
generating groove
shaft
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283060A
Other languages
Japanese (ja)
Inventor
Yuzuru Kudo
譲 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1283060A priority Critical patent/JPH03146284A/en
Publication of JPH03146284A publication Critical patent/JPH03146284A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece

Abstract

PURPOSE:To form a dynamic pressure generating groove of a good yield in a short period of time by holding a fixing shaft freely rotatably to a moving table and irradiating the outer peripheral surface of a shaft rotating with a laser beam while moving the moving table in an axial direction. CONSTITUTION:The fixing shaft 3a rotates in an arrow (b) direction while linearly moving in an arrow (a) direction and, therefore, the spiral dynamic pressure-generating groove is formed on the outer peripheral surface thereof. The working of the dynamic pressure-generating groove of the good yield in a short period of time is, therefore, possible. The easy dealing is thus executed even if the design of the dynamic pressure generating groove and the fixing shaft 3a is changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気磁気軸受型光偏向器などに適用される動圧
流体軸受の製造方法に関し、特に動圧発生溝の加工方法
に特徴のある製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a hydrodynamic bearing applied to an air-magnetic bearing type optical deflector, etc., and is particularly characterized by a method for processing a hydrodynamic groove. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

ポリゴンスキャナ等に使用されている動圧流体軸受の動
圧発生溝加工法としては、従来より以下の方法が公知で
ある。
The following methods are conventionally known as methods for machining dynamic pressure generating grooves in hydrodynamic bearings used in polygon scanners and the like.

(1)エツチングによる方法 ・(2)サンドブラストによる方法 (3)メツキによる方法 (4)転造による方法 なお、従来の動圧流体軸受の製造方法としては、特開昭
63−259215号公報他が知られている。
(1) Method by etching (2) Method by sandblasting (3) Method by plating (4) Method by rolling Are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のうち(11の方法は、フォトレジストを
塗布してから、フォトマスクを使ってパターニング露光
し、腐食液でエツチングを行うというものである。この
方法は、工程数が多くしがもパターニング露光にかなり
の時間がかがる。また、塗布したフォトレジストに傷が
付くと、その部分もエツチングされてしまうため、動圧
流体軸受1個当たりのコストが非常に高くなり、また歩
留まりも悪い。
Among the above conventional techniques, method (11) involves applying a photoresist, exposing it to patterning using a photomask, and etching it with a corrosive solution.This method requires a large number of steps, but Patterning exposure takes a considerable amount of time.Furthermore, if the applied photoresist is scratched, that part will also be etched, making the cost per hydrodynamic bearing extremely high and reducing yield. bad.

(2)の方法は、(1)の方法における腐食液の代わり
に、細かい砥粒を吹き付けて溝を形成するものである。
In method (2), grooves are formed by spraying fine abrasive grains instead of the corrosive liquid in method (1).

この方法も(1)と同様の欠点を持つため、高コスト、
低歩留まりとなる。
This method also has the same drawbacks as (1), so it is expensive,
This results in low yield.

(3)の方法は、固定軸または回転軸に動圧発生溝形状
のマスクを貼り付け、マスキングされていない部分にメ
ツキを施したり、動圧発生溝形状を持った薄膜を貼り付
けるというものである。しかしながらメツキの場合、付
着する量が位置によってばらつくため、固定軸または回
転軸の真円度が悪くなる。動圧流体軸受では、真円度、
円筒度はサブミクロンで管理しなければならないため、
この問題は致命的である。
Method (3) is to attach a mask in the shape of dynamic pressure generating grooves to the fixed shaft or rotating shaft, and then plate the unmasked areas or paste a thin film with the shape of dynamic pressure generating grooves. be. However, in the case of plating, since the amount of plating varies depending on the position, the roundness of the fixed shaft or rotating shaft deteriorates. In hydrodynamic bearings, roundness,
Because cylindricity must be controlled at submicron levels,
This problem is fatal.

(4)の方法は、ローラ等に凸型の動圧発生溝形状を形
成し、それを押し当てて動圧発生溝を形成するというも
のである。この方法は量産性には冨むが、硬いローラを
押し当てると、固定軸または回転軸が歪んで真円度、円
筒度が悪くなる可能性が高い。また、転造を行うと、出
来上がった動圧発生溝の周縁部にマイクロクラックがで
きる。このクラックから崩れた小片によって、動圧流体
軸受が焼き付く危険性が大きい。
Method (4) is to form a convex dynamic pressure generating groove on a roller or the like and press it against the roller to form the dynamic pressure generating groove. This method is suitable for mass production, but if a hard roller is pressed against it, there is a high possibility that the fixed shaft or rotating shaft will be distorted and the roundness and cylindricity will deteriorate. Further, when rolling is performed, microcracks are formed at the peripheral edge of the completed dynamic pressure generating groove. There is a great risk that the hydrodynamic bearing will seize due to the small pieces that have broken down from this crack.

このように、従来より知られている動圧流体軸受の製造
方法にはそれぞれ欠点があった。
As described above, each of the conventionally known manufacturing methods for hydrodynamic bearings has drawbacks.

本発明の目的は、動圧流体軸受の動圧発生溝を、短時間
で歩留まり良くまた低コストで形成することができる動
圧流体軸受の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a hydrodynamic bearing that can form hydrodynamic grooves in a hydrodynamic bearing in a short period of time with high yield and at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、固定軸または回転軸を移動テーブルに回転
自在に保持すると共に移動テーブルを軸方向に移動しな
がら、回転する固定軸の外周面または回転軸の内周受面
にレーザビームを照射して動圧発生溝を形成することに
より達成される。
The above purpose is to irradiate a laser beam onto the outer peripheral surface of the rotating fixed shaft or the inner peripheral receiving surface of the rotating shaft while rotatably holding the fixed shaft or rotating shaft on a moving table and moving the moving table in the axial direction. This is achieved by forming dynamic pressure generating grooves.

〔作用〕[Effect]

固定軸または回転軸を回転しながら、移動テーブル上で
軸方向に移動するようにしたから、固定軸の外周面また
は回転軸の内周受面の適宜位置に照射されるレーザビー
ムによって、動圧発生溝が短時間で歩留まり良く、しか
も低コストで形成されることになる。
Since the fixed shaft or rotating shaft is rotated and moved in the axial direction on the movable table, the dynamic pressure is reduced by the laser beam irradiated to the appropriate position on the outer peripheral surface of the fixed shaft or the inner peripheral receiving surface of the rotating shaft. Grooves can be formed in a short time with good yield and at low cost.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明による動圧流体軸受の製造装置全体の概
念図であって、1はモータ2によって矢印a方向に直線
移動する移動テーブル、3は軸4に保持される被加工体
、5は被加工体3と軸4とを一体的に矢印す方向に回転
するモータ、6a。
FIG. 3 is a conceptual diagram of the entire hydrodynamic bearing manufacturing apparatus according to the present invention, in which 1 is a moving table linearly moved in the direction of arrow a by a motor 2, 3 is a workpiece held by a shaft 4, and 5 A motor 6a rotates the workpiece 3 and the shaft 4 integrally in the direction indicated by the arrow.

6bはエンコーダ信号ライン、7はテーブルコントロー
ラ、8は制御部、9はパワーユニット(Qスイッチドラ
イバ)、10はCO2レーザ発振器、11a、llbは
ミラー 12はスリット、13は加工用の対物レンズで
ある。またI4はレーザビームである。
6b is an encoder signal line, 7 is a table controller, 8 is a control unit, 9 is a power unit (Q switch driver), 10 is a CO2 laser oscillator, 11a and llb are mirrors, 12 is a slit, and 13 is an objective lens for processing. Further, I4 is a laser beam.

その動作を概略説明すると、被加工体3への加工データ
が制御部8より出力されると、この出力にてパワーユニ
ット9が動作し、これによりCOtレーザ発振器lOが
発振し、レーザビーム14を射出する。レーザビーム1
4はミラー11a、11bにて反射され、スリット12
にてビーム形状を調えられて、対物レンズ13に入射さ
れる。そしてこのレーザビーム14は、対物レンズ13
にて被加工体3上にビームスポットとして集束される。
Briefly explaining its operation, when processing data for the workpiece 3 is output from the control unit 8, the power unit 9 is operated by this output, which causes the COt laser oscillator lO to oscillate and emit the laser beam 14. do. Laser beam 1
4 is reflected by the mirrors 11a and 11b, and the slit 12
The beam shape is adjusted at , and the beam is incident on the objective lens 13 . This laser beam 14 is transmitted through the objective lens 13.
The beam is focused onto the workpiece 3 as a beam spot.

被加工体3は移動テーブル1によりその軸方向(矢印a
方向)に移動し、かつ、軸4により矢印す方向に回転す
るものであるから、固定位置におけるビームスポットの
照射により、被加工体3の外周面には例えば、螺線状の
溝が形成されることになる。なお、移動テーブル1の直
線移動制御および軸4の回転制御は、エンコーダ信号ラ
イン6a、5bからエンコーダ信号がテーブルコントロ
ーラ7を介して制御部8に取り込まれ、ここで基準値と
エンコーダ信号が比較され、その結果が制御部8からテ
ーブルコントローラ7に出力され、さらに各モータ2.
5にフィードバックされることによりなされる。
The workpiece 3 is moved by the movable table 1 in its axial direction (arrow a
direction) and rotated by the shaft 4 in the direction indicated by the arrow, for example, a spiral groove is formed on the outer peripheral surface of the workpiece 3 by irradiation of the beam spot at a fixed position. That will happen. The linear movement control of the moving table 1 and the rotation control of the shaft 4 are performed by inputting encoder signals from the encoder signal lines 6a and 5b to the control unit 8 via the table controller 7, where the reference value and the encoder signal are compared. , the results are output from the control section 8 to the table controller 7, and further output to each motor 2.
This is done by feeding back to 5.

次に動圧流体軸受の製造方法の具体的内容について説明
する。
Next, the specific details of the method for manufacturing a hydrodynamic bearing will be explained.

第1図は固定軸の製造方法の概念図であって、第3図に
示すCOtレーザ発振器10は、CO。
FIG. 1 is a conceptual diagram of a method for manufacturing a fixed shaft, and the COt laser oscillator 10 shown in FIG. 3 is a COt laser oscillator 10.

封止管10a、放電電極10b、loc、Qスイッチ1
0d、全反射ミラー10e、出力ミラー10fより構成
されている。
Sealed tube 10a, discharge electrode 10b, loc, Q switch 1
0d, a total reflection mirror 10e, and an output mirror 10f.

この実施例における被加工体3は固定軸3aであり、こ
の外周面の法線と同じ位置にビームスポットが照射され
る。
The workpiece 3 in this embodiment is a fixed shaft 3a, and the beam spot is irradiated at the same position as the normal to the outer peripheral surface of the fixed shaft 3a.

固定軸3aは、矢印a方向に直線移動しつつ矢印す方向
に回転するので、その外周面には、螺線状の動圧発生溝
15が形成されることになる。
Since the fixed shaft 3a rotates in the direction indicated by the arrow a while moving linearly in the direction indicated by the arrow a, a spiral dynamic pressure generating groove 15 is formed on its outer peripheral surface.

第2図は回転軸の製造方法の概念図であって、回転軸3
bの場合、その内周受面の法線と同じ位置にビームスポ
ットを照射するために、ミラー11 a、  1 l 
b、  11 Cと対物レンズ13の位置関係が第1図
の場合と若干具なるのみで、他は第1図の実施例の場合
と全く同じである。
FIG. 2 is a conceptual diagram of the manufacturing method of the rotating shaft, and shows the rotating shaft 3.
In the case of b, in order to irradiate the beam spot at the same position as the normal line of the inner peripheral receiving surface, mirrors 11a, 1l
The positional relationship between b, 11 C and the objective lens 13 is only slightly different from that in FIG. 1, and the rest is exactly the same as in the embodiment shown in FIG.

この実施例においては、回転軸3bの内周受面に螺線状
の動圧発生溝15が形成される。
In this embodiment, a spiral dynamic pressure generating groove 15 is formed on the inner circumferential receiving surface of the rotating shaft 3b.

本発明で使用するレーザ装置は、現在金属加工等に広く
用いられているCO□レーザが、比較的安価でかつ大出
力を得られるので望ましい、C02レーザは、Qスイッ
チ発振のパルスで使用する。
The laser device used in the present invention is preferably a CO□ laser, which is currently widely used in metal processing and the like, because it is relatively inexpensive and can obtain a large output.The CO2 laser is used with Q-switch oscillation pulses.

Qスイッチ発振のパルスレーザは、連続発振のレーザに
比べて与える熱量のコントロールが容易なため、被加工
体3への蓄熱量を少なくでき、熱損傷を最小限に抑えら
れるからである。さらに、Qスイッチ10dの発振は、
固定軸3aまたは回転軸3bを回転、直進運動させるモ
ータ2,5にエンコーダを取付け、それの信号に同期さ
せる。このようにすれば、モータ2.5の受けるパルス
信′号で同期させるのと比較して、パルス信号が入力さ
れてから実際にモータ2.5が回転し、所定の回転数に
なるまでの遅延時間を考慮に入れることができるため、
形成する動圧発生溝15のずれを少なくできる。
This is because the Q-switch oscillation pulse laser can more easily control the amount of heat provided than the continuous wave laser, so the amount of heat stored in the workpiece 3 can be reduced and thermal damage can be minimized. Furthermore, the oscillation of the Q switch 10d is
Encoders are attached to the motors 2 and 5 that rotate and linearly move the fixed shaft 3a or the rotary shaft 3b, and the encoders are synchronized with the signals of the motors 2 and 5. In this way, compared to synchronizing with the pulse signal that the motor 2.5 receives, the motor 2.5 actually rotates after the pulse signal is input, and the rotation speed reaches the predetermined rotation speed. Since delay time can be taken into account,
Misalignment of the dynamic pressure generating grooves 15 to be formed can be reduced.

なお、レーザにより動圧発生溝15を形成すると僅かで
はあるが、動圧発生溝15の周縁にパリや盛り上がりが
できる。よって、動圧発生溝15の形成後の固定軸3a
または回転軸3bは、円筒研削等でパリや盛り上がりを
落とす仕上加工を施す。
Note that when the dynamic pressure generating grooves 15 are formed using a laser, the peripheral edges of the dynamic pressure generating grooves 15 are formed with a ridge or a bulge, albeit slightly. Therefore, the fixed shaft 3a after the formation of the dynamic pressure generating groove 15
Alternatively, the rotating shaft 3b is subjected to a finishing process such as cylindrical grinding to remove burrs and bulges.

上記加工法により、短時間で歩留まりの良い流体動圧軸
受(固定軸3a、回転軸3b)の動圧発生溝加工が可能
となる。また、本加工法であれば、動圧発生溝15や流
体動圧軸受の形状が変更されても、簡単なプログラムの
変更のみで直ぐに対応できるため、他の加工法のように
マスクやローラを新しく作り換える必要がない。また一
つのラインで複数の種類の流体動圧軸受を作ることがで
きる。
The above-mentioned processing method makes it possible to process hydrodynamic grooves for fluid dynamic pressure bearings (fixed shaft 3a, rotary shaft 3b) in a short time and with high yield. In addition, with this processing method, even if the shape of the dynamic pressure generating groove 15 or the fluid dynamic pressure bearing is changed, it can be handled immediately by simply changing the program. There is no need to create a new one. Furthermore, multiple types of fluid dynamic pressure bearings can be manufactured on one line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、レーザによって
動圧発生溝を形成しているので、短時間で歩留まりの良
い動圧発生溝加工が可能となり、また、動圧発生溝や固
定軸、回転軸を設計変更しても、簡単に対処することが
可能な動圧流体軸受の製造方法を提供することができる
As explained above, according to the present invention, since the dynamic pressure generating grooves are formed using a laser, it is possible to process the dynamic pressure generating grooves with a high yield in a short time. It is possible to provide a method for manufacturing a hydrodynamic bearing that can easily cope with changes in the design of the rotating shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明による動圧流体軸受の製造
方法の概念図、第3図は動圧流体軸受の製造装置全体の
概念図である。 1・・・移動テーブル、3・・・被加工体、3a・・・
固定軸、3b・・・回転軸、4・・・軸、14・・・レ
ーザビーム、15・・・動圧発生溝。 第1図 第3図 第2図 手続補正書(自発) 平成
1 and 2 are conceptual diagrams of a method for manufacturing a hydrodynamic bearing according to the present invention, and FIG. 3 is a conceptual diagram of an entire apparatus for manufacturing a hydrodynamic bearing. 1... Moving table, 3... Workpiece, 3a...
Fixed axis, 3b... Rotating axis, 4... Axis, 14... Laser beam, 15... Dynamic pressure generating groove. Figure 1 Figure 3 Figure 2 Procedural amendment (voluntary) Heisei

Claims (2)

【特許請求の範囲】[Claims] (1)固定軸を移動テーブルに回転自在に保持すると共
に移動テーブルを軸方向に移動しながら、回転する固定
軸の外周面にレーザビームを照射して動圧発生溝を形成
することを特徴とする動圧流体軸受の製造方法。
(1) The fixed shaft is rotatably held on a movable table, and while the movable table is moved in the axial direction, the outer peripheral surface of the rotating fixed shaft is irradiated with a laser beam to form dynamic pressure generating grooves. A manufacturing method for hydrodynamic bearings.
(2)回転軸を移動テーブルに回転自在に保持すると共
に移動テーブルを軸方向に移動しながら、回転する回転
軸の内周受面にレーザビームを照射することによつて動
圧発生溝を形成することを特徴とする動圧流体軸受の製
造方法。
(2) Dynamic pressure generating grooves are formed by holding the rotary shaft rotatably on a movable table and moving the movable table in the axial direction while irradiating a laser beam onto the inner circumferential receiving surface of the rotating rotary shaft. A method of manufacturing a hydrodynamic bearing, characterized in that:
JP1283060A 1989-11-01 1989-11-01 Production of dynamic fluid bearing Pending JPH03146284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283060A JPH03146284A (en) 1989-11-01 1989-11-01 Production of dynamic fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283060A JPH03146284A (en) 1989-11-01 1989-11-01 Production of dynamic fluid bearing

Publications (1)

Publication Number Publication Date
JPH03146284A true JPH03146284A (en) 1991-06-21

Family

ID=17660686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283060A Pending JPH03146284A (en) 1989-11-01 1989-11-01 Production of dynamic fluid bearing

Country Status (1)

Country Link
JP (1) JPH03146284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227769A (en) * 2006-02-24 2007-09-06 Denso Corp Method of dicing semiconductor wafer
JP2008200699A (en) * 2007-02-19 2008-09-04 Enshu Ltd Method and apparatus for machining periodic structure on outer peripheral body
JP2008200698A (en) * 2007-02-19 2008-09-04 Enshu Ltd Method and apparatus for machining periodic structure on inner peripheral surface of cylinder
JP2013504435A (en) * 2009-09-15 2013-02-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser match honing system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227769A (en) * 2006-02-24 2007-09-06 Denso Corp Method of dicing semiconductor wafer
JP2008200699A (en) * 2007-02-19 2008-09-04 Enshu Ltd Method and apparatus for machining periodic structure on outer peripheral body
JP2008200698A (en) * 2007-02-19 2008-09-04 Enshu Ltd Method and apparatus for machining periodic structure on inner peripheral surface of cylinder
JP2013504435A (en) * 2009-09-15 2013-02-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser match honing system and method

Similar Documents

Publication Publication Date Title
JP4856058B2 (en) Laser processing equipment
JP3060813B2 (en) Laser processing equipment
KR100462358B1 (en) Laser Processing Apparatus with Polygon Mirror
JP5870621B2 (en) Laser processing apparatus and laser processing method
US10613307B2 (en) Integrated rotary structure and fabrication method thereof
JPS63502811A (en) Laser processing equipment
US11047017B2 (en) Laser ablation devices that utilize beam profiling assemblies to clean and process surfaces
JPH03146284A (en) Production of dynamic fluid bearing
JP5144680B2 (en) Optical scanner, and configuration and system using optical scanner
JP2000071088A (en) Laser processing machine
JPH1043906A (en) Lathe turning method for recessed groove and lathe turning device
CN108161230A (en) A kind of devices and methods therefor of quasi- 3D processing spherical crown aperture plate
JP2004125913A (en) Method of masking cylindrical work
JP2012045581A (en) Laser processing method
JPS58179586A (en) Method and device for removing surface skin of aluminum billet
JPH05337660A (en) Film eliminating device
JPH03210990A (en) Laser beam machining method
JPH04309477A (en) Method and device for manufacturing dynamic pressure fluid bearing
JPH05309483A (en) Method and machine for laser beam machining
JP3452619B2 (en) Spherical surface grinding method
JPH0639575A (en) Laser beam machine
JP4376221B2 (en) Scanning optical unit, control method therefor, and laser processing apparatus
JPS61230318A (en) Method for scanning laser
JPH09108861A (en) Laser beam machining method of parts having square frame shape and coil parts
CN114453730A (en) Laser processing method of hemispherical revolving body