JPH1043906A - Lathe turning method for recessed groove and lathe turning device - Google Patents

Lathe turning method for recessed groove and lathe turning device

Info

Publication number
JPH1043906A
JPH1043906A JP20814096A JP20814096A JPH1043906A JP H1043906 A JPH1043906 A JP H1043906A JP 20814096 A JP20814096 A JP 20814096A JP 20814096 A JP20814096 A JP 20814096A JP H1043906 A JPH1043906 A JP H1043906A
Authority
JP
Japan
Prior art keywords
cutting tool
workpiece
cycle
groove
pressing direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20814096A
Other languages
Japanese (ja)
Inventor
Toshikazu Shogase
寿和 勝賀瀬
Yoshihiro Ikemoto
義寛 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20814096A priority Critical patent/JPH1043906A/en
Publication of JPH1043906A publication Critical patent/JPH1043906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To turn a recessed groove easily by pressing a cutting tool against a machined face of a workpiece and vibrating the cutting tool in the direction of pressing while transferring the cutting tool in the orthogonal direction to the direction of pressing. SOLUTION: A first travel table 6 and a second travel table 11 are moved to bring a tip of a cutting tool 5 into contact with a machining start point of a workpiece 9. After that, while moving the first travel table 6 at predetermined speed, a drive signal generator 10 is controlled so that an output pulse having shorter cycle than rotation cycle of a main spindle 4 is obtained, and the cutting tool 5 is vibrated in X direction at cycle of one-integral number of the rotation cycle of the main spindle 4, namely, the workpiece 9 for cutting. Consequently, a spiral recessed groove having the width equal to cutting width of the cutting tool 5 is formed on a machined face of the workpiece 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被加工物の加工表
面に一本あるいは複数本の凹溝を加工する凹溝の旋削方
法および旋削装置に関するもので、特に、流体軸受け装
置のグルーブの形成等比較的小さく高精度が要求される
部品の加工に適するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a groove turning method and a turning apparatus for forming one or more grooves on a processing surface of a workpiece, and more particularly to a groove forming method for a fluid bearing device. It is suitable for processing parts that are relatively small and require high precision.

【0002】[0002]

【従来の技術】例えば、流体軸受け装置のグルーブの形
成された軸は、構造上高い加工精度が要求されており、
従来、そのグルーブの加工は、エッチング法による加工
が一般的に行われている。すなわち、図12に模式的に
示すように円盤状の被加工物1の加工面にその中心より
放射状に広がる複数の凹溝を形成する場合、凹溝を形成
する加工部分2を除いた部分に耐食性皮膜3を施し、然
る後に、エッチング液に浸漬し、前記加工部分2を溶出
除去した後、前記耐食性皮膜3を除去して、加工部分2
に凹溝を形成するものである。
2. Description of the Related Art For example, a shaft formed with a groove of a fluid bearing device is required to have a high processing accuracy structurally.
Conventionally, the processing of the groove is generally performed by an etching method. That is, as shown schematically in FIG. 12, when a plurality of grooves extending radially from the center of the disk-shaped workpiece 1 are formed on the processing surface of the disk-shaped workpiece 1, a portion excluding the processing portion 2 forming the groove is formed. After the corrosion-resistant coating 3 is applied, and then immersed in an etching solution to elute and remove the processed portion 2, the corrosion-resistant coating 3 is removed and the processed portion 2 is removed.
A groove is formed in the groove.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記エ
ッチング法は、設備の必要性や種々の処理液の廃液処理
の問題、および被加工物1の外形を円盤状に仕上げる等
の機械的切削加工と前記エッチング法による加工が切り
離された工程でなされるため、前記加工面の中心と放射
状に広がる複数の凹溝の中心との同芯精度の低下などの
問題がある。
However, the above-mentioned etching method involves the necessity of equipment, the problem of waste liquid treatment of various treatment liquids, and mechanical cutting such as finishing the outer shape of the workpiece 1 into a disk shape. Since the processing by the etching method is performed in a separate step, there is a problem such as a decrease in concentric accuracy between the center of the processing surface and the centers of a plurality of radially extending grooves.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に本発明の凹溝の旋削方法および旋削装置は、回転駆動
される被加工物の加工面にバイトを押し当て、その押し
当て方向に直角な方向に前記バイトを移送させながら、
前記押し当て方向に前記バイトを振動せしめて前記被加
工面に連続した凹溝を形成するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a turning method and a turning device for a concave groove according to the present invention press a cutting tool against a processing surface of a workpiece to be rotated and driven in a pressing direction. While transferring the cutting tool in a right angle direction,
By vibrating the cutting tool in the pressing direction, a continuous groove is formed on the surface to be processed.

【0005】本発明によれば、従来の旋削機にバイトを
その押し当て方向に振動せしめる機能を付加するという
簡単な改良により、容易に凹溝の加工ができるものであ
り、また、被加工物の外形等の切削加工を同一機器によ
り行うことができ、いわゆる1チャックにより外形等の
切削加工と凹溝加工が可能で、被加工物と凹溝との同芯
精度も安定する。また、バイトの振動周期を変化せしめ
ることにより、種々な形状の凹溝を容易に形成すること
が出来るものである。
According to the present invention, a groove can be easily formed by a simple improvement of adding a function of vibrating a cutting tool in a pressing direction to a conventional turning machine. Can be performed by the same equipment, and the so-called one chuck can perform the processing for cutting the external shape and the like and the groove processing, and the concentric accuracy between the workpiece and the groove can be stabilized. Also, by changing the vibration cycle of the cutting tool, various types of concave grooves can be easily formed.

【0006】[0006]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図1から図12を参照しながら説明する。図1は
本発明の凹溝旋削装置の一実施の形態を模式的に示す平
面図であり、4は図示のない駆動源により回転駆動され
る主軸である。その主軸4の先端にはチャック8を介し
て被加工物9が固着されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view schematically showing an embodiment of a groove turning apparatus according to the present invention, and reference numeral 4 denotes a main shaft which is rotationally driven by a drive source (not shown). A workpiece 9 is fixed to the tip of the main shaft 4 via a chuck 8.

【0007】6は第一の移動テーブルであり、駆動源
(図示せず)により矢印Y方向に可逆的に移動可能に構
成されている。この第一の移動テーブル6上には駆動源
(図示せず)により前記矢印Yと直角なX方向に可逆的
に移動可能な第二の移動テーブル11が取り付けられて
おり、この第二の移動テーブル11上にはバイト5を前
記X方向に振動させる振動装置12が固定されており、
振動装置12は、駆動信号発生器10の出力パルスの周
期に応じてバイト5を振動させるように構成されてい
る。
Reference numeral 6 denotes a first moving table, which is reversibly movable in the direction of arrow Y by a driving source (not shown). A second moving table 11 that is reversibly movable in the X direction perpendicular to the arrow Y by a driving source (not shown) is mounted on the first moving table 6. A vibration device 12 for vibrating the cutting tool 5 in the X direction is fixed on the table 11.
The vibration device 12 is configured to vibrate the cutting tool 5 in accordance with the cycle of the output pulse of the drive signal generator 10.

【0008】7は、前記主軸4の回転速度、第一、第二
の移動テーブル6、11の移動方向、距離および速度、
駆動信号発生器10の出力パルスの周期などを制御する
制御装置である。前記振動装置12を除去してバイト5
を直接第二の移動テーブル11に取り付けると従来公知
のNC旋削装置と同じ構成である。
Reference numeral 7 denotes the rotational speed of the main shaft 4, the moving directions, distances and speeds of the first and second moving tables 6 and 11,
This is a control device that controls the cycle of the output pulse of the drive signal generator 10 and the like. The vibrating device 12 is removed and the cutting tool 5
Is directly attached to the second moving table 11, the configuration is the same as that of a conventionally known NC turning apparatus.

【0009】以上のように構成された凹溝旋削装置の動
作について以下説明する。比較のため、まず通常のNC
旋削装置として使用する場合を説明する。
The operation of the groove turning apparatus thus configured will be described below. For comparison, first the normal NC
The case of using as a turning device will be described.

【0010】この場合、前記駆動信号発生器10を停止
し、振動装置12の振動を停止せしめた状態で、主軸4
を所定の速度で回転せしめ、被加工物9を回転させる。
この状態で、第一および第二の移動テーブル6、11
を、移動せしめて、バイト5の先端を、被加工物9の加
工開始点に当接せしめ、しかる後に第一の移動テーブル
6を所定の速度で移動せしめると、例えば、被加工物9
の加工面に図2のようなバイト5の切り幅に等しい幅の
渦巻き状の凹溝13が形成される。この渦巻状の凹溝1
3は、その凹溝13に沿った断面図を図3に示すように
均一な深さのものとなる。
In this case, the drive signal generator 10 is stopped, and the vibration of the vibration device 12 is stopped.
Is rotated at a predetermined speed, and the workpiece 9 is rotated.
In this state, the first and second moving tables 6, 11
Is moved, the tip of the cutting tool 5 is brought into contact with the processing start point of the workpiece 9, and then the first moving table 6 is moved at a predetermined speed.
A spiral groove 13 having a width equal to the cutting width of the cutting tool 5 as shown in FIG. This spiral groove 1
3 has a uniform depth as shown in FIG. 3 in a sectional view along the concave groove 13.

【0011】次に、本発明の特徴である放射状に伸びる
凹溝の加工について説明する。主軸4を所定の速度で回
転せしめ、被加工物9を回転させる。この状態で、第一
および第二の移動テーブル6、11を移動せしめて、バ
イト5の先端を、被加工物9の加工開始点に当接せし
め、しかる後に第一の移動テーブル6を所定の速度で移
動せしめながら、前記駆動信号発生器10を主軸4の回
転周期より短い周期(例えば、1/3の周期)の出力パ
ルスが得られるように制御し、振動装置12によりバイ
ト5を主軸4の回転周期の整数分の一(例えば1/3)
の周期でもって、X方向に振動させながら切削すると、
被加工物9の加工面に図4のようなバイト5の切り幅に
等しい幅の渦巻状の凹溝13が形成される。
Next, the processing of the radially extending concave groove, which is a feature of the present invention, will be described. The main shaft 4 is rotated at a predetermined speed, and the workpiece 9 is rotated. In this state, the first and second moving tables 6 and 11 are moved so that the tip of the cutting tool 5 is brought into contact with the processing start point of the workpiece 9 and then the first moving table 6 is moved to a predetermined position. While moving at a speed, the drive signal generator 10 is controlled so as to obtain an output pulse having a cycle shorter than the rotation cycle of the spindle 4 (for example, 1/3 cycle). 1 / (for example, 1/3) of the rotation period of
When cutting while vibrating in the X direction with the cycle of
A spiral groove 13 having a width equal to the cutting width of the cutting tool 5 as shown in FIG. 4 is formed on the processing surface of the workpiece 9.

【0012】この渦巻状の凹溝13は、その凹溝13に
沿った断面図を図5に示すように、前記のバイト5の振
動周期に応じてサインカーブ状に深さが変化したものと
なる。従って、被加工物9の一回転目に形成された渦巻
状の凹溝13に、続く二回転目に形成される渦巻状の凹
溝13が一部重複するように第一の移動テーブル6の移
動速度を調節しておけば、図6に示すように、被加工物
9の回転中心から扇状に伸びるサインカーブ状の凹溝部
14が等間隔に3個形成できる。
As shown in FIG. 5, a cross-sectional view of the spiral groove 13 along the groove 13 changes its depth in a sine curve in accordance with the vibration cycle of the cutting tool 5. Become. Therefore, the first moving table 6 is moved so that the spiral groove 13 formed in the first rotation of the workpiece 9 partially overlaps the spiral groove 13 formed in the subsequent second rotation. If the moving speed is adjusted, as shown in FIG. 6, three sine-curve concave grooves 14 extending in a fan shape from the rotation center of the workpiece 9 can be formed at equal intervals.

【0013】その後、必要に応じては、前記凹溝部14
間の凸部の先端部(図6に15として示す部分)を平面
になるように旋削して除去すると、平面に底面がサイン
カーブ状の凹溝部14が形成された形状にもすることが
できる。
Thereafter, if necessary, the groove 14
When the front end portion (the portion shown as 15 in FIG. 6) of the intervening convex portion is turned and removed so as to be a flat surface, the flat surface can be formed into a shape in which a concave groove portion 14 having a sinusoidal bottom surface is formed. .

【0014】前述の構成では、バイト5を被加工物9の
回転に同期して、その回転周期の整数分の一(例えば1
/3)の周期でもって振動せしめた例を示したが、非整
数分の一(例えば1/約2.9)に設定すれば、図7に
示すように曲線的に変化する凹溝部14を形成すること
ができる。さらに、この振動周期を、途中より変化せし
めれば、図8あるいは図9に示すような途中から曲率の
変化した凹溝部14を形成することができる。
In the above-described configuration, the cutting tool 5 is synchronized with the rotation of the workpiece 9 and is divided by an integer fraction (for example, 1) of the rotation cycle.
An example of vibrating at a period of (/ 3) is shown. However, if it is set to a non-integral fraction (for example, 1 / approximately 2.9), the concave groove portion 14 that changes in a curve as shown in FIG. Can be formed. Further, if this vibration period is changed from the middle, the concave groove portion 14 whose curvature changes from the middle as shown in FIG. 8 or 9 can be formed.

【0015】なお、以上の実施例においては、駆動信号
発生器10の出力波形をサインカーブ状としたが、方形
波、台形波、三角波などとし、また、バイト5の形状を
V型、R型、成形型など変化せしめ、さらに、バイト5
の逃げ角度を凹溝形状と干渉しない角度とすることによ
り、より複雑な凹溝形状を切削できる。
In the above embodiment, the output waveform of the drive signal generator 10 has a sine curve shape. However, the output waveform of the drive signal generator 10 may be a square wave, a trapezoidal wave, a triangular wave, or the like. , Change the mold, etc.
By setting the clearance angle of the groove so as not to interfere with the shape of the groove, a more complicated groove shape can be cut.

【0016】また、実施例においては、被加工物の回転
平面に凹溝部14を形成する例を示したが、回転駆動さ
れる円柱状体の外周面、円筒状体の内外周面に形成する
こともできる。すなわち、被加工物がその中心軸を中心
に回転駆動される円筒状体の場合、バイトをその円筒状
体の側面に押し当て、その状態でバイトを押し当て方向
に振動させながら前記中心軸方向に移送することによ
り、円筒状体の側面に、直線状あるいは螺旋状などの凹
溝を形成することができる。
Further, in the embodiment, the example in which the concave groove portion 14 is formed on the rotation plane of the workpiece is shown, but it is formed on the outer peripheral surface of the cylindrical body which is driven to rotate, and the inner and outer peripheral surfaces of the cylindrical body. You can also. That is, when the workpiece is a cylindrical body that is driven to rotate about its central axis, the cutting tool is pressed against the side surface of the cylindrical body, and while the cutting tool is vibrated in the pressing direction in this state, the cutting tool is rotated in the central axis direction. , A linear or spiral groove can be formed on the side surface of the cylindrical body.

【0017】例えば、被加工物の回転周期の1/4の周
期で短期間間欠的にバイトを押し圧すると、図10に示
すような被加工物1の側面に互いに並行する4本の凹溝
部14を形成することができ、また、1/3.9の周期
で短期間間欠的にバイトを押し圧すると、図11に示す
ような被加工物1の側面に互いに並行する4本の螺旋状
凹溝部14示すような、その軸方向に直線的、あるい
は、螺旋状に伸びる凹溝部14を同時に複数本形成する
際にも、同様にバイトを振動せしめることにより達成で
きるものである。
For example, when the cutting tool is intermittently pressed for a short period at a period of 1/4 of the rotation period of the workpiece, four concave grooves parallel to each other are formed on the side surface of the workpiece 1 as shown in FIG. 14, and when the cutting tool is intermittently pressed for a short period at a cycle of 1 / 3.9, four spiral shapes parallel to each other are formed on the side surface of the workpiece 1 as shown in FIG. When a plurality of grooves 14 linearly or helically extending in the axial direction as shown in the grooves 14 are simultaneously formed, this can be achieved by vibrating the cutting tool.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、従来の
旋削機にバイトをその押し当て方向に振動せしめる機能
を付加するという簡単な改良により、容易に凹溝の加工
ができるものであり、また、被加工物の外形等の切削加
工を同一機器により行うことができ、いわゆる1チャッ
クにより外形等の切削加工と凹溝加工が可能で、被加工
物と凹溝との同芯精度も安定する。また、バイトの振動
周期を変化せしめることにより、種々な形状の凹溝を容
易に作成することが出来るものである。
As described above, according to the present invention, the groove can be easily machined by the simple improvement of adding the function of vibrating the cutting tool in the pressing direction to the conventional turning machine. Yes, it is possible to cut the outer shape of the workpiece with the same equipment, and it is possible to cut the outer shape and groove with a so-called one chuck, and to achieve the concentric accuracy between the workpiece and the groove. Is also stable. Also, by changing the vibration cycle of the cutting tool, various shapes of concave grooves can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の凹溝の旋削方法に使用される旋削装置
の一実施の形態の概略を示す平面図
FIG. 1 is a plan view schematically showing an embodiment of a turning apparatus used in a method for turning a concave groove according to the present invention.

【図2】本発明の旋削方法による凹溝部形成過程を説明
するため被加工物の加工面を示す平面図
FIG. 2 is a plan view showing a machined surface of a workpiece to explain a concave groove forming process by the turning method of the present invention.

【図3】同凹溝部形成過程の被加工物の加工面の凹溝に
沿った側断面図
FIG. 3 is a side sectional view along a concave groove of a processing surface of a workpiece in the process of forming the concave groove portion.

【図4】本発明の凹溝の旋削方法による凹溝部形成過程
の被加工物の加工面を示す平面図
FIG. 4 is a plan view showing a machined surface of a workpiece in a process of forming a groove by the groove turning method of the present invention;

【図5】同凹溝部形成過程の被加工物の加工面の凹溝に
沿った側断面図
FIG. 5 is a side sectional view along a groove of a processing surface of a workpiece in the process of forming the groove.

【図6】本発明の旋削方法により被加工物の加工面に形
成された凹溝部の一例を示す平面図
FIG. 6 is a plan view showing an example of a concave groove formed on a processing surface of a workpiece by the turning method of the present invention.

【図7】本発明の旋削方法により被加工物の加工面に形
成された凹溝部の他の例を示す平面図
FIG. 7 is a plan view showing another example of the concave groove formed on the processing surface of the workpiece by the turning method of the present invention.

【図8】本発明の旋削方法により被加工物の加工面に形
成された凹溝部の更に他の例を示す平面図
FIG. 8 is a plan view showing still another example of the groove formed on the processing surface of the workpiece by the turning method of the present invention.

【図9】本発明の旋削方法により被加工物の加工面に形
成された凹溝部の更に他の例を示す平面図
FIG. 9 is a plan view showing still another example of the concave groove formed on the processing surface of the workpiece by the turning method of the present invention.

【図10】本発明の旋削方法により円筒状体の被加工物
の外周面に形成された凹溝部の一例を示す側面図および
断面図
FIG. 10 is a side view and a cross-sectional view showing an example of a groove formed on the outer peripheral surface of a cylindrical workpiece by the turning method of the present invention;

【図11】本発明の旋削方法により円筒状体の被加工物
の外周面に形成された凹溝部の一例を示す側面図および
断面図
FIG. 11 is a side view and a cross-sectional view showing an example of a groove formed on the outer peripheral surface of a cylindrical workpiece by the turning method of the present invention.

【図12】従来のエッチング法による凹溝の形成方法を
説明するための被加工物の加工面を示す平面図
FIG. 12 is a plan view showing a processing surface of a workpiece for explaining a method of forming a groove by a conventional etching method.

【符号の説明】[Explanation of symbols]

1 主軸 2 バイト 3 第一の移動テーブル 4 制御装置 5 チャック 6 被加工物 7 駆動信号発生装置 8 第二の移動テーブル 9 振動装置 10 凹溝 11 凹溝部 Reference Signs List 1 spindle 2 byte 3 first moving table 4 control device 5 chuck 6 workpiece 7 drive signal generator 8 second moving table 9 vibrating device 10 concave groove 11 concave groove portion

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】回転駆動される被加工物の加工面にバイト
を押し当て、その押し当て方向に直角な方向に前記バイ
トを移送させながら、前記押し当て方向に前記バイトを
振動せしめて前記被加工面に連続した一本または複数本
の凹溝を形成する凹溝の旋削方法。
1. A cutting tool is pressed against a processing surface of a workpiece to be driven to rotate, and the cutting tool is vibrated in the pressing direction while transferring the cutting tool in a direction perpendicular to the pressing direction. A method of turning a groove to form one or more grooves continuously on a processing surface.
【請求項2】前記バイトの押し当て方向の振動周期は、
前記被加工物の回転周期に同期した整数倍の周期である
ことを特徴とする請求項1記載の凹溝の旋削方法。
2. The vibration period of the cutting tool in the pressing direction is as follows:
2. The method according to claim 1, wherein the cycle is an integral multiple of a cycle synchronized with a rotation cycle of the workpiece.
【請求項3】前記バイトの押し当て方向の振動周期は、
前記被加工物の回転周期の非整数倍の周期期であること
を特徴とする請求項1記載の凹溝の旋削方法。
3. The vibration cycle of the cutting tool in the pressing direction is as follows:
2. The method according to claim 1, wherein the period is a non-integer multiple of the rotation period of the workpiece.
【請求項4】前記バイトの押し当て方向の振動周期を、
前記バイトを移送期間中に変化せしめることを特徴とす
る請求項1記載の凹溝の旋削方法。
4. The vibration period of the cutting tool in the pressing direction is
2. The method according to claim 1, wherein the cutting tool is changed during a transfer period.
【請求項5】前記バイトの移送が、被加工物の回転する
加工平面の回転中心を通る線上に沿って行われ、前記加
工面に前記回転中心より放射状にのびる凹溝を形成する
ことを特徴とする請求項1記載の凹溝の旋削方法。
5. The method according to claim 1, wherein the transfer of the cutting tool is performed along a line passing through a rotation center of a processing plane on which the workpiece is rotated, and a concave groove extending radially from the rotation center is formed in the processing surface. The method for turning a concave groove according to claim 1.
【請求項6】前記被加工物はその中心軸を中心に回転駆
動される円筒状体であり、バイトはその円筒状体の側面
に押し当てられて、前記中心軸方向に移送されることに
より、円筒状体の側面に螺旋状の凹溝を形成することを
特徴とする請求項1記載の凹溝の旋削方法。
6. The workpiece is a cylindrical body that is driven to rotate about its central axis, and a cutting tool is pressed against a side surface of the cylindrical body and is transferred in the central axis direction. 2. The method according to claim 1, wherein a spiral groove is formed on a side surface of the cylindrical body.
【請求項7】被加工物を保持しその加工面を回転駆動す
る回転駆動手段と、前記加工面にバイトを押し当て、そ
の押し当て方向に直角な方向に前記バイトを移送せしめ
る移送手段と、前記押し当て方向に前記被加工物の回転
周期より短い周期で前記バイトを振動せしめる振動手段
とでなる凹溝の旋削装置。
7. A rotary driving means for holding a workpiece and rotating the processing surface thereof, a transfer means for pressing a tool against the processing surface, and transferring the tool in a direction perpendicular to the pressing direction. An apparatus for turning a concave groove, comprising vibrating means for vibrating the cutting tool in the pressing direction at a cycle shorter than a rotation cycle of the workpiece.
【請求項8】前記バイトの押し当て方向の振動周期は、
前記被加工物の回転周期に同期した整数倍の周期である
ことを特徴とする請求項7記載の凹溝の旋削装置。
8. The vibration cycle of the cutting tool in the pressing direction is as follows:
8. The groove turning apparatus according to claim 7, wherein the cycle is an integral multiple of a cycle synchronized with a rotation cycle of the workpiece.
【請求項9】前記バイトの押し当て方向の振動周期は、
前記被加工物の回転周期の非整数倍の周期であることを
特徴とする請求項7記載の凹溝の旋削装置。
9. The vibration cycle of the cutting tool in the pressing direction is as follows:
8. The groove turning device according to claim 7, wherein the period is a non-integer multiple of the rotation period of the workpiece.
JP20814096A 1996-08-07 1996-08-07 Lathe turning method for recessed groove and lathe turning device Pending JPH1043906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20814096A JPH1043906A (en) 1996-08-07 1996-08-07 Lathe turning method for recessed groove and lathe turning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20814096A JPH1043906A (en) 1996-08-07 1996-08-07 Lathe turning method for recessed groove and lathe turning device

Publications (1)

Publication Number Publication Date
JPH1043906A true JPH1043906A (en) 1998-02-17

Family

ID=16551305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20814096A Pending JPH1043906A (en) 1996-08-07 1996-08-07 Lathe turning method for recessed groove and lathe turning device

Country Status (1)

Country Link
JP (1) JPH1043906A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070219A1 (en) * 2003-02-04 2004-08-19 Nhk Spring Co., Ltd. Shaft for dynamic bearing, dynamic bearing, and method for producing the shaft
JP2013185658A (en) * 2012-03-08 2013-09-19 Samsung Electro-Mechanics Japan Advanced Technology Co Ltd Rotary device and method of producing the same
JP2014018955A (en) * 2012-07-20 2014-02-03 Advanced Power Electronics Corp Lathe control system
CN104551016A (en) * 2014-12-25 2015-04-29 龙口市蓝牙数控装备有限公司 End surface grooving device
JP2016068157A (en) * 2014-09-26 2016-05-09 ジヤトコ株式会社 Surface processing method of workpiece
JP2017177267A (en) * 2016-03-29 2017-10-05 シチズン時計株式会社 Machine tool and control device therefor
US10220481B2 (en) 2012-12-19 2019-03-05 Fuxiang Precision Industrial (Kunshan) Co., Ltd. Machine control system employing lathe tool and milling cutter
US10625355B2 (en) 2014-10-28 2020-04-21 Mitsubishi Electric Corporation Numerical control device
US10671046B2 (en) 2014-11-26 2020-06-02 Mitsubishi Electric Corporation Method and apparatus for applying vibration and machining an object
WO2020241524A1 (en) 2019-05-29 2020-12-03 シチズン時計株式会社 Machine tool, and control device for machine tool
CN114012114A (en) * 2021-11-19 2022-02-08 航天精工股份有限公司 Numerical control turning method for special-shaped reticulate pattern knurling

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070219A1 (en) * 2003-02-04 2004-08-19 Nhk Spring Co., Ltd. Shaft for dynamic bearing, dynamic bearing, and method for producing the shaft
US7226211B2 (en) 2003-02-04 2007-06-05 Nhk Spring Co., Ltd Shaft for fluid dynamic bearing, fluid dynamic bearing device, and method of manufacturing the shaft
KR100730424B1 (en) * 2003-02-04 2007-06-19 닛폰 하츠죠 가부시키가이샤 Shaft for fluid dynamic bearing, fluid dynamic bearing device, and method of manufacturing the shaft
CN100381717C (en) * 2003-02-04 2008-04-16 日本发条株式会社 Shaft for dynamic bearing, dynamic bearing, and method for producing the shaft
JP2013185658A (en) * 2012-03-08 2013-09-19 Samsung Electro-Mechanics Japan Advanced Technology Co Ltd Rotary device and method of producing the same
US9566648B2 (en) 2012-07-20 2017-02-14 Hon Hai Precision Industry Co., Ltd. Lathe control system
JP2014018955A (en) * 2012-07-20 2014-02-03 Advanced Power Electronics Corp Lathe control system
US10220481B2 (en) 2012-12-19 2019-03-05 Fuxiang Precision Industrial (Kunshan) Co., Ltd. Machine control system employing lathe tool and milling cutter
JP2016068157A (en) * 2014-09-26 2016-05-09 ジヤトコ株式会社 Surface processing method of workpiece
US10625355B2 (en) 2014-10-28 2020-04-21 Mitsubishi Electric Corporation Numerical control device
US10671046B2 (en) 2014-11-26 2020-06-02 Mitsubishi Electric Corporation Method and apparatus for applying vibration and machining an object
CN104551016A (en) * 2014-12-25 2015-04-29 龙口市蓝牙数控装备有限公司 End surface grooving device
JP2017177267A (en) * 2016-03-29 2017-10-05 シチズン時計株式会社 Machine tool and control device therefor
WO2020241524A1 (en) 2019-05-29 2020-12-03 シチズン時計株式会社 Machine tool, and control device for machine tool
CN114012114A (en) * 2021-11-19 2022-02-08 航天精工股份有限公司 Numerical control turning method for special-shaped reticulate pattern knurling
WO2023087471A1 (en) * 2021-11-19 2023-05-25 航天精工股份有限公司 Numerical control turning method for special-shaped hatching knurling

Similar Documents

Publication Publication Date Title
JPH1043906A (en) Lathe turning method for recessed groove and lathe turning device
JP2708056B2 (en) Machine tools for processing workpieces
EP0784757B1 (en) Method of manufacturing a dynamic groove bearing by means of a metal-removing tool, and data storage unit provided with such a dynamic groove bearing
KR950005455A (en) Method and apparatus for processing work on scroll
JP2000141120A (en) Trochoid tool and machining method by the same
JPH1110401A (en) Working method for zonal lens forming die and cutting tool therefor
JPH0425301A (en) Cutting device
JPH06226503A (en) Apparatus and method for working irregular pitch spiral groove
JPH1119804A (en) Device and method for machining helical groove
KR102050766B1 (en) Apparatus for grinding
JP2001341002A (en) Manufacturing method and device for dynamic pressure type bearing part
JPH10328902A (en) Spiral groove forming machine
JP2002144101A (en) Vibration cutting apparatus and method
JPH0691506A (en) Spherical body grinding device
JPH05146901A (en) Machining method for rotary polygon mirror
JP2002144199A (en) Surface grinding method and surface grinding machine for sheet disc-like workpiece
SU1646680A1 (en) Apparatus for machining shaped surfaces
JPH0775909A (en) Machining device
SU1261745A1 (en) Method of machining toroid grooves
RU2080238C1 (en) Method of machining curved surfaces of articles
JP2001269817A (en) Cutting worm for continuous generation gear cutting of gear
JPH0280814A (en) Method of manufacturing dynamic pressure bearing
JPH09155728A (en) Surface polishing method
JPH07290316A (en) Device and method for machining gear
JP3130770B2 (en) Non-circular grinding machine